1 | // random number generation (out of line) -*- C++ -*- |
2 | |
3 | // Copyright (C) 2009-2019 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/random.tcc |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{random} |
28 | */ |
29 | |
30 | #ifndef _RANDOM_TCC |
31 | #define _RANDOM_TCC 1 |
32 | |
33 | #include <numeric> // std::accumulate and std::partial_sum |
34 | |
35 | namespace std _GLIBCXX_VISIBILITY(default) |
36 | { |
37 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
38 | |
39 | /* |
40 | * (Further) implementation-space details. |
41 | */ |
42 | namespace __detail |
43 | { |
44 | // General case for x = (ax + c) mod m -- use Schrage's algorithm |
45 | // to avoid integer overflow. |
46 | // |
47 | // Preconditions: a > 0, m > 0. |
48 | // |
49 | // Note: only works correctly for __m % __a < __m / __a. |
50 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
51 | _Tp |
52 | _Mod<_Tp, __m, __a, __c, false, true>:: |
53 | __calc(_Tp __x) |
54 | { |
55 | if (__a == 1) |
56 | __x %= __m; |
57 | else |
58 | { |
59 | static const _Tp __q = __m / __a; |
60 | static const _Tp __r = __m % __a; |
61 | |
62 | _Tp __t1 = __a * (__x % __q); |
63 | _Tp __t2 = __r * (__x / __q); |
64 | if (__t1 >= __t2) |
65 | __x = __t1 - __t2; |
66 | else |
67 | __x = __m - __t2 + __t1; |
68 | } |
69 | |
70 | if (__c != 0) |
71 | { |
72 | const _Tp __d = __m - __x; |
73 | if (__d > __c) |
74 | __x += __c; |
75 | else |
76 | __x = __c - __d; |
77 | } |
78 | return __x; |
79 | } |
80 | |
81 | template<typename _InputIterator, typename _OutputIterator, |
82 | typename _Tp> |
83 | _OutputIterator |
84 | __normalize(_InputIterator __first, _InputIterator __last, |
85 | _OutputIterator __result, const _Tp& __factor) |
86 | { |
87 | for (; __first != __last; ++__first, ++__result) |
88 | *__result = *__first / __factor; |
89 | return __result; |
90 | } |
91 | |
92 | } // namespace __detail |
93 | |
94 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
95 | constexpr _UIntType |
96 | linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier; |
97 | |
98 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
99 | constexpr _UIntType |
100 | linear_congruential_engine<_UIntType, __a, __c, __m>::increment; |
101 | |
102 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
103 | constexpr _UIntType |
104 | linear_congruential_engine<_UIntType, __a, __c, __m>::modulus; |
105 | |
106 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
107 | constexpr _UIntType |
108 | linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed; |
109 | |
110 | /** |
111 | * Seeds the LCR with integral value @p __s, adjusted so that the |
112 | * ring identity is never a member of the convergence set. |
113 | */ |
114 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
115 | void |
116 | linear_congruential_engine<_UIntType, __a, __c, __m>:: |
117 | seed(result_type __s) |
118 | { |
119 | if ((__detail::__mod<_UIntType, __m>(__c) == 0) |
120 | && (__detail::__mod<_UIntType, __m>(__s) == 0)) |
121 | _M_x = 1; |
122 | else |
123 | _M_x = __detail::__mod<_UIntType, __m>(__s); |
124 | } |
125 | |
126 | /** |
127 | * Seeds the LCR engine with a value generated by @p __q. |
128 | */ |
129 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
130 | template<typename _Sseq> |
131 | auto |
132 | linear_congruential_engine<_UIntType, __a, __c, __m>:: |
133 | seed(_Sseq& __q) |
134 | -> _If_seed_seq<_Sseq> |
135 | { |
136 | const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits |
137 | : std::__lg(__m); |
138 | const _UIntType __k = (__k0 + 31) / 32; |
139 | uint_least32_t __arr[__k + 3]; |
140 | __q.generate(__arr + 0, __arr + __k + 3); |
141 | _UIntType __factor = 1u; |
142 | _UIntType __sum = 0u; |
143 | for (size_t __j = 0; __j < __k; ++__j) |
144 | { |
145 | __sum += __arr[__j + 3] * __factor; |
146 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
147 | } |
148 | seed(__sum); |
149 | } |
150 | |
151 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
152 | typename _CharT, typename _Traits> |
153 | std::basic_ostream<_CharT, _Traits>& |
154 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
155 | const linear_congruential_engine<_UIntType, |
156 | __a, __c, __m>& __lcr) |
157 | { |
158 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
159 | typedef typename __ostream_type::ios_base __ios_base; |
160 | |
161 | const typename __ios_base::fmtflags __flags = __os.flags(); |
162 | const _CharT __fill = __os.fill(); |
163 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
164 | __os.fill(__os.widen(' ')); |
165 | |
166 | __os << __lcr._M_x; |
167 | |
168 | __os.flags(__flags); |
169 | __os.fill(__fill); |
170 | return __os; |
171 | } |
172 | |
173 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
174 | typename _CharT, typename _Traits> |
175 | std::basic_istream<_CharT, _Traits>& |
176 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
177 | linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr) |
178 | { |
179 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
180 | typedef typename __istream_type::ios_base __ios_base; |
181 | |
182 | const typename __ios_base::fmtflags __flags = __is.flags(); |
183 | __is.flags(__ios_base::dec); |
184 | |
185 | __is >> __lcr._M_x; |
186 | |
187 | __is.flags(__flags); |
188 | return __is; |
189 | } |
190 | |
191 | |
192 | template<typename _UIntType, |
193 | size_t __w, size_t __n, size_t __m, size_t __r, |
194 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
195 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
196 | _UIntType __f> |
197 | constexpr size_t |
198 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
199 | __s, __b, __t, __c, __l, __f>::word_size; |
200 | |
201 | template<typename _UIntType, |
202 | size_t __w, size_t __n, size_t __m, size_t __r, |
203 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
204 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
205 | _UIntType __f> |
206 | constexpr size_t |
207 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
208 | __s, __b, __t, __c, __l, __f>::state_size; |
209 | |
210 | template<typename _UIntType, |
211 | size_t __w, size_t __n, size_t __m, size_t __r, |
212 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
213 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
214 | _UIntType __f> |
215 | constexpr size_t |
216 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
217 | __s, __b, __t, __c, __l, __f>::shift_size; |
218 | |
219 | template<typename _UIntType, |
220 | size_t __w, size_t __n, size_t __m, size_t __r, |
221 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
222 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
223 | _UIntType __f> |
224 | constexpr size_t |
225 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
226 | __s, __b, __t, __c, __l, __f>::mask_bits; |
227 | |
228 | template<typename _UIntType, |
229 | size_t __w, size_t __n, size_t __m, size_t __r, |
230 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
231 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
232 | _UIntType __f> |
233 | constexpr _UIntType |
234 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
235 | __s, __b, __t, __c, __l, __f>::xor_mask; |
236 | |
237 | template<typename _UIntType, |
238 | size_t __w, size_t __n, size_t __m, size_t __r, |
239 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
240 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
241 | _UIntType __f> |
242 | constexpr size_t |
243 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
244 | __s, __b, __t, __c, __l, __f>::tempering_u; |
245 | |
246 | template<typename _UIntType, |
247 | size_t __w, size_t __n, size_t __m, size_t __r, |
248 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
249 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
250 | _UIntType __f> |
251 | constexpr _UIntType |
252 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
253 | __s, __b, __t, __c, __l, __f>::tempering_d; |
254 | |
255 | template<typename _UIntType, |
256 | size_t __w, size_t __n, size_t __m, size_t __r, |
257 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
258 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
259 | _UIntType __f> |
260 | constexpr size_t |
261 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
262 | __s, __b, __t, __c, __l, __f>::tempering_s; |
263 | |
264 | template<typename _UIntType, |
265 | size_t __w, size_t __n, size_t __m, size_t __r, |
266 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
267 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
268 | _UIntType __f> |
269 | constexpr _UIntType |
270 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
271 | __s, __b, __t, __c, __l, __f>::tempering_b; |
272 | |
273 | template<typename _UIntType, |
274 | size_t __w, size_t __n, size_t __m, size_t __r, |
275 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
276 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
277 | _UIntType __f> |
278 | constexpr size_t |
279 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
280 | __s, __b, __t, __c, __l, __f>::tempering_t; |
281 | |
282 | template<typename _UIntType, |
283 | size_t __w, size_t __n, size_t __m, size_t __r, |
284 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
285 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
286 | _UIntType __f> |
287 | constexpr _UIntType |
288 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
289 | __s, __b, __t, __c, __l, __f>::tempering_c; |
290 | |
291 | template<typename _UIntType, |
292 | size_t __w, size_t __n, size_t __m, size_t __r, |
293 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
294 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
295 | _UIntType __f> |
296 | constexpr size_t |
297 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
298 | __s, __b, __t, __c, __l, __f>::tempering_l; |
299 | |
300 | template<typename _UIntType, |
301 | size_t __w, size_t __n, size_t __m, size_t __r, |
302 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
303 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
304 | _UIntType __f> |
305 | constexpr _UIntType |
306 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
307 | __s, __b, __t, __c, __l, __f>:: |
308 | initialization_multiplier; |
309 | |
310 | template<typename _UIntType, |
311 | size_t __w, size_t __n, size_t __m, size_t __r, |
312 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
313 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
314 | _UIntType __f> |
315 | constexpr _UIntType |
316 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
317 | __s, __b, __t, __c, __l, __f>::default_seed; |
318 | |
319 | template<typename _UIntType, |
320 | size_t __w, size_t __n, size_t __m, size_t __r, |
321 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
322 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
323 | _UIntType __f> |
324 | void |
325 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
326 | __s, __b, __t, __c, __l, __f>:: |
327 | seed(result_type __sd) |
328 | { |
329 | _M_x[0] = __detail::__mod<_UIntType, |
330 | __detail::_Shift<_UIntType, __w>::__value>(__sd); |
331 | |
332 | for (size_t __i = 1; __i < state_size; ++__i) |
333 | { |
334 | _UIntType __x = _M_x[__i - 1]; |
335 | __x ^= __x >> (__w - 2); |
336 | __x *= __f; |
337 | __x += __detail::__mod<_UIntType, __n>(__i); |
338 | _M_x[__i] = __detail::__mod<_UIntType, |
339 | __detail::_Shift<_UIntType, __w>::__value>(__x); |
340 | } |
341 | _M_p = state_size; |
342 | } |
343 | |
344 | template<typename _UIntType, |
345 | size_t __w, size_t __n, size_t __m, size_t __r, |
346 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
347 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
348 | _UIntType __f> |
349 | template<typename _Sseq> |
350 | auto |
351 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
352 | __s, __b, __t, __c, __l, __f>:: |
353 | seed(_Sseq& __q) |
354 | -> _If_seed_seq<_Sseq> |
355 | { |
356 | const _UIntType __upper_mask = (~_UIntType()) << __r; |
357 | const size_t __k = (__w + 31) / 32; |
358 | uint_least32_t __arr[__n * __k]; |
359 | __q.generate(__arr + 0, __arr + __n * __k); |
360 | |
361 | bool __zero = true; |
362 | for (size_t __i = 0; __i < state_size; ++__i) |
363 | { |
364 | _UIntType __factor = 1u; |
365 | _UIntType __sum = 0u; |
366 | for (size_t __j = 0; __j < __k; ++__j) |
367 | { |
368 | __sum += __arr[__k * __i + __j] * __factor; |
369 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
370 | } |
371 | _M_x[__i] = __detail::__mod<_UIntType, |
372 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
373 | |
374 | if (__zero) |
375 | { |
376 | if (__i == 0) |
377 | { |
378 | if ((_M_x[0] & __upper_mask) != 0u) |
379 | __zero = false; |
380 | } |
381 | else if (_M_x[__i] != 0u) |
382 | __zero = false; |
383 | } |
384 | } |
385 | if (__zero) |
386 | _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value; |
387 | _M_p = state_size; |
388 | } |
389 | |
390 | template<typename _UIntType, size_t __w, |
391 | size_t __n, size_t __m, size_t __r, |
392 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
393 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
394 | _UIntType __f> |
395 | void |
396 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
397 | __s, __b, __t, __c, __l, __f>:: |
398 | _M_gen_rand(void) |
399 | { |
400 | const _UIntType __upper_mask = (~_UIntType()) << __r; |
401 | const _UIntType __lower_mask = ~__upper_mask; |
402 | |
403 | for (size_t __k = 0; __k < (__n - __m); ++__k) |
404 | { |
405 | _UIntType __y = ((_M_x[__k] & __upper_mask) |
406 | | (_M_x[__k + 1] & __lower_mask)); |
407 | _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) |
408 | ^ ((__y & 0x01) ? __a : 0)); |
409 | } |
410 | |
411 | for (size_t __k = (__n - __m); __k < (__n - 1); ++__k) |
412 | { |
413 | _UIntType __y = ((_M_x[__k] & __upper_mask) |
414 | | (_M_x[__k + 1] & __lower_mask)); |
415 | _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) |
416 | ^ ((__y & 0x01) ? __a : 0)); |
417 | } |
418 | |
419 | _UIntType __y = ((_M_x[__n - 1] & __upper_mask) |
420 | | (_M_x[0] & __lower_mask)); |
421 | _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) |
422 | ^ ((__y & 0x01) ? __a : 0)); |
423 | _M_p = 0; |
424 | } |
425 | |
426 | template<typename _UIntType, size_t __w, |
427 | size_t __n, size_t __m, size_t __r, |
428 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
429 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
430 | _UIntType __f> |
431 | void |
432 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
433 | __s, __b, __t, __c, __l, __f>:: |
434 | discard(unsigned long long __z) |
435 | { |
436 | while (__z > state_size - _M_p) |
437 | { |
438 | __z -= state_size - _M_p; |
439 | _M_gen_rand(); |
440 | } |
441 | _M_p += __z; |
442 | } |
443 | |
444 | template<typename _UIntType, size_t __w, |
445 | size_t __n, size_t __m, size_t __r, |
446 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
447 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
448 | _UIntType __f> |
449 | typename |
450 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
451 | __s, __b, __t, __c, __l, __f>::result_type |
452 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
453 | __s, __b, __t, __c, __l, __f>:: |
454 | operator()() |
455 | { |
456 | // Reload the vector - cost is O(n) amortized over n calls. |
457 | if (_M_p >= state_size) |
458 | _M_gen_rand(); |
459 | |
460 | // Calculate o(x(i)). |
461 | result_type __z = _M_x[_M_p++]; |
462 | __z ^= (__z >> __u) & __d; |
463 | __z ^= (__z << __s) & __b; |
464 | __z ^= (__z << __t) & __c; |
465 | __z ^= (__z >> __l); |
466 | |
467 | return __z; |
468 | } |
469 | |
470 | template<typename _UIntType, size_t __w, |
471 | size_t __n, size_t __m, size_t __r, |
472 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
473 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
474 | _UIntType __f, typename _CharT, typename _Traits> |
475 | std::basic_ostream<_CharT, _Traits>& |
476 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
477 | const mersenne_twister_engine<_UIntType, __w, __n, __m, |
478 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
479 | { |
480 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
481 | typedef typename __ostream_type::ios_base __ios_base; |
482 | |
483 | const typename __ios_base::fmtflags __flags = __os.flags(); |
484 | const _CharT __fill = __os.fill(); |
485 | const _CharT __space = __os.widen(' '); |
486 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
487 | __os.fill(__space); |
488 | |
489 | for (size_t __i = 0; __i < __n; ++__i) |
490 | __os << __x._M_x[__i] << __space; |
491 | __os << __x._M_p; |
492 | |
493 | __os.flags(__flags); |
494 | __os.fill(__fill); |
495 | return __os; |
496 | } |
497 | |
498 | template<typename _UIntType, size_t __w, |
499 | size_t __n, size_t __m, size_t __r, |
500 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
501 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
502 | _UIntType __f, typename _CharT, typename _Traits> |
503 | std::basic_istream<_CharT, _Traits>& |
504 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
505 | mersenne_twister_engine<_UIntType, __w, __n, __m, |
506 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
507 | { |
508 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
509 | typedef typename __istream_type::ios_base __ios_base; |
510 | |
511 | const typename __ios_base::fmtflags __flags = __is.flags(); |
512 | __is.flags(__ios_base::dec | __ios_base::skipws); |
513 | |
514 | for (size_t __i = 0; __i < __n; ++__i) |
515 | __is >> __x._M_x[__i]; |
516 | __is >> __x._M_p; |
517 | |
518 | __is.flags(__flags); |
519 | return __is; |
520 | } |
521 | |
522 | |
523 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
524 | constexpr size_t |
525 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size; |
526 | |
527 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
528 | constexpr size_t |
529 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag; |
530 | |
531 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
532 | constexpr size_t |
533 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag; |
534 | |
535 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
536 | constexpr _UIntType |
537 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed; |
538 | |
539 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
540 | void |
541 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
542 | seed(result_type __value) |
543 | { |
544 | std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u> |
545 | __lcg(__value == 0u ? default_seed : __value); |
546 | |
547 | const size_t __n = (__w + 31) / 32; |
548 | |
549 | for (size_t __i = 0; __i < long_lag; ++__i) |
550 | { |
551 | _UIntType __sum = 0u; |
552 | _UIntType __factor = 1u; |
553 | for (size_t __j = 0; __j < __n; ++__j) |
554 | { |
555 | __sum += __detail::__mod<uint_least32_t, |
556 | __detail::_Shift<uint_least32_t, 32>::__value> |
557 | (__lcg()) * __factor; |
558 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
559 | } |
560 | _M_x[__i] = __detail::__mod<_UIntType, |
561 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
562 | } |
563 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
564 | _M_p = 0; |
565 | } |
566 | |
567 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
568 | template<typename _Sseq> |
569 | auto |
570 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
571 | seed(_Sseq& __q) |
572 | -> _If_seed_seq<_Sseq> |
573 | { |
574 | const size_t __k = (__w + 31) / 32; |
575 | uint_least32_t __arr[__r * __k]; |
576 | __q.generate(__arr + 0, __arr + __r * __k); |
577 | |
578 | for (size_t __i = 0; __i < long_lag; ++__i) |
579 | { |
580 | _UIntType __sum = 0u; |
581 | _UIntType __factor = 1u; |
582 | for (size_t __j = 0; __j < __k; ++__j) |
583 | { |
584 | __sum += __arr[__k * __i + __j] * __factor; |
585 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
586 | } |
587 | _M_x[__i] = __detail::__mod<_UIntType, |
588 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
589 | } |
590 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
591 | _M_p = 0; |
592 | } |
593 | |
594 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
595 | typename subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
596 | result_type |
597 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
598 | operator()() |
599 | { |
600 | // Derive short lag index from current index. |
601 | long __ps = _M_p - short_lag; |
602 | if (__ps < 0) |
603 | __ps += long_lag; |
604 | |
605 | // Calculate new x(i) without overflow or division. |
606 | // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry |
607 | // cannot overflow. |
608 | _UIntType __xi; |
609 | if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) |
610 | { |
611 | __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; |
612 | _M_carry = 0; |
613 | } |
614 | else |
615 | { |
616 | __xi = (__detail::_Shift<_UIntType, __w>::__value |
617 | - _M_x[_M_p] - _M_carry + _M_x[__ps]); |
618 | _M_carry = 1; |
619 | } |
620 | _M_x[_M_p] = __xi; |
621 | |
622 | // Adjust current index to loop around in ring buffer. |
623 | if (++_M_p >= long_lag) |
624 | _M_p = 0; |
625 | |
626 | return __xi; |
627 | } |
628 | |
629 | template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
630 | typename _CharT, typename _Traits> |
631 | std::basic_ostream<_CharT, _Traits>& |
632 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
633 | const subtract_with_carry_engine<_UIntType, |
634 | __w, __s, __r>& __x) |
635 | { |
636 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
637 | typedef typename __ostream_type::ios_base __ios_base; |
638 | |
639 | const typename __ios_base::fmtflags __flags = __os.flags(); |
640 | const _CharT __fill = __os.fill(); |
641 | const _CharT __space = __os.widen(' '); |
642 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
643 | __os.fill(__space); |
644 | |
645 | for (size_t __i = 0; __i < __r; ++__i) |
646 | __os << __x._M_x[__i] << __space; |
647 | __os << __x._M_carry << __space << __x._M_p; |
648 | |
649 | __os.flags(__flags); |
650 | __os.fill(__fill); |
651 | return __os; |
652 | } |
653 | |
654 | template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
655 | typename _CharT, typename _Traits> |
656 | std::basic_istream<_CharT, _Traits>& |
657 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
658 | subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x) |
659 | { |
660 | typedef std::basic_ostream<_CharT, _Traits> __istream_type; |
661 | typedef typename __istream_type::ios_base __ios_base; |
662 | |
663 | const typename __ios_base::fmtflags __flags = __is.flags(); |
664 | __is.flags(__ios_base::dec | __ios_base::skipws); |
665 | |
666 | for (size_t __i = 0; __i < __r; ++__i) |
667 | __is >> __x._M_x[__i]; |
668 | __is >> __x._M_carry; |
669 | __is >> __x._M_p; |
670 | |
671 | __is.flags(__flags); |
672 | return __is; |
673 | } |
674 | |
675 | |
676 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
677 | constexpr size_t |
678 | discard_block_engine<_RandomNumberEngine, __p, __r>::block_size; |
679 | |
680 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
681 | constexpr size_t |
682 | discard_block_engine<_RandomNumberEngine, __p, __r>::used_block; |
683 | |
684 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
685 | typename discard_block_engine<_RandomNumberEngine, |
686 | __p, __r>::result_type |
687 | discard_block_engine<_RandomNumberEngine, __p, __r>:: |
688 | operator()() |
689 | { |
690 | if (_M_n >= used_block) |
691 | { |
692 | _M_b.discard(block_size - _M_n); |
693 | _M_n = 0; |
694 | } |
695 | ++_M_n; |
696 | return _M_b(); |
697 | } |
698 | |
699 | template<typename _RandomNumberEngine, size_t __p, size_t __r, |
700 | typename _CharT, typename _Traits> |
701 | std::basic_ostream<_CharT, _Traits>& |
702 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
703 | const discard_block_engine<_RandomNumberEngine, |
704 | __p, __r>& __x) |
705 | { |
706 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
707 | typedef typename __ostream_type::ios_base __ios_base; |
708 | |
709 | const typename __ios_base::fmtflags __flags = __os.flags(); |
710 | const _CharT __fill = __os.fill(); |
711 | const _CharT __space = __os.widen(' '); |
712 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
713 | __os.fill(__space); |
714 | |
715 | __os << __x.base() << __space << __x._M_n; |
716 | |
717 | __os.flags(__flags); |
718 | __os.fill(__fill); |
719 | return __os; |
720 | } |
721 | |
722 | template<typename _RandomNumberEngine, size_t __p, size_t __r, |
723 | typename _CharT, typename _Traits> |
724 | std::basic_istream<_CharT, _Traits>& |
725 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
726 | discard_block_engine<_RandomNumberEngine, __p, __r>& __x) |
727 | { |
728 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
729 | typedef typename __istream_type::ios_base __ios_base; |
730 | |
731 | const typename __ios_base::fmtflags __flags = __is.flags(); |
732 | __is.flags(__ios_base::dec | __ios_base::skipws); |
733 | |
734 | __is >> __x._M_b >> __x._M_n; |
735 | |
736 | __is.flags(__flags); |
737 | return __is; |
738 | } |
739 | |
740 | |
741 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
742 | typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
743 | result_type |
744 | independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
745 | operator()() |
746 | { |
747 | typedef typename _RandomNumberEngine::result_type _Eresult_type; |
748 | const _Eresult_type __r |
749 | = (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max() |
750 | ? _M_b.max() - _M_b.min() + 1 : 0); |
751 | const unsigned __edig = std::numeric_limits<_Eresult_type>::digits; |
752 | const unsigned __m = __r ? std::__lg(__r) : __edig; |
753 | |
754 | typedef typename std::common_type<_Eresult_type, result_type>::type |
755 | __ctype; |
756 | const unsigned __cdig = std::numeric_limits<__ctype>::digits; |
757 | |
758 | unsigned __n, __n0; |
759 | __ctype __s0, __s1, __y0, __y1; |
760 | |
761 | for (size_t __i = 0; __i < 2; ++__i) |
762 | { |
763 | __n = (__w + __m - 1) / __m + __i; |
764 | __n0 = __n - __w % __n; |
765 | const unsigned __w0 = __w / __n; // __w0 <= __m |
766 | |
767 | __s0 = 0; |
768 | __s1 = 0; |
769 | if (__w0 < __cdig) |
770 | { |
771 | __s0 = __ctype(1) << __w0; |
772 | __s1 = __s0 << 1; |
773 | } |
774 | |
775 | __y0 = 0; |
776 | __y1 = 0; |
777 | if (__r) |
778 | { |
779 | __y0 = __s0 * (__r / __s0); |
780 | if (__s1) |
781 | __y1 = __s1 * (__r / __s1); |
782 | |
783 | if (__r - __y0 <= __y0 / __n) |
784 | break; |
785 | } |
786 | else |
787 | break; |
788 | } |
789 | |
790 | result_type __sum = 0; |
791 | for (size_t __k = 0; __k < __n0; ++__k) |
792 | { |
793 | __ctype __u; |
794 | do |
795 | __u = _M_b() - _M_b.min(); |
796 | while (__y0 && __u >= __y0); |
797 | __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u); |
798 | } |
799 | for (size_t __k = __n0; __k < __n; ++__k) |
800 | { |
801 | __ctype __u; |
802 | do |
803 | __u = _M_b() - _M_b.min(); |
804 | while (__y1 && __u >= __y1); |
805 | __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u); |
806 | } |
807 | return __sum; |
808 | } |
809 | |
810 | |
811 | template<typename _RandomNumberEngine, size_t __k> |
812 | constexpr size_t |
813 | shuffle_order_engine<_RandomNumberEngine, __k>::table_size; |
814 | |
815 | template<typename _RandomNumberEngine, size_t __k> |
816 | typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type |
817 | shuffle_order_engine<_RandomNumberEngine, __k>:: |
818 | operator()() |
819 | { |
820 | size_t __j = __k * ((_M_y - _M_b.min()) |
821 | / (_M_b.max() - _M_b.min() + 1.0L)); |
822 | _M_y = _M_v[__j]; |
823 | _M_v[__j] = _M_b(); |
824 | |
825 | return _M_y; |
826 | } |
827 | |
828 | template<typename _RandomNumberEngine, size_t __k, |
829 | typename _CharT, typename _Traits> |
830 | std::basic_ostream<_CharT, _Traits>& |
831 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
832 | const shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
833 | { |
834 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
835 | typedef typename __ostream_type::ios_base __ios_base; |
836 | |
837 | const typename __ios_base::fmtflags __flags = __os.flags(); |
838 | const _CharT __fill = __os.fill(); |
839 | const _CharT __space = __os.widen(' '); |
840 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
841 | __os.fill(__space); |
842 | |
843 | __os << __x.base(); |
844 | for (size_t __i = 0; __i < __k; ++__i) |
845 | __os << __space << __x._M_v[__i]; |
846 | __os << __space << __x._M_y; |
847 | |
848 | __os.flags(__flags); |
849 | __os.fill(__fill); |
850 | return __os; |
851 | } |
852 | |
853 | template<typename _RandomNumberEngine, size_t __k, |
854 | typename _CharT, typename _Traits> |
855 | std::basic_istream<_CharT, _Traits>& |
856 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
857 | shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
858 | { |
859 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
860 | typedef typename __istream_type::ios_base __ios_base; |
861 | |
862 | const typename __ios_base::fmtflags __flags = __is.flags(); |
863 | __is.flags(__ios_base::dec | __ios_base::skipws); |
864 | |
865 | __is >> __x._M_b; |
866 | for (size_t __i = 0; __i < __k; ++__i) |
867 | __is >> __x._M_v[__i]; |
868 | __is >> __x._M_y; |
869 | |
870 | __is.flags(__flags); |
871 | return __is; |
872 | } |
873 | |
874 | |
875 | template<typename _IntType, typename _CharT, typename _Traits> |
876 | std::basic_ostream<_CharT, _Traits>& |
877 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
878 | const uniform_int_distribution<_IntType>& __x) |
879 | { |
880 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
881 | typedef typename __ostream_type::ios_base __ios_base; |
882 | |
883 | const typename __ios_base::fmtflags __flags = __os.flags(); |
884 | const _CharT __fill = __os.fill(); |
885 | const _CharT __space = __os.widen(' '); |
886 | __os.flags(__ios_base::scientific | __ios_base::left); |
887 | __os.fill(__space); |
888 | |
889 | __os << __x.a() << __space << __x.b(); |
890 | |
891 | __os.flags(__flags); |
892 | __os.fill(__fill); |
893 | return __os; |
894 | } |
895 | |
896 | template<typename _IntType, typename _CharT, typename _Traits> |
897 | std::basic_istream<_CharT, _Traits>& |
898 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
899 | uniform_int_distribution<_IntType>& __x) |
900 | { |
901 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
902 | typedef typename __istream_type::ios_base __ios_base; |
903 | |
904 | const typename __ios_base::fmtflags __flags = __is.flags(); |
905 | __is.flags(__ios_base::dec | __ios_base::skipws); |
906 | |
907 | _IntType __a, __b; |
908 | if (__is >> __a >> __b) |
909 | __x.param(typename uniform_int_distribution<_IntType>:: |
910 | param_type(__a, __b)); |
911 | |
912 | __is.flags(__flags); |
913 | return __is; |
914 | } |
915 | |
916 | |
917 | template<typename _RealType> |
918 | template<typename _ForwardIterator, |
919 | typename _UniformRandomNumberGenerator> |
920 | void |
921 | uniform_real_distribution<_RealType>:: |
922 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
923 | _UniformRandomNumberGenerator& __urng, |
924 | const param_type& __p) |
925 | { |
926 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
927 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
928 | __aurng(__urng); |
929 | auto __range = __p.b() - __p.a(); |
930 | while (__f != __t) |
931 | *__f++ = __aurng() * __range + __p.a(); |
932 | } |
933 | |
934 | template<typename _RealType, typename _CharT, typename _Traits> |
935 | std::basic_ostream<_CharT, _Traits>& |
936 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
937 | const uniform_real_distribution<_RealType>& __x) |
938 | { |
939 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
940 | typedef typename __ostream_type::ios_base __ios_base; |
941 | |
942 | const typename __ios_base::fmtflags __flags = __os.flags(); |
943 | const _CharT __fill = __os.fill(); |
944 | const std::streamsize __precision = __os.precision(); |
945 | const _CharT __space = __os.widen(' '); |
946 | __os.flags(__ios_base::scientific | __ios_base::left); |
947 | __os.fill(__space); |
948 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
949 | |
950 | __os << __x.a() << __space << __x.b(); |
951 | |
952 | __os.flags(__flags); |
953 | __os.fill(__fill); |
954 | __os.precision(__precision); |
955 | return __os; |
956 | } |
957 | |
958 | template<typename _RealType, typename _CharT, typename _Traits> |
959 | std::basic_istream<_CharT, _Traits>& |
960 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
961 | uniform_real_distribution<_RealType>& __x) |
962 | { |
963 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
964 | typedef typename __istream_type::ios_base __ios_base; |
965 | |
966 | const typename __ios_base::fmtflags __flags = __is.flags(); |
967 | __is.flags(__ios_base::skipws); |
968 | |
969 | _RealType __a, __b; |
970 | if (__is >> __a >> __b) |
971 | __x.param(typename uniform_real_distribution<_RealType>:: |
972 | param_type(__a, __b)); |
973 | |
974 | __is.flags(__flags); |
975 | return __is; |
976 | } |
977 | |
978 | |
979 | template<typename _ForwardIterator, |
980 | typename _UniformRandomNumberGenerator> |
981 | void |
982 | std::bernoulli_distribution:: |
983 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
984 | _UniformRandomNumberGenerator& __urng, |
985 | const param_type& __p) |
986 | { |
987 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
988 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
989 | __aurng(__urng); |
990 | auto __limit = __p.p() * (__aurng.max() - __aurng.min()); |
991 | |
992 | while (__f != __t) |
993 | *__f++ = (__aurng() - __aurng.min()) < __limit; |
994 | } |
995 | |
996 | template<typename _CharT, typename _Traits> |
997 | std::basic_ostream<_CharT, _Traits>& |
998 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
999 | const bernoulli_distribution& __x) |
1000 | { |
1001 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1002 | typedef typename __ostream_type::ios_base __ios_base; |
1003 | |
1004 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1005 | const _CharT __fill = __os.fill(); |
1006 | const std::streamsize __precision = __os.precision(); |
1007 | __os.flags(__ios_base::scientific | __ios_base::left); |
1008 | __os.fill(__os.widen(' ')); |
1009 | __os.precision(std::numeric_limits<double>::max_digits10); |
1010 | |
1011 | __os << __x.p(); |
1012 | |
1013 | __os.flags(__flags); |
1014 | __os.fill(__fill); |
1015 | __os.precision(__precision); |
1016 | return __os; |
1017 | } |
1018 | |
1019 | |
1020 | template<typename _IntType> |
1021 | template<typename _UniformRandomNumberGenerator> |
1022 | typename geometric_distribution<_IntType>::result_type |
1023 | geometric_distribution<_IntType>:: |
1024 | operator()(_UniformRandomNumberGenerator& __urng, |
1025 | const param_type& __param) |
1026 | { |
1027 | // About the epsilon thing see this thread: |
1028 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
1029 | const double __naf = |
1030 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1031 | // The largest _RealType convertible to _IntType. |
1032 | const double __thr = |
1033 | std::numeric_limits<_IntType>::max() + __naf; |
1034 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1035 | __aurng(__urng); |
1036 | |
1037 | double __cand; |
1038 | do |
1039 | __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p); |
1040 | while (__cand >= __thr); |
1041 | |
1042 | return result_type(__cand + __naf); |
1043 | } |
1044 | |
1045 | template<typename _IntType> |
1046 | template<typename _ForwardIterator, |
1047 | typename _UniformRandomNumberGenerator> |
1048 | void |
1049 | geometric_distribution<_IntType>:: |
1050 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1051 | _UniformRandomNumberGenerator& __urng, |
1052 | const param_type& __param) |
1053 | { |
1054 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1055 | // About the epsilon thing see this thread: |
1056 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
1057 | const double __naf = |
1058 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1059 | // The largest _RealType convertible to _IntType. |
1060 | const double __thr = |
1061 | std::numeric_limits<_IntType>::max() + __naf; |
1062 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1063 | __aurng(__urng); |
1064 | |
1065 | while (__f != __t) |
1066 | { |
1067 | double __cand; |
1068 | do |
1069 | __cand = std::floor(std::log(1.0 - __aurng()) |
1070 | / __param._M_log_1_p); |
1071 | while (__cand >= __thr); |
1072 | |
1073 | *__f++ = __cand + __naf; |
1074 | } |
1075 | } |
1076 | |
1077 | template<typename _IntType, |
1078 | typename _CharT, typename _Traits> |
1079 | std::basic_ostream<_CharT, _Traits>& |
1080 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1081 | const geometric_distribution<_IntType>& __x) |
1082 | { |
1083 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1084 | typedef typename __ostream_type::ios_base __ios_base; |
1085 | |
1086 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1087 | const _CharT __fill = __os.fill(); |
1088 | const std::streamsize __precision = __os.precision(); |
1089 | __os.flags(__ios_base::scientific | __ios_base::left); |
1090 | __os.fill(__os.widen(' ')); |
1091 | __os.precision(std::numeric_limits<double>::max_digits10); |
1092 | |
1093 | __os << __x.p(); |
1094 | |
1095 | __os.flags(__flags); |
1096 | __os.fill(__fill); |
1097 | __os.precision(__precision); |
1098 | return __os; |
1099 | } |
1100 | |
1101 | template<typename _IntType, |
1102 | typename _CharT, typename _Traits> |
1103 | std::basic_istream<_CharT, _Traits>& |
1104 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1105 | geometric_distribution<_IntType>& __x) |
1106 | { |
1107 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1108 | typedef typename __istream_type::ios_base __ios_base; |
1109 | |
1110 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1111 | __is.flags(__ios_base::skipws); |
1112 | |
1113 | double __p; |
1114 | if (__is >> __p) |
1115 | __x.param(typename geometric_distribution<_IntType>::param_type(__p)); |
1116 | |
1117 | __is.flags(__flags); |
1118 | return __is; |
1119 | } |
1120 | |
1121 | // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5. |
1122 | template<typename _IntType> |
1123 | template<typename _UniformRandomNumberGenerator> |
1124 | typename negative_binomial_distribution<_IntType>::result_type |
1125 | negative_binomial_distribution<_IntType>:: |
1126 | operator()(_UniformRandomNumberGenerator& __urng) |
1127 | { |
1128 | const double __y = _M_gd(__urng); |
1129 | |
1130 | // XXX Is the constructor too slow? |
1131 | std::poisson_distribution<result_type> __poisson(__y); |
1132 | return __poisson(__urng); |
1133 | } |
1134 | |
1135 | template<typename _IntType> |
1136 | template<typename _UniformRandomNumberGenerator> |
1137 | typename negative_binomial_distribution<_IntType>::result_type |
1138 | negative_binomial_distribution<_IntType>:: |
1139 | operator()(_UniformRandomNumberGenerator& __urng, |
1140 | const param_type& __p) |
1141 | { |
1142 | typedef typename std::gamma_distribution<double>::param_type |
1143 | param_type; |
1144 | |
1145 | const double __y = |
1146 | _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p())); |
1147 | |
1148 | std::poisson_distribution<result_type> __poisson(__y); |
1149 | return __poisson(__urng); |
1150 | } |
1151 | |
1152 | template<typename _IntType> |
1153 | template<typename _ForwardIterator, |
1154 | typename _UniformRandomNumberGenerator> |
1155 | void |
1156 | negative_binomial_distribution<_IntType>:: |
1157 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1158 | _UniformRandomNumberGenerator& __urng) |
1159 | { |
1160 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1161 | while (__f != __t) |
1162 | { |
1163 | const double __y = _M_gd(__urng); |
1164 | |
1165 | // XXX Is the constructor too slow? |
1166 | std::poisson_distribution<result_type> __poisson(__y); |
1167 | *__f++ = __poisson(__urng); |
1168 | } |
1169 | } |
1170 | |
1171 | template<typename _IntType> |
1172 | template<typename _ForwardIterator, |
1173 | typename _UniformRandomNumberGenerator> |
1174 | void |
1175 | negative_binomial_distribution<_IntType>:: |
1176 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1177 | _UniformRandomNumberGenerator& __urng, |
1178 | const param_type& __p) |
1179 | { |
1180 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1181 | typename std::gamma_distribution<result_type>::param_type |
1182 | __p2(__p.k(), (1.0 - __p.p()) / __p.p()); |
1183 | |
1184 | while (__f != __t) |
1185 | { |
1186 | const double __y = _M_gd(__urng, __p2); |
1187 | |
1188 | std::poisson_distribution<result_type> __poisson(__y); |
1189 | *__f++ = __poisson(__urng); |
1190 | } |
1191 | } |
1192 | |
1193 | template<typename _IntType, typename _CharT, typename _Traits> |
1194 | std::basic_ostream<_CharT, _Traits>& |
1195 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1196 | const negative_binomial_distribution<_IntType>& __x) |
1197 | { |
1198 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1199 | typedef typename __ostream_type::ios_base __ios_base; |
1200 | |
1201 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1202 | const _CharT __fill = __os.fill(); |
1203 | const std::streamsize __precision = __os.precision(); |
1204 | const _CharT __space = __os.widen(' '); |
1205 | __os.flags(__ios_base::scientific | __ios_base::left); |
1206 | __os.fill(__os.widen(' ')); |
1207 | __os.precision(std::numeric_limits<double>::max_digits10); |
1208 | |
1209 | __os << __x.k() << __space << __x.p() |
1210 | << __space << __x._M_gd; |
1211 | |
1212 | __os.flags(__flags); |
1213 | __os.fill(__fill); |
1214 | __os.precision(__precision); |
1215 | return __os; |
1216 | } |
1217 | |
1218 | template<typename _IntType, typename _CharT, typename _Traits> |
1219 | std::basic_istream<_CharT, _Traits>& |
1220 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1221 | negative_binomial_distribution<_IntType>& __x) |
1222 | { |
1223 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1224 | typedef typename __istream_type::ios_base __ios_base; |
1225 | |
1226 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1227 | __is.flags(__ios_base::skipws); |
1228 | |
1229 | _IntType __k; |
1230 | double __p; |
1231 | if (__is >> __k >> __p >> __x._M_gd) |
1232 | __x.param(typename negative_binomial_distribution<_IntType>:: |
1233 | param_type(__k, __p)); |
1234 | |
1235 | __is.flags(__flags); |
1236 | return __is; |
1237 | } |
1238 | |
1239 | |
1240 | template<typename _IntType> |
1241 | void |
1242 | poisson_distribution<_IntType>::param_type:: |
1243 | _M_initialize() |
1244 | { |
1245 | #if _GLIBCXX_USE_C99_MATH_TR1 |
1246 | if (_M_mean >= 12) |
1247 | { |
1248 | const double __m = std::floor(_M_mean); |
1249 | _M_lm_thr = std::log(_M_mean); |
1250 | _M_lfm = std::lgamma(__m + 1); |
1251 | _M_sm = std::sqrt(__m); |
1252 | |
1253 | const double __pi_4 = 0.7853981633974483096156608458198757L; |
1254 | const double __dx = std::sqrt(2 * __m * std::log(32 * __m |
1255 | / __pi_4)); |
1256 | _M_d = std::round(std::max<double>(6.0, std::min(__m, __dx))); |
1257 | const double __cx = 2 * __m + _M_d; |
1258 | _M_scx = std::sqrt(__cx / 2); |
1259 | _M_1cx = 1 / __cx; |
1260 | |
1261 | _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx); |
1262 | _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2)) |
1263 | / _M_d; |
1264 | } |
1265 | else |
1266 | #endif |
1267 | _M_lm_thr = std::exp(-_M_mean); |
1268 | } |
1269 | |
1270 | /** |
1271 | * A rejection algorithm when mean >= 12 and a simple method based |
1272 | * upon the multiplication of uniform random variates otherwise. |
1273 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
1274 | * is defined. |
1275 | * |
1276 | * Reference: |
1277 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
1278 | * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!). |
1279 | */ |
1280 | template<typename _IntType> |
1281 | template<typename _UniformRandomNumberGenerator> |
1282 | typename poisson_distribution<_IntType>::result_type |
1283 | poisson_distribution<_IntType>:: |
1284 | operator()(_UniformRandomNumberGenerator& __urng, |
1285 | const param_type& __param) |
1286 | { |
1287 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1288 | __aurng(__urng); |
1289 | #if _GLIBCXX_USE_C99_MATH_TR1 |
1290 | if (__param.mean() >= 12) |
1291 | { |
1292 | double __x; |
1293 | |
1294 | // See comments above... |
1295 | const double __naf = |
1296 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1297 | const double __thr = |
1298 | std::numeric_limits<_IntType>::max() + __naf; |
1299 | |
1300 | const double __m = std::floor(__param.mean()); |
1301 | // sqrt(pi / 2) |
1302 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
1303 | const double __c1 = __param._M_sm * __spi_2; |
1304 | const double __c2 = __param._M_c2b + __c1; |
1305 | const double __c3 = __c2 + 1; |
1306 | const double __c4 = __c3 + 1; |
1307 | // 1 / 78 |
1308 | const double __178 = 0.0128205128205128205128205128205128L; |
1309 | // e^(1 / 78) |
1310 | const double __e178 = 1.0129030479320018583185514777512983L; |
1311 | const double __c5 = __c4 + __e178; |
1312 | const double __c = __param._M_cb + __c5; |
1313 | const double __2cx = 2 * (2 * __m + __param._M_d); |
1314 | |
1315 | bool __reject = true; |
1316 | do |
1317 | { |
1318 | const double __u = __c * __aurng(); |
1319 | const double __e = -std::log(1.0 - __aurng()); |
1320 | |
1321 | double __w = 0.0; |
1322 | |
1323 | if (__u <= __c1) |
1324 | { |
1325 | const double __n = _M_nd(__urng); |
1326 | const double __y = -std::abs(__n) * __param._M_sm - 1; |
1327 | __x = std::floor(__y); |
1328 | __w = -__n * __n / 2; |
1329 | if (__x < -__m) |
1330 | continue; |
1331 | } |
1332 | else if (__u <= __c2) |
1333 | { |
1334 | const double __n = _M_nd(__urng); |
1335 | const double __y = 1 + std::abs(__n) * __param._M_scx; |
1336 | __x = std::ceil(__y); |
1337 | __w = __y * (2 - __y) * __param._M_1cx; |
1338 | if (__x > __param._M_d) |
1339 | continue; |
1340 | } |
1341 | else if (__u <= __c3) |
1342 | // NB: This case not in the book, nor in the Errata, |
1343 | // but should be ok... |
1344 | __x = -1; |
1345 | else if (__u <= __c4) |
1346 | __x = 0; |
1347 | else if (__u <= __c5) |
1348 | { |
1349 | __x = 1; |
1350 | // Only in the Errata, see libstdc++/83237. |
1351 | __w = __178; |
1352 | } |
1353 | else |
1354 | { |
1355 | const double __v = -std::log(1.0 - __aurng()); |
1356 | const double __y = __param._M_d |
1357 | + __v * __2cx / __param._M_d; |
1358 | __x = std::ceil(__y); |
1359 | __w = -__param._M_d * __param._M_1cx * (1 + __y / 2); |
1360 | } |
1361 | |
1362 | __reject = (__w - __e - __x * __param._M_lm_thr |
1363 | > __param._M_lfm - std::lgamma(__x + __m + 1)); |
1364 | |
1365 | __reject |= __x + __m >= __thr; |
1366 | |
1367 | } while (__reject); |
1368 | |
1369 | return result_type(__x + __m + __naf); |
1370 | } |
1371 | else |
1372 | #endif |
1373 | { |
1374 | _IntType __x = 0; |
1375 | double __prod = 1.0; |
1376 | |
1377 | do |
1378 | { |
1379 | __prod *= __aurng(); |
1380 | __x += 1; |
1381 | } |
1382 | while (__prod > __param._M_lm_thr); |
1383 | |
1384 | return __x - 1; |
1385 | } |
1386 | } |
1387 | |
1388 | template<typename _IntType> |
1389 | template<typename _ForwardIterator, |
1390 | typename _UniformRandomNumberGenerator> |
1391 | void |
1392 | poisson_distribution<_IntType>:: |
1393 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1394 | _UniformRandomNumberGenerator& __urng, |
1395 | const param_type& __param) |
1396 | { |
1397 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1398 | // We could duplicate everything from operator()... |
1399 | while (__f != __t) |
1400 | *__f++ = this->operator()(__urng, __param); |
1401 | } |
1402 | |
1403 | template<typename _IntType, |
1404 | typename _CharT, typename _Traits> |
1405 | std::basic_ostream<_CharT, _Traits>& |
1406 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1407 | const poisson_distribution<_IntType>& __x) |
1408 | { |
1409 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1410 | typedef typename __ostream_type::ios_base __ios_base; |
1411 | |
1412 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1413 | const _CharT __fill = __os.fill(); |
1414 | const std::streamsize __precision = __os.precision(); |
1415 | const _CharT __space = __os.widen(' '); |
1416 | __os.flags(__ios_base::scientific | __ios_base::left); |
1417 | __os.fill(__space); |
1418 | __os.precision(std::numeric_limits<double>::max_digits10); |
1419 | |
1420 | __os << __x.mean() << __space << __x._M_nd; |
1421 | |
1422 | __os.flags(__flags); |
1423 | __os.fill(__fill); |
1424 | __os.precision(__precision); |
1425 | return __os; |
1426 | } |
1427 | |
1428 | template<typename _IntType, |
1429 | typename _CharT, typename _Traits> |
1430 | std::basic_istream<_CharT, _Traits>& |
1431 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1432 | poisson_distribution<_IntType>& __x) |
1433 | { |
1434 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1435 | typedef typename __istream_type::ios_base __ios_base; |
1436 | |
1437 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1438 | __is.flags(__ios_base::skipws); |
1439 | |
1440 | double __mean; |
1441 | if (__is >> __mean >> __x._M_nd) |
1442 | __x.param(typename poisson_distribution<_IntType>::param_type(__mean)); |
1443 | |
1444 | __is.flags(__flags); |
1445 | return __is; |
1446 | } |
1447 | |
1448 | |
1449 | template<typename _IntType> |
1450 | void |
1451 | binomial_distribution<_IntType>::param_type:: |
1452 | _M_initialize() |
1453 | { |
1454 | const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; |
1455 | |
1456 | _M_easy = true; |
1457 | |
1458 | #if _GLIBCXX_USE_C99_MATH_TR1 |
1459 | if (_M_t * __p12 >= 8) |
1460 | { |
1461 | _M_easy = false; |
1462 | const double __np = std::floor(_M_t * __p12); |
1463 | const double __pa = __np / _M_t; |
1464 | const double __1p = 1 - __pa; |
1465 | |
1466 | const double __pi_4 = 0.7853981633974483096156608458198757L; |
1467 | const double __d1x = |
1468 | std::sqrt(__np * __1p * std::log(32 * __np |
1469 | / (81 * __pi_4 * __1p))); |
1470 | _M_d1 = std::round(std::max<double>(1.0, __d1x)); |
1471 | const double __d2x = |
1472 | std::sqrt(__np * __1p * std::log(32 * _M_t * __1p |
1473 | / (__pi_4 * __pa))); |
1474 | _M_d2 = std::round(std::max<double>(1.0, __d2x)); |
1475 | |
1476 | // sqrt(pi / 2) |
1477 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
1478 | _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np)); |
1479 | _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p)); |
1480 | _M_c = 2 * _M_d1 / __np; |
1481 | _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2; |
1482 | const double __a12 = _M_a1 + _M_s2 * __spi_2; |
1483 | const double __s1s = _M_s1 * _M_s1; |
1484 | _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p)) |
1485 | * 2 * __s1s / _M_d1 |
1486 | * std::exp(-_M_d1 * _M_d1 / (2 * __s1s))); |
1487 | const double __s2s = _M_s2 * _M_s2; |
1488 | _M_s = (_M_a123 + 2 * __s2s / _M_d2 |
1489 | * std::exp(-_M_d2 * _M_d2 / (2 * __s2s))); |
1490 | _M_lf = (std::lgamma(__np + 1) |
1491 | + std::lgamma(_M_t - __np + 1)); |
1492 | _M_lp1p = std::log(__pa / __1p); |
1493 | |
1494 | _M_q = -std::log(1 - (__p12 - __pa) / __1p); |
1495 | } |
1496 | else |
1497 | #endif |
1498 | _M_q = -std::log(1 - __p12); |
1499 | } |
1500 | |
1501 | template<typename _IntType> |
1502 | template<typename _UniformRandomNumberGenerator> |
1503 | typename binomial_distribution<_IntType>::result_type |
1504 | binomial_distribution<_IntType>:: |
1505 | _M_waiting(_UniformRandomNumberGenerator& __urng, |
1506 | _IntType __t, double __q) |
1507 | { |
1508 | _IntType __x = 0; |
1509 | double __sum = 0.0; |
1510 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1511 | __aurng(__urng); |
1512 | |
1513 | do |
1514 | { |
1515 | if (__t == __x) |
1516 | return __x; |
1517 | const double __e = -std::log(1.0 - __aurng()); |
1518 | __sum += __e / (__t - __x); |
1519 | __x += 1; |
1520 | } |
1521 | while (__sum <= __q); |
1522 | |
1523 | return __x - 1; |
1524 | } |
1525 | |
1526 | /** |
1527 | * A rejection algorithm when t * p >= 8 and a simple waiting time |
1528 | * method - the second in the referenced book - otherwise. |
1529 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
1530 | * is defined. |
1531 | * |
1532 | * Reference: |
1533 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
1534 | * New York, 1986, Ch. X, Sect. 4 (+ Errata!). |
1535 | */ |
1536 | template<typename _IntType> |
1537 | template<typename _UniformRandomNumberGenerator> |
1538 | typename binomial_distribution<_IntType>::result_type |
1539 | binomial_distribution<_IntType>:: |
1540 | operator()(_UniformRandomNumberGenerator& __urng, |
1541 | const param_type& __param) |
1542 | { |
1543 | result_type __ret; |
1544 | const _IntType __t = __param.t(); |
1545 | const double __p = __param.p(); |
1546 | const double __p12 = __p <= 0.5 ? __p : 1.0 - __p; |
1547 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1548 | __aurng(__urng); |
1549 | |
1550 | #if _GLIBCXX_USE_C99_MATH_TR1 |
1551 | if (!__param._M_easy) |
1552 | { |
1553 | double __x; |
1554 | |
1555 | // See comments above... |
1556 | const double __naf = |
1557 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1558 | const double __thr = |
1559 | std::numeric_limits<_IntType>::max() + __naf; |
1560 | |
1561 | const double __np = std::floor(__t * __p12); |
1562 | |
1563 | // sqrt(pi / 2) |
1564 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
1565 | const double __a1 = __param._M_a1; |
1566 | const double __a12 = __a1 + __param._M_s2 * __spi_2; |
1567 | const double __a123 = __param._M_a123; |
1568 | const double __s1s = __param._M_s1 * __param._M_s1; |
1569 | const double __s2s = __param._M_s2 * __param._M_s2; |
1570 | |
1571 | bool __reject; |
1572 | do |
1573 | { |
1574 | const double __u = __param._M_s * __aurng(); |
1575 | |
1576 | double __v; |
1577 | |
1578 | if (__u <= __a1) |
1579 | { |
1580 | const double __n = _M_nd(__urng); |
1581 | const double __y = __param._M_s1 * std::abs(__n); |
1582 | __reject = __y >= __param._M_d1; |
1583 | if (!__reject) |
1584 | { |
1585 | const double __e = -std::log(1.0 - __aurng()); |
1586 | __x = std::floor(__y); |
1587 | __v = -__e - __n * __n / 2 + __param._M_c; |
1588 | } |
1589 | } |
1590 | else if (__u <= __a12) |
1591 | { |
1592 | const double __n = _M_nd(__urng); |
1593 | const double __y = __param._M_s2 * std::abs(__n); |
1594 | __reject = __y >= __param._M_d2; |
1595 | if (!__reject) |
1596 | { |
1597 | const double __e = -std::log(1.0 - __aurng()); |
1598 | __x = std::floor(-__y); |
1599 | __v = -__e - __n * __n / 2; |
1600 | } |
1601 | } |
1602 | else if (__u <= __a123) |
1603 | { |
1604 | const double __e1 = -std::log(1.0 - __aurng()); |
1605 | const double __e2 = -std::log(1.0 - __aurng()); |
1606 | |
1607 | const double __y = __param._M_d1 |
1608 | + 2 * __s1s * __e1 / __param._M_d1; |
1609 | __x = std::floor(__y); |
1610 | __v = (-__e2 + __param._M_d1 * (1 / (__t - __np) |
1611 | -__y / (2 * __s1s))); |
1612 | __reject = false; |
1613 | } |
1614 | else |
1615 | { |
1616 | const double __e1 = -std::log(1.0 - __aurng()); |
1617 | const double __e2 = -std::log(1.0 - __aurng()); |
1618 | |
1619 | const double __y = __param._M_d2 |
1620 | + 2 * __s2s * __e1 / __param._M_d2; |
1621 | __x = std::floor(-__y); |
1622 | __v = -__e2 - __param._M_d2 * __y / (2 * __s2s); |
1623 | __reject = false; |
1624 | } |
1625 | |
1626 | __reject = __reject || __x < -__np || __x > __t - __np; |
1627 | if (!__reject) |
1628 | { |
1629 | const double __lfx = |
1630 | std::lgamma(__np + __x + 1) |
1631 | + std::lgamma(__t - (__np + __x) + 1); |
1632 | __reject = __v > __param._M_lf - __lfx |
1633 | + __x * __param._M_lp1p; |
1634 | } |
1635 | |
1636 | __reject |= __x + __np >= __thr; |
1637 | } |
1638 | while (__reject); |
1639 | |
1640 | __x += __np + __naf; |
1641 | |
1642 | const _IntType __z = _M_waiting(__urng, __t - _IntType(__x), |
1643 | __param._M_q); |
1644 | __ret = _IntType(__x) + __z; |
1645 | } |
1646 | else |
1647 | #endif |
1648 | __ret = _M_waiting(__urng, __t, __param._M_q); |
1649 | |
1650 | if (__p12 != __p) |
1651 | __ret = __t - __ret; |
1652 | return __ret; |
1653 | } |
1654 | |
1655 | template<typename _IntType> |
1656 | template<typename _ForwardIterator, |
1657 | typename _UniformRandomNumberGenerator> |
1658 | void |
1659 | binomial_distribution<_IntType>:: |
1660 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1661 | _UniformRandomNumberGenerator& __urng, |
1662 | const param_type& __param) |
1663 | { |
1664 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1665 | // We could duplicate everything from operator()... |
1666 | while (__f != __t) |
1667 | *__f++ = this->operator()(__urng, __param); |
1668 | } |
1669 | |
1670 | template<typename _IntType, |
1671 | typename _CharT, typename _Traits> |
1672 | std::basic_ostream<_CharT, _Traits>& |
1673 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1674 | const binomial_distribution<_IntType>& __x) |
1675 | { |
1676 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1677 | typedef typename __ostream_type::ios_base __ios_base; |
1678 | |
1679 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1680 | const _CharT __fill = __os.fill(); |
1681 | const std::streamsize __precision = __os.precision(); |
1682 | const _CharT __space = __os.widen(' '); |
1683 | __os.flags(__ios_base::scientific | __ios_base::left); |
1684 | __os.fill(__space); |
1685 | __os.precision(std::numeric_limits<double>::max_digits10); |
1686 | |
1687 | __os << __x.t() << __space << __x.p() |
1688 | << __space << __x._M_nd; |
1689 | |
1690 | __os.flags(__flags); |
1691 | __os.fill(__fill); |
1692 | __os.precision(__precision); |
1693 | return __os; |
1694 | } |
1695 | |
1696 | template<typename _IntType, |
1697 | typename _CharT, typename _Traits> |
1698 | std::basic_istream<_CharT, _Traits>& |
1699 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1700 | binomial_distribution<_IntType>& __x) |
1701 | { |
1702 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1703 | typedef typename __istream_type::ios_base __ios_base; |
1704 | |
1705 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1706 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1707 | |
1708 | _IntType __t; |
1709 | double __p; |
1710 | if (__is >> __t >> __p >> __x._M_nd) |
1711 | __x.param(typename binomial_distribution<_IntType>:: |
1712 | param_type(__t, __p)); |
1713 | |
1714 | __is.flags(__flags); |
1715 | return __is; |
1716 | } |
1717 | |
1718 | |
1719 | template<typename _RealType> |
1720 | template<typename _ForwardIterator, |
1721 | typename _UniformRandomNumberGenerator> |
1722 | void |
1723 | std::exponential_distribution<_RealType>:: |
1724 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1725 | _UniformRandomNumberGenerator& __urng, |
1726 | const param_type& __p) |
1727 | { |
1728 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1729 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1730 | __aurng(__urng); |
1731 | while (__f != __t) |
1732 | *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda(); |
1733 | } |
1734 | |
1735 | template<typename _RealType, typename _CharT, typename _Traits> |
1736 | std::basic_ostream<_CharT, _Traits>& |
1737 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1738 | const exponential_distribution<_RealType>& __x) |
1739 | { |
1740 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1741 | typedef typename __ostream_type::ios_base __ios_base; |
1742 | |
1743 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1744 | const _CharT __fill = __os.fill(); |
1745 | const std::streamsize __precision = __os.precision(); |
1746 | __os.flags(__ios_base::scientific | __ios_base::left); |
1747 | __os.fill(__os.widen(' ')); |
1748 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
1749 | |
1750 | __os << __x.lambda(); |
1751 | |
1752 | __os.flags(__flags); |
1753 | __os.fill(__fill); |
1754 | __os.precision(__precision); |
1755 | return __os; |
1756 | } |
1757 | |
1758 | template<typename _RealType, typename _CharT, typename _Traits> |
1759 | std::basic_istream<_CharT, _Traits>& |
1760 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1761 | exponential_distribution<_RealType>& __x) |
1762 | { |
1763 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1764 | typedef typename __istream_type::ios_base __ios_base; |
1765 | |
1766 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1767 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1768 | |
1769 | _RealType __lambda; |
1770 | if (__is >> __lambda) |
1771 | __x.param(typename exponential_distribution<_RealType>:: |
1772 | param_type(__lambda)); |
1773 | |
1774 | __is.flags(__flags); |
1775 | return __is; |
1776 | } |
1777 | |
1778 | |
1779 | /** |
1780 | * Polar method due to Marsaglia. |
1781 | * |
1782 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
1783 | * New York, 1986, Ch. V, Sect. 4.4. |
1784 | */ |
1785 | template<typename _RealType> |
1786 | template<typename _UniformRandomNumberGenerator> |
1787 | typename normal_distribution<_RealType>::result_type |
1788 | normal_distribution<_RealType>:: |
1789 | operator()(_UniformRandomNumberGenerator& __urng, |
1790 | const param_type& __param) |
1791 | { |
1792 | result_type __ret; |
1793 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1794 | __aurng(__urng); |
1795 | |
1796 | if (_M_saved_available) |
1797 | { |
1798 | _M_saved_available = false; |
1799 | __ret = _M_saved; |
1800 | } |
1801 | else |
1802 | { |
1803 | result_type __x, __y, __r2; |
1804 | do |
1805 | { |
1806 | __x = result_type(2.0) * __aurng() - 1.0; |
1807 | __y = result_type(2.0) * __aurng() - 1.0; |
1808 | __r2 = __x * __x + __y * __y; |
1809 | } |
1810 | while (__r2 > 1.0 || __r2 == 0.0); |
1811 | |
1812 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
1813 | _M_saved = __x * __mult; |
1814 | _M_saved_available = true; |
1815 | __ret = __y * __mult; |
1816 | } |
1817 | |
1818 | __ret = __ret * __param.stddev() + __param.mean(); |
1819 | return __ret; |
1820 | } |
1821 | |
1822 | template<typename _RealType> |
1823 | template<typename _ForwardIterator, |
1824 | typename _UniformRandomNumberGenerator> |
1825 | void |
1826 | normal_distribution<_RealType>:: |
1827 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1828 | _UniformRandomNumberGenerator& __urng, |
1829 | const param_type& __param) |
1830 | { |
1831 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1832 | |
1833 | if (__f == __t) |
1834 | return; |
1835 | |
1836 | if (_M_saved_available) |
1837 | { |
1838 | _M_saved_available = false; |
1839 | *__f++ = _M_saved * __param.stddev() + __param.mean(); |
1840 | |
1841 | if (__f == __t) |
1842 | return; |
1843 | } |
1844 | |
1845 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1846 | __aurng(__urng); |
1847 | |
1848 | while (__f + 1 < __t) |
1849 | { |
1850 | result_type __x, __y, __r2; |
1851 | do |
1852 | { |
1853 | __x = result_type(2.0) * __aurng() - 1.0; |
1854 | __y = result_type(2.0) * __aurng() - 1.0; |
1855 | __r2 = __x * __x + __y * __y; |
1856 | } |
1857 | while (__r2 > 1.0 || __r2 == 0.0); |
1858 | |
1859 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
1860 | *__f++ = __y * __mult * __param.stddev() + __param.mean(); |
1861 | *__f++ = __x * __mult * __param.stddev() + __param.mean(); |
1862 | } |
1863 | |
1864 | if (__f != __t) |
1865 | { |
1866 | result_type __x, __y, __r2; |
1867 | do |
1868 | { |
1869 | __x = result_type(2.0) * __aurng() - 1.0; |
1870 | __y = result_type(2.0) * __aurng() - 1.0; |
1871 | __r2 = __x * __x + __y * __y; |
1872 | } |
1873 | while (__r2 > 1.0 || __r2 == 0.0); |
1874 | |
1875 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
1876 | _M_saved = __x * __mult; |
1877 | _M_saved_available = true; |
1878 | *__f = __y * __mult * __param.stddev() + __param.mean(); |
1879 | } |
1880 | } |
1881 | |
1882 | template<typename _RealType> |
1883 | bool |
1884 | operator==(const std::normal_distribution<_RealType>& __d1, |
1885 | const std::normal_distribution<_RealType>& __d2) |
1886 | { |
1887 | if (__d1._M_param == __d2._M_param |
1888 | && __d1._M_saved_available == __d2._M_saved_available) |
1889 | { |
1890 | if (__d1._M_saved_available |
1891 | && __d1._M_saved == __d2._M_saved) |
1892 | return true; |
1893 | else if(!__d1._M_saved_available) |
1894 | return true; |
1895 | else |
1896 | return false; |
1897 | } |
1898 | else |
1899 | return false; |
1900 | } |
1901 | |
1902 | template<typename _RealType, typename _CharT, typename _Traits> |
1903 | std::basic_ostream<_CharT, _Traits>& |
1904 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1905 | const normal_distribution<_RealType>& __x) |
1906 | { |
1907 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1908 | typedef typename __ostream_type::ios_base __ios_base; |
1909 | |
1910 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1911 | const _CharT __fill = __os.fill(); |
1912 | const std::streamsize __precision = __os.precision(); |
1913 | const _CharT __space = __os.widen(' '); |
1914 | __os.flags(__ios_base::scientific | __ios_base::left); |
1915 | __os.fill(__space); |
1916 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
1917 | |
1918 | __os << __x.mean() << __space << __x.stddev() |
1919 | << __space << __x._M_saved_available; |
1920 | if (__x._M_saved_available) |
1921 | __os << __space << __x._M_saved; |
1922 | |
1923 | __os.flags(__flags); |
1924 | __os.fill(__fill); |
1925 | __os.precision(__precision); |
1926 | return __os; |
1927 | } |
1928 | |
1929 | template<typename _RealType, typename _CharT, typename _Traits> |
1930 | std::basic_istream<_CharT, _Traits>& |
1931 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1932 | normal_distribution<_RealType>& __x) |
1933 | { |
1934 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1935 | typedef typename __istream_type::ios_base __ios_base; |
1936 | |
1937 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1938 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1939 | |
1940 | double __mean, __stddev; |
1941 | bool __saved_avail; |
1942 | if (__is >> __mean >> __stddev >> __saved_avail) |
1943 | { |
1944 | if (__saved_avail && (__is >> __x._M_saved)) |
1945 | { |
1946 | __x._M_saved_available = __saved_avail; |
1947 | __x.param(typename normal_distribution<_RealType>:: |
1948 | param_type(__mean, __stddev)); |
1949 | } |
1950 | } |
1951 | |
1952 | __is.flags(__flags); |
1953 | return __is; |
1954 | } |
1955 | |
1956 | |
1957 | template<typename _RealType> |
1958 | template<typename _ForwardIterator, |
1959 | typename _UniformRandomNumberGenerator> |
1960 | void |
1961 | lognormal_distribution<_RealType>:: |
1962 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1963 | _UniformRandomNumberGenerator& __urng, |
1964 | const param_type& __p) |
1965 | { |
1966 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1967 | while (__f != __t) |
1968 | *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m()); |
1969 | } |
1970 | |
1971 | template<typename _RealType, typename _CharT, typename _Traits> |
1972 | std::basic_ostream<_CharT, _Traits>& |
1973 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1974 | const lognormal_distribution<_RealType>& __x) |
1975 | { |
1976 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1977 | typedef typename __ostream_type::ios_base __ios_base; |
1978 | |
1979 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1980 | const _CharT __fill = __os.fill(); |
1981 | const std::streamsize __precision = __os.precision(); |
1982 | const _CharT __space = __os.widen(' '); |
1983 | __os.flags(__ios_base::scientific | __ios_base::left); |
1984 | __os.fill(__space); |
1985 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
1986 | |
1987 | __os << __x.m() << __space << __x.s() |
1988 | << __space << __x._M_nd; |
1989 | |
1990 | __os.flags(__flags); |
1991 | __os.fill(__fill); |
1992 | __os.precision(__precision); |
1993 | return __os; |
1994 | } |
1995 | |
1996 | template<typename _RealType, typename _CharT, typename _Traits> |
1997 | std::basic_istream<_CharT, _Traits>& |
1998 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1999 | lognormal_distribution<_RealType>& __x) |
2000 | { |
2001 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2002 | typedef typename __istream_type::ios_base __ios_base; |
2003 | |
2004 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2005 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2006 | |
2007 | _RealType __m, __s; |
2008 | if (__is >> __m >> __s >> __x._M_nd) |
2009 | __x.param(typename lognormal_distribution<_RealType>:: |
2010 | param_type(__m, __s)); |
2011 | |
2012 | __is.flags(__flags); |
2013 | return __is; |
2014 | } |
2015 | |
2016 | template<typename _RealType> |
2017 | template<typename _ForwardIterator, |
2018 | typename _UniformRandomNumberGenerator> |
2019 | void |
2020 | std::chi_squared_distribution<_RealType>:: |
2021 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2022 | _UniformRandomNumberGenerator& __urng) |
2023 | { |
2024 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2025 | while (__f != __t) |
2026 | *__f++ = 2 * _M_gd(__urng); |
2027 | } |
2028 | |
2029 | template<typename _RealType> |
2030 | template<typename _ForwardIterator, |
2031 | typename _UniformRandomNumberGenerator> |
2032 | void |
2033 | std::chi_squared_distribution<_RealType>:: |
2034 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2035 | _UniformRandomNumberGenerator& __urng, |
2036 | const typename |
2037 | std::gamma_distribution<result_type>::param_type& __p) |
2038 | { |
2039 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2040 | while (__f != __t) |
2041 | *__f++ = 2 * _M_gd(__urng, __p); |
2042 | } |
2043 | |
2044 | template<typename _RealType, typename _CharT, typename _Traits> |
2045 | std::basic_ostream<_CharT, _Traits>& |
2046 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2047 | const chi_squared_distribution<_RealType>& __x) |
2048 | { |
2049 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2050 | typedef typename __ostream_type::ios_base __ios_base; |
2051 | |
2052 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2053 | const _CharT __fill = __os.fill(); |
2054 | const std::streamsize __precision = __os.precision(); |
2055 | const _CharT __space = __os.widen(' '); |
2056 | __os.flags(__ios_base::scientific | __ios_base::left); |
2057 | __os.fill(__space); |
2058 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2059 | |
2060 | __os << __x.n() << __space << __x._M_gd; |
2061 | |
2062 | __os.flags(__flags); |
2063 | __os.fill(__fill); |
2064 | __os.precision(__precision); |
2065 | return __os; |
2066 | } |
2067 | |
2068 | template<typename _RealType, typename _CharT, typename _Traits> |
2069 | std::basic_istream<_CharT, _Traits>& |
2070 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2071 | chi_squared_distribution<_RealType>& __x) |
2072 | { |
2073 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2074 | typedef typename __istream_type::ios_base __ios_base; |
2075 | |
2076 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2077 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2078 | |
2079 | _RealType __n; |
2080 | if (__is >> __n >> __x._M_gd) |
2081 | __x.param(typename chi_squared_distribution<_RealType>:: |
2082 | param_type(__n)); |
2083 | |
2084 | __is.flags(__flags); |
2085 | return __is; |
2086 | } |
2087 | |
2088 | |
2089 | template<typename _RealType> |
2090 | template<typename _UniformRandomNumberGenerator> |
2091 | typename cauchy_distribution<_RealType>::result_type |
2092 | cauchy_distribution<_RealType>:: |
2093 | operator()(_UniformRandomNumberGenerator& __urng, |
2094 | const param_type& __p) |
2095 | { |
2096 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2097 | __aurng(__urng); |
2098 | _RealType __u; |
2099 | do |
2100 | __u = __aurng(); |
2101 | while (__u == 0.5); |
2102 | |
2103 | const _RealType __pi = 3.1415926535897932384626433832795029L; |
2104 | return __p.a() + __p.b() * std::tan(__pi * __u); |
2105 | } |
2106 | |
2107 | template<typename _RealType> |
2108 | template<typename _ForwardIterator, |
2109 | typename _UniformRandomNumberGenerator> |
2110 | void |
2111 | cauchy_distribution<_RealType>:: |
2112 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2113 | _UniformRandomNumberGenerator& __urng, |
2114 | const param_type& __p) |
2115 | { |
2116 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2117 | const _RealType __pi = 3.1415926535897932384626433832795029L; |
2118 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2119 | __aurng(__urng); |
2120 | while (__f != __t) |
2121 | { |
2122 | _RealType __u; |
2123 | do |
2124 | __u = __aurng(); |
2125 | while (__u == 0.5); |
2126 | |
2127 | *__f++ = __p.a() + __p.b() * std::tan(__pi * __u); |
2128 | } |
2129 | } |
2130 | |
2131 | template<typename _RealType, typename _CharT, typename _Traits> |
2132 | std::basic_ostream<_CharT, _Traits>& |
2133 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2134 | const cauchy_distribution<_RealType>& __x) |
2135 | { |
2136 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2137 | typedef typename __ostream_type::ios_base __ios_base; |
2138 | |
2139 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2140 | const _CharT __fill = __os.fill(); |
2141 | const std::streamsize __precision = __os.precision(); |
2142 | const _CharT __space = __os.widen(' '); |
2143 | __os.flags(__ios_base::scientific | __ios_base::left); |
2144 | __os.fill(__space); |
2145 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2146 | |
2147 | __os << __x.a() << __space << __x.b(); |
2148 | |
2149 | __os.flags(__flags); |
2150 | __os.fill(__fill); |
2151 | __os.precision(__precision); |
2152 | return __os; |
2153 | } |
2154 | |
2155 | template<typename _RealType, typename _CharT, typename _Traits> |
2156 | std::basic_istream<_CharT, _Traits>& |
2157 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2158 | cauchy_distribution<_RealType>& __x) |
2159 | { |
2160 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2161 | typedef typename __istream_type::ios_base __ios_base; |
2162 | |
2163 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2164 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2165 | |
2166 | _RealType __a, __b; |
2167 | if (__is >> __a >> __b) |
2168 | __x.param(typename cauchy_distribution<_RealType>:: |
2169 | param_type(__a, __b)); |
2170 | |
2171 | __is.flags(__flags); |
2172 | return __is; |
2173 | } |
2174 | |
2175 | |
2176 | template<typename _RealType> |
2177 | template<typename _ForwardIterator, |
2178 | typename _UniformRandomNumberGenerator> |
2179 | void |
2180 | std::fisher_f_distribution<_RealType>:: |
2181 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2182 | _UniformRandomNumberGenerator& __urng) |
2183 | { |
2184 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2185 | while (__f != __t) |
2186 | *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m())); |
2187 | } |
2188 | |
2189 | template<typename _RealType> |
2190 | template<typename _ForwardIterator, |
2191 | typename _UniformRandomNumberGenerator> |
2192 | void |
2193 | std::fisher_f_distribution<_RealType>:: |
2194 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2195 | _UniformRandomNumberGenerator& __urng, |
2196 | const param_type& __p) |
2197 | { |
2198 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2199 | typedef typename std::gamma_distribution<result_type>::param_type |
2200 | param_type; |
2201 | param_type __p1(__p.m() / 2); |
2202 | param_type __p2(__p.n() / 2); |
2203 | while (__f != __t) |
2204 | *__f++ = ((_M_gd_x(__urng, __p1) * n()) |
2205 | / (_M_gd_y(__urng, __p2) * m())); |
2206 | } |
2207 | |
2208 | template<typename _RealType, typename _CharT, typename _Traits> |
2209 | std::basic_ostream<_CharT, _Traits>& |
2210 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2211 | const fisher_f_distribution<_RealType>& __x) |
2212 | { |
2213 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2214 | typedef typename __ostream_type::ios_base __ios_base; |
2215 | |
2216 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2217 | const _CharT __fill = __os.fill(); |
2218 | const std::streamsize __precision = __os.precision(); |
2219 | const _CharT __space = __os.widen(' '); |
2220 | __os.flags(__ios_base::scientific | __ios_base::left); |
2221 | __os.fill(__space); |
2222 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2223 | |
2224 | __os << __x.m() << __space << __x.n() |
2225 | << __space << __x._M_gd_x << __space << __x._M_gd_y; |
2226 | |
2227 | __os.flags(__flags); |
2228 | __os.fill(__fill); |
2229 | __os.precision(__precision); |
2230 | return __os; |
2231 | } |
2232 | |
2233 | template<typename _RealType, typename _CharT, typename _Traits> |
2234 | std::basic_istream<_CharT, _Traits>& |
2235 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2236 | fisher_f_distribution<_RealType>& __x) |
2237 | { |
2238 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2239 | typedef typename __istream_type::ios_base __ios_base; |
2240 | |
2241 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2242 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2243 | |
2244 | _RealType __m, __n; |
2245 | if (__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y) |
2246 | __x.param(typename fisher_f_distribution<_RealType>:: |
2247 | param_type(__m, __n)); |
2248 | |
2249 | __is.flags(__flags); |
2250 | return __is; |
2251 | } |
2252 | |
2253 | |
2254 | template<typename _RealType> |
2255 | template<typename _ForwardIterator, |
2256 | typename _UniformRandomNumberGenerator> |
2257 | void |
2258 | std::student_t_distribution<_RealType>:: |
2259 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2260 | _UniformRandomNumberGenerator& __urng) |
2261 | { |
2262 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2263 | while (__f != __t) |
2264 | *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); |
2265 | } |
2266 | |
2267 | template<typename _RealType> |
2268 | template<typename _ForwardIterator, |
2269 | typename _UniformRandomNumberGenerator> |
2270 | void |
2271 | std::student_t_distribution<_RealType>:: |
2272 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2273 | _UniformRandomNumberGenerator& __urng, |
2274 | const param_type& __p) |
2275 | { |
2276 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2277 | typename std::gamma_distribution<result_type>::param_type |
2278 | __p2(__p.n() / 2, 2); |
2279 | while (__f != __t) |
2280 | *__f++ = _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2)); |
2281 | } |
2282 | |
2283 | template<typename _RealType, typename _CharT, typename _Traits> |
2284 | std::basic_ostream<_CharT, _Traits>& |
2285 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2286 | const student_t_distribution<_RealType>& __x) |
2287 | { |
2288 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2289 | typedef typename __ostream_type::ios_base __ios_base; |
2290 | |
2291 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2292 | const _CharT __fill = __os.fill(); |
2293 | const std::streamsize __precision = __os.precision(); |
2294 | const _CharT __space = __os.widen(' '); |
2295 | __os.flags(__ios_base::scientific | __ios_base::left); |
2296 | __os.fill(__space); |
2297 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2298 | |
2299 | __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd; |
2300 | |
2301 | __os.flags(__flags); |
2302 | __os.fill(__fill); |
2303 | __os.precision(__precision); |
2304 | return __os; |
2305 | } |
2306 | |
2307 | template<typename _RealType, typename _CharT, typename _Traits> |
2308 | std::basic_istream<_CharT, _Traits>& |
2309 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2310 | student_t_distribution<_RealType>& __x) |
2311 | { |
2312 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2313 | typedef typename __istream_type::ios_base __ios_base; |
2314 | |
2315 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2316 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2317 | |
2318 | _RealType __n; |
2319 | if (__is >> __n >> __x._M_nd >> __x._M_gd) |
2320 | __x.param(typename student_t_distribution<_RealType>::param_type(__n)); |
2321 | |
2322 | __is.flags(__flags); |
2323 | return __is; |
2324 | } |
2325 | |
2326 | |
2327 | template<typename _RealType> |
2328 | void |
2329 | gamma_distribution<_RealType>::param_type:: |
2330 | _M_initialize() |
2331 | { |
2332 | _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha; |
2333 | |
2334 | const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0); |
2335 | _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1); |
2336 | } |
2337 | |
2338 | /** |
2339 | * Marsaglia, G. and Tsang, W. W. |
2340 | * "A Simple Method for Generating Gamma Variables" |
2341 | * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000. |
2342 | */ |
2343 | template<typename _RealType> |
2344 | template<typename _UniformRandomNumberGenerator> |
2345 | typename gamma_distribution<_RealType>::result_type |
2346 | gamma_distribution<_RealType>:: |
2347 | operator()(_UniformRandomNumberGenerator& __urng, |
2348 | const param_type& __param) |
2349 | { |
2350 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2351 | __aurng(__urng); |
2352 | |
2353 | result_type __u, __v, __n; |
2354 | const result_type __a1 = (__param._M_malpha |
2355 | - _RealType(1.0) / _RealType(3.0)); |
2356 | |
2357 | do |
2358 | { |
2359 | do |
2360 | { |
2361 | __n = _M_nd(__urng); |
2362 | __v = result_type(1.0) + __param._M_a2 * __n; |
2363 | } |
2364 | while (__v <= 0.0); |
2365 | |
2366 | __v = __v * __v * __v; |
2367 | __u = __aurng(); |
2368 | } |
2369 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
2370 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
2371 | * (1.0 - __v + std::log(__v))))); |
2372 | |
2373 | if (__param.alpha() == __param._M_malpha) |
2374 | return __a1 * __v * __param.beta(); |
2375 | else |
2376 | { |
2377 | do |
2378 | __u = __aurng(); |
2379 | while (__u == 0.0); |
2380 | |
2381 | return (std::pow(__u, result_type(1.0) / __param.alpha()) |
2382 | * __a1 * __v * __param.beta()); |
2383 | } |
2384 | } |
2385 | |
2386 | template<typename _RealType> |
2387 | template<typename _ForwardIterator, |
2388 | typename _UniformRandomNumberGenerator> |
2389 | void |
2390 | gamma_distribution<_RealType>:: |
2391 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2392 | _UniformRandomNumberGenerator& __urng, |
2393 | const param_type& __param) |
2394 | { |
2395 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2396 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2397 | __aurng(__urng); |
2398 | |
2399 | result_type __u, __v, __n; |
2400 | const result_type __a1 = (__param._M_malpha |
2401 | - _RealType(1.0) / _RealType(3.0)); |
2402 | |
2403 | if (__param.alpha() == __param._M_malpha) |
2404 | while (__f != __t) |
2405 | { |
2406 | do |
2407 | { |
2408 | do |
2409 | { |
2410 | __n = _M_nd(__urng); |
2411 | __v = result_type(1.0) + __param._M_a2 * __n; |
2412 | } |
2413 | while (__v <= 0.0); |
2414 | |
2415 | __v = __v * __v * __v; |
2416 | __u = __aurng(); |
2417 | } |
2418 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
2419 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
2420 | * (1.0 - __v + std::log(__v))))); |
2421 | |
2422 | *__f++ = __a1 * __v * __param.beta(); |
2423 | } |
2424 | else |
2425 | while (__f != __t) |
2426 | { |
2427 | do |
2428 | { |
2429 | do |
2430 | { |
2431 | __n = _M_nd(__urng); |
2432 | __v = result_type(1.0) + __param._M_a2 * __n; |
2433 | } |
2434 | while (__v <= 0.0); |
2435 | |
2436 | __v = __v * __v * __v; |
2437 | __u = __aurng(); |
2438 | } |
2439 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
2440 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
2441 | * (1.0 - __v + std::log(__v))))); |
2442 | |
2443 | do |
2444 | __u = __aurng(); |
2445 | while (__u == 0.0); |
2446 | |
2447 | *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha()) |
2448 | * __a1 * __v * __param.beta()); |
2449 | } |
2450 | } |
2451 | |
2452 | template<typename _RealType, typename _CharT, typename _Traits> |
2453 | std::basic_ostream<_CharT, _Traits>& |
2454 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2455 | const gamma_distribution<_RealType>& __x) |
2456 | { |
2457 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2458 | typedef typename __ostream_type::ios_base __ios_base; |
2459 | |
2460 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2461 | const _CharT __fill = __os.fill(); |
2462 | const std::streamsize __precision = __os.precision(); |
2463 | const _CharT __space = __os.widen(' '); |
2464 | __os.flags(__ios_base::scientific | __ios_base::left); |
2465 | __os.fill(__space); |
2466 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2467 | |
2468 | __os << __x.alpha() << __space << __x.beta() |
2469 | << __space << __x._M_nd; |
2470 | |
2471 | __os.flags(__flags); |
2472 | __os.fill(__fill); |
2473 | __os.precision(__precision); |
2474 | return __os; |
2475 | } |
2476 | |
2477 | template<typename _RealType, typename _CharT, typename _Traits> |
2478 | std::basic_istream<_CharT, _Traits>& |
2479 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2480 | gamma_distribution<_RealType>& __x) |
2481 | { |
2482 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2483 | typedef typename __istream_type::ios_base __ios_base; |
2484 | |
2485 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2486 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2487 | |
2488 | _RealType __alpha_val, __beta_val; |
2489 | if (__is >> __alpha_val >> __beta_val >> __x._M_nd) |
2490 | __x.param(typename gamma_distribution<_RealType>:: |
2491 | param_type(__alpha_val, __beta_val)); |
2492 | |
2493 | __is.flags(__flags); |
2494 | return __is; |
2495 | } |
2496 | |
2497 | |
2498 | template<typename _RealType> |
2499 | template<typename _UniformRandomNumberGenerator> |
2500 | typename weibull_distribution<_RealType>::result_type |
2501 | weibull_distribution<_RealType>:: |
2502 | operator()(_UniformRandomNumberGenerator& __urng, |
2503 | const param_type& __p) |
2504 | { |
2505 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2506 | __aurng(__urng); |
2507 | return __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
2508 | result_type(1) / __p.a()); |
2509 | } |
2510 | |
2511 | template<typename _RealType> |
2512 | template<typename _ForwardIterator, |
2513 | typename _UniformRandomNumberGenerator> |
2514 | void |
2515 | weibull_distribution<_RealType>:: |
2516 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2517 | _UniformRandomNumberGenerator& __urng, |
2518 | const param_type& __p) |
2519 | { |
2520 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2521 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2522 | __aurng(__urng); |
2523 | auto __inv_a = result_type(1) / __p.a(); |
2524 | |
2525 | while (__f != __t) |
2526 | *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
2527 | __inv_a); |
2528 | } |
2529 | |
2530 | template<typename _RealType, typename _CharT, typename _Traits> |
2531 | std::basic_ostream<_CharT, _Traits>& |
2532 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2533 | const weibull_distribution<_RealType>& __x) |
2534 | { |
2535 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2536 | typedef typename __ostream_type::ios_base __ios_base; |
2537 | |
2538 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2539 | const _CharT __fill = __os.fill(); |
2540 | const std::streamsize __precision = __os.precision(); |
2541 | const _CharT __space = __os.widen(' '); |
2542 | __os.flags(__ios_base::scientific | __ios_base::left); |
2543 | __os.fill(__space); |
2544 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2545 | |
2546 | __os << __x.a() << __space << __x.b(); |
2547 | |
2548 | __os.flags(__flags); |
2549 | __os.fill(__fill); |
2550 | __os.precision(__precision); |
2551 | return __os; |
2552 | } |
2553 | |
2554 | template<typename _RealType, typename _CharT, typename _Traits> |
2555 | std::basic_istream<_CharT, _Traits>& |
2556 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2557 | weibull_distribution<_RealType>& __x) |
2558 | { |
2559 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2560 | typedef typename __istream_type::ios_base __ios_base; |
2561 | |
2562 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2563 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2564 | |
2565 | _RealType __a, __b; |
2566 | if (__is >> __a >> __b) |
2567 | __x.param(typename weibull_distribution<_RealType>:: |
2568 | param_type(__a, __b)); |
2569 | |
2570 | __is.flags(__flags); |
2571 | return __is; |
2572 | } |
2573 | |
2574 | |
2575 | template<typename _RealType> |
2576 | template<typename _UniformRandomNumberGenerator> |
2577 | typename extreme_value_distribution<_RealType>::result_type |
2578 | extreme_value_distribution<_RealType>:: |
2579 | operator()(_UniformRandomNumberGenerator& __urng, |
2580 | const param_type& __p) |
2581 | { |
2582 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2583 | __aurng(__urng); |
2584 | return __p.a() - __p.b() * std::log(-std::log(result_type(1) |
2585 | - __aurng())); |
2586 | } |
2587 | |
2588 | template<typename _RealType> |
2589 | template<typename _ForwardIterator, |
2590 | typename _UniformRandomNumberGenerator> |
2591 | void |
2592 | extreme_value_distribution<_RealType>:: |
2593 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2594 | _UniformRandomNumberGenerator& __urng, |
2595 | const param_type& __p) |
2596 | { |
2597 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2598 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2599 | __aurng(__urng); |
2600 | |
2601 | while (__f != __t) |
2602 | *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1) |
2603 | - __aurng())); |
2604 | } |
2605 | |
2606 | template<typename _RealType, typename _CharT, typename _Traits> |
2607 | std::basic_ostream<_CharT, _Traits>& |
2608 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2609 | const extreme_value_distribution<_RealType>& __x) |
2610 | { |
2611 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2612 | typedef typename __ostream_type::ios_base __ios_base; |
2613 | |
2614 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2615 | const _CharT __fill = __os.fill(); |
2616 | const std::streamsize __precision = __os.precision(); |
2617 | const _CharT __space = __os.widen(' '); |
2618 | __os.flags(__ios_base::scientific | __ios_base::left); |
2619 | __os.fill(__space); |
2620 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2621 | |
2622 | __os << __x.a() << __space << __x.b(); |
2623 | |
2624 | __os.flags(__flags); |
2625 | __os.fill(__fill); |
2626 | __os.precision(__precision); |
2627 | return __os; |
2628 | } |
2629 | |
2630 | template<typename _RealType, typename _CharT, typename _Traits> |
2631 | std::basic_istream<_CharT, _Traits>& |
2632 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2633 | extreme_value_distribution<_RealType>& __x) |
2634 | { |
2635 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2636 | typedef typename __istream_type::ios_base __ios_base; |
2637 | |
2638 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2639 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2640 | |
2641 | _RealType __a, __b; |
2642 | if (__is >> __a >> __b) |
2643 | __x.param(typename extreme_value_distribution<_RealType>:: |
2644 | param_type(__a, __b)); |
2645 | |
2646 | __is.flags(__flags); |
2647 | return __is; |
2648 | } |
2649 | |
2650 | |
2651 | template<typename _IntType> |
2652 | void |
2653 | discrete_distribution<_IntType>::param_type:: |
2654 | _M_initialize() |
2655 | { |
2656 | if (_M_prob.size() < 2) |
2657 | { |
2658 | _M_prob.clear(); |
2659 | return; |
2660 | } |
2661 | |
2662 | const double __sum = std::accumulate(_M_prob.begin(), |
2663 | _M_prob.end(), 0.0); |
2664 | __glibcxx_assert(__sum > 0); |
2665 | // Now normalize the probabilites. |
2666 | __detail::__normalize(_M_prob.begin(), _M_prob.end(), _M_prob.begin(), |
2667 | __sum); |
2668 | // Accumulate partial sums. |
2669 | _M_cp.reserve(_M_prob.size()); |
2670 | std::partial_sum(_M_prob.begin(), _M_prob.end(), |
2671 | std::back_inserter(_M_cp)); |
2672 | // Make sure the last cumulative probability is one. |
2673 | _M_cp[_M_cp.size() - 1] = 1.0; |
2674 | } |
2675 | |
2676 | template<typename _IntType> |
2677 | template<typename _Func> |
2678 | discrete_distribution<_IntType>::param_type:: |
2679 | param_type(size_t __nw, double __xmin, double __xmax, _Func __fw) |
2680 | : _M_prob(), _M_cp() |
2681 | { |
2682 | const size_t __n = __nw == 0 ? 1 : __nw; |
2683 | const double __delta = (__xmax - __xmin) / __n; |
2684 | |
2685 | _M_prob.reserve(__n); |
2686 | for (size_t __k = 0; __k < __nw; ++__k) |
2687 | _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta)); |
2688 | |
2689 | _M_initialize(); |
2690 | } |
2691 | |
2692 | template<typename _IntType> |
2693 | template<typename _UniformRandomNumberGenerator> |
2694 | typename discrete_distribution<_IntType>::result_type |
2695 | discrete_distribution<_IntType>:: |
2696 | operator()(_UniformRandomNumberGenerator& __urng, |
2697 | const param_type& __param) |
2698 | { |
2699 | if (__param._M_cp.empty()) |
2700 | return result_type(0); |
2701 | |
2702 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2703 | __aurng(__urng); |
2704 | |
2705 | const double __p = __aurng(); |
2706 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2707 | __param._M_cp.end(), __p); |
2708 | |
2709 | return __pos - __param._M_cp.begin(); |
2710 | } |
2711 | |
2712 | template<typename _IntType> |
2713 | template<typename _ForwardIterator, |
2714 | typename _UniformRandomNumberGenerator> |
2715 | void |
2716 | discrete_distribution<_IntType>:: |
2717 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2718 | _UniformRandomNumberGenerator& __urng, |
2719 | const param_type& __param) |
2720 | { |
2721 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2722 | |
2723 | if (__param._M_cp.empty()) |
2724 | { |
2725 | while (__f != __t) |
2726 | *__f++ = result_type(0); |
2727 | return; |
2728 | } |
2729 | |
2730 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2731 | __aurng(__urng); |
2732 | |
2733 | while (__f != __t) |
2734 | { |
2735 | const double __p = __aurng(); |
2736 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2737 | __param._M_cp.end(), __p); |
2738 | |
2739 | *__f++ = __pos - __param._M_cp.begin(); |
2740 | } |
2741 | } |
2742 | |
2743 | template<typename _IntType, typename _CharT, typename _Traits> |
2744 | std::basic_ostream<_CharT, _Traits>& |
2745 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2746 | const discrete_distribution<_IntType>& __x) |
2747 | { |
2748 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2749 | typedef typename __ostream_type::ios_base __ios_base; |
2750 | |
2751 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2752 | const _CharT __fill = __os.fill(); |
2753 | const std::streamsize __precision = __os.precision(); |
2754 | const _CharT __space = __os.widen(' '); |
2755 | __os.flags(__ios_base::scientific | __ios_base::left); |
2756 | __os.fill(__space); |
2757 | __os.precision(std::numeric_limits<double>::max_digits10); |
2758 | |
2759 | std::vector<double> __prob = __x.probabilities(); |
2760 | __os << __prob.size(); |
2761 | for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit) |
2762 | __os << __space << *__dit; |
2763 | |
2764 | __os.flags(__flags); |
2765 | __os.fill(__fill); |
2766 | __os.precision(__precision); |
2767 | return __os; |
2768 | } |
2769 | |
2770 | namespace __detail |
2771 | { |
2772 | template<typename _ValT, typename _CharT, typename _Traits> |
2773 | basic_istream<_CharT, _Traits>& |
2774 | (basic_istream<_CharT, _Traits>& __is, |
2775 | vector<_ValT>& __vals, size_t __n) |
2776 | { |
2777 | __vals.reserve(__n); |
2778 | while (__n--) |
2779 | { |
2780 | _ValT __val; |
2781 | if (__is >> __val) |
2782 | __vals.push_back(__val); |
2783 | else |
2784 | break; |
2785 | } |
2786 | return __is; |
2787 | } |
2788 | } // namespace __detail |
2789 | |
2790 | template<typename _IntType, typename _CharT, typename _Traits> |
2791 | std::basic_istream<_CharT, _Traits>& |
2792 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2793 | discrete_distribution<_IntType>& __x) |
2794 | { |
2795 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2796 | typedef typename __istream_type::ios_base __ios_base; |
2797 | |
2798 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2799 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2800 | |
2801 | size_t __n; |
2802 | if (__is >> __n) |
2803 | { |
2804 | std::vector<double> __prob_vec; |
2805 | if (__detail::__extract_params(__is, __prob_vec, __n)) |
2806 | __x.param({__prob_vec.begin(), __prob_vec.end()}); |
2807 | } |
2808 | |
2809 | __is.flags(__flags); |
2810 | return __is; |
2811 | } |
2812 | |
2813 | |
2814 | template<typename _RealType> |
2815 | void |
2816 | piecewise_constant_distribution<_RealType>::param_type:: |
2817 | _M_initialize() |
2818 | { |
2819 | if (_M_int.size() < 2 |
2820 | || (_M_int.size() == 2 |
2821 | && _M_int[0] == _RealType(0) |
2822 | && _M_int[1] == _RealType(1))) |
2823 | { |
2824 | _M_int.clear(); |
2825 | _M_den.clear(); |
2826 | return; |
2827 | } |
2828 | |
2829 | const double __sum = std::accumulate(_M_den.begin(), |
2830 | _M_den.end(), 0.0); |
2831 | __glibcxx_assert(__sum > 0); |
2832 | |
2833 | __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), |
2834 | __sum); |
2835 | |
2836 | _M_cp.reserve(_M_den.size()); |
2837 | std::partial_sum(_M_den.begin(), _M_den.end(), |
2838 | std::back_inserter(_M_cp)); |
2839 | |
2840 | // Make sure the last cumulative probability is one. |
2841 | _M_cp[_M_cp.size() - 1] = 1.0; |
2842 | |
2843 | for (size_t __k = 0; __k < _M_den.size(); ++__k) |
2844 | _M_den[__k] /= _M_int[__k + 1] - _M_int[__k]; |
2845 | } |
2846 | |
2847 | template<typename _RealType> |
2848 | template<typename _InputIteratorB, typename _InputIteratorW> |
2849 | piecewise_constant_distribution<_RealType>::param_type:: |
2850 | param_type(_InputIteratorB __bbegin, |
2851 | _InputIteratorB __bend, |
2852 | _InputIteratorW __wbegin) |
2853 | : _M_int(), _M_den(), _M_cp() |
2854 | { |
2855 | if (__bbegin != __bend) |
2856 | { |
2857 | for (;;) |
2858 | { |
2859 | _M_int.push_back(*__bbegin); |
2860 | ++__bbegin; |
2861 | if (__bbegin == __bend) |
2862 | break; |
2863 | |
2864 | _M_den.push_back(*__wbegin); |
2865 | ++__wbegin; |
2866 | } |
2867 | } |
2868 | |
2869 | _M_initialize(); |
2870 | } |
2871 | |
2872 | template<typename _RealType> |
2873 | template<typename _Func> |
2874 | piecewise_constant_distribution<_RealType>::param_type:: |
2875 | param_type(initializer_list<_RealType> __bl, _Func __fw) |
2876 | : _M_int(), _M_den(), _M_cp() |
2877 | { |
2878 | _M_int.reserve(__bl.size()); |
2879 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
2880 | _M_int.push_back(*__biter); |
2881 | |
2882 | _M_den.reserve(_M_int.size() - 1); |
2883 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
2884 | _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k]))); |
2885 | |
2886 | _M_initialize(); |
2887 | } |
2888 | |
2889 | template<typename _RealType> |
2890 | template<typename _Func> |
2891 | piecewise_constant_distribution<_RealType>::param_type:: |
2892 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
2893 | : _M_int(), _M_den(), _M_cp() |
2894 | { |
2895 | const size_t __n = __nw == 0 ? 1 : __nw; |
2896 | const _RealType __delta = (__xmax - __xmin) / __n; |
2897 | |
2898 | _M_int.reserve(__n + 1); |
2899 | for (size_t __k = 0; __k <= __nw; ++__k) |
2900 | _M_int.push_back(__xmin + __k * __delta); |
2901 | |
2902 | _M_den.reserve(__n); |
2903 | for (size_t __k = 0; __k < __nw; ++__k) |
2904 | _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta)); |
2905 | |
2906 | _M_initialize(); |
2907 | } |
2908 | |
2909 | template<typename _RealType> |
2910 | template<typename _UniformRandomNumberGenerator> |
2911 | typename piecewise_constant_distribution<_RealType>::result_type |
2912 | piecewise_constant_distribution<_RealType>:: |
2913 | operator()(_UniformRandomNumberGenerator& __urng, |
2914 | const param_type& __param) |
2915 | { |
2916 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2917 | __aurng(__urng); |
2918 | |
2919 | const double __p = __aurng(); |
2920 | if (__param._M_cp.empty()) |
2921 | return __p; |
2922 | |
2923 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2924 | __param._M_cp.end(), __p); |
2925 | const size_t __i = __pos - __param._M_cp.begin(); |
2926 | |
2927 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
2928 | |
2929 | return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i]; |
2930 | } |
2931 | |
2932 | template<typename _RealType> |
2933 | template<typename _ForwardIterator, |
2934 | typename _UniformRandomNumberGenerator> |
2935 | void |
2936 | piecewise_constant_distribution<_RealType>:: |
2937 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2938 | _UniformRandomNumberGenerator& __urng, |
2939 | const param_type& __param) |
2940 | { |
2941 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2942 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2943 | __aurng(__urng); |
2944 | |
2945 | if (__param._M_cp.empty()) |
2946 | { |
2947 | while (__f != __t) |
2948 | *__f++ = __aurng(); |
2949 | return; |
2950 | } |
2951 | |
2952 | while (__f != __t) |
2953 | { |
2954 | const double __p = __aurng(); |
2955 | |
2956 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2957 | __param._M_cp.end(), __p); |
2958 | const size_t __i = __pos - __param._M_cp.begin(); |
2959 | |
2960 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
2961 | |
2962 | *__f++ = (__param._M_int[__i] |
2963 | + (__p - __pref) / __param._M_den[__i]); |
2964 | } |
2965 | } |
2966 | |
2967 | template<typename _RealType, typename _CharT, typename _Traits> |
2968 | std::basic_ostream<_CharT, _Traits>& |
2969 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2970 | const piecewise_constant_distribution<_RealType>& __x) |
2971 | { |
2972 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2973 | typedef typename __ostream_type::ios_base __ios_base; |
2974 | |
2975 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2976 | const _CharT __fill = __os.fill(); |
2977 | const std::streamsize __precision = __os.precision(); |
2978 | const _CharT __space = __os.widen(' '); |
2979 | __os.flags(__ios_base::scientific | __ios_base::left); |
2980 | __os.fill(__space); |
2981 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2982 | |
2983 | std::vector<_RealType> __int = __x.intervals(); |
2984 | __os << __int.size() - 1; |
2985 | |
2986 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
2987 | __os << __space << *__xit; |
2988 | |
2989 | std::vector<double> __den = __x.densities(); |
2990 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
2991 | __os << __space << *__dit; |
2992 | |
2993 | __os.flags(__flags); |
2994 | __os.fill(__fill); |
2995 | __os.precision(__precision); |
2996 | return __os; |
2997 | } |
2998 | |
2999 | template<typename _RealType, typename _CharT, typename _Traits> |
3000 | std::basic_istream<_CharT, _Traits>& |
3001 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3002 | piecewise_constant_distribution<_RealType>& __x) |
3003 | { |
3004 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
3005 | typedef typename __istream_type::ios_base __ios_base; |
3006 | |
3007 | const typename __ios_base::fmtflags __flags = __is.flags(); |
3008 | __is.flags(__ios_base::dec | __ios_base::skipws); |
3009 | |
3010 | size_t __n; |
3011 | if (__is >> __n) |
3012 | { |
3013 | std::vector<_RealType> __int_vec; |
3014 | if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
3015 | { |
3016 | std::vector<double> __den_vec; |
3017 | if (__detail::__extract_params(__is, __den_vec, __n)) |
3018 | { |
3019 | __x.param({ __int_vec.begin(), __int_vec.end(), |
3020 | __den_vec.begin() }); |
3021 | } |
3022 | } |
3023 | } |
3024 | |
3025 | __is.flags(__flags); |
3026 | return __is; |
3027 | } |
3028 | |
3029 | |
3030 | template<typename _RealType> |
3031 | void |
3032 | piecewise_linear_distribution<_RealType>::param_type:: |
3033 | _M_initialize() |
3034 | { |
3035 | if (_M_int.size() < 2 |
3036 | || (_M_int.size() == 2 |
3037 | && _M_int[0] == _RealType(0) |
3038 | && _M_int[1] == _RealType(1) |
3039 | && _M_den[0] == _M_den[1])) |
3040 | { |
3041 | _M_int.clear(); |
3042 | _M_den.clear(); |
3043 | return; |
3044 | } |
3045 | |
3046 | double __sum = 0.0; |
3047 | _M_cp.reserve(_M_int.size() - 1); |
3048 | _M_m.reserve(_M_int.size() - 1); |
3049 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
3050 | { |
3051 | const _RealType __delta = _M_int[__k + 1] - _M_int[__k]; |
3052 | __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta; |
3053 | _M_cp.push_back(__sum); |
3054 | _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta); |
3055 | } |
3056 | __glibcxx_assert(__sum > 0); |
3057 | |
3058 | // Now normalize the densities... |
3059 | __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), |
3060 | __sum); |
3061 | // ... and partial sums... |
3062 | __detail::__normalize(_M_cp.begin(), _M_cp.end(), _M_cp.begin(), __sum); |
3063 | // ... and slopes. |
3064 | __detail::__normalize(_M_m.begin(), _M_m.end(), _M_m.begin(), __sum); |
3065 | |
3066 | // Make sure the last cumulative probablility is one. |
3067 | _M_cp[_M_cp.size() - 1] = 1.0; |
3068 | } |
3069 | |
3070 | template<typename _RealType> |
3071 | template<typename _InputIteratorB, typename _InputIteratorW> |
3072 | piecewise_linear_distribution<_RealType>::param_type:: |
3073 | param_type(_InputIteratorB __bbegin, |
3074 | _InputIteratorB __bend, |
3075 | _InputIteratorW __wbegin) |
3076 | : _M_int(), _M_den(), _M_cp(), _M_m() |
3077 | { |
3078 | for (; __bbegin != __bend; ++__bbegin, ++__wbegin) |
3079 | { |
3080 | _M_int.push_back(*__bbegin); |
3081 | _M_den.push_back(*__wbegin); |
3082 | } |
3083 | |
3084 | _M_initialize(); |
3085 | } |
3086 | |
3087 | template<typename _RealType> |
3088 | template<typename _Func> |
3089 | piecewise_linear_distribution<_RealType>::param_type:: |
3090 | param_type(initializer_list<_RealType> __bl, _Func __fw) |
3091 | : _M_int(), _M_den(), _M_cp(), _M_m() |
3092 | { |
3093 | _M_int.reserve(__bl.size()); |
3094 | _M_den.reserve(__bl.size()); |
3095 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
3096 | { |
3097 | _M_int.push_back(*__biter); |
3098 | _M_den.push_back(__fw(*__biter)); |
3099 | } |
3100 | |
3101 | _M_initialize(); |
3102 | } |
3103 | |
3104 | template<typename _RealType> |
3105 | template<typename _Func> |
3106 | piecewise_linear_distribution<_RealType>::param_type:: |
3107 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
3108 | : _M_int(), _M_den(), _M_cp(), _M_m() |
3109 | { |
3110 | const size_t __n = __nw == 0 ? 1 : __nw; |
3111 | const _RealType __delta = (__xmax - __xmin) / __n; |
3112 | |
3113 | _M_int.reserve(__n + 1); |
3114 | _M_den.reserve(__n + 1); |
3115 | for (size_t __k = 0; __k <= __nw; ++__k) |
3116 | { |
3117 | _M_int.push_back(__xmin + __k * __delta); |
3118 | _M_den.push_back(__fw(_M_int[__k] + __delta)); |
3119 | } |
3120 | |
3121 | _M_initialize(); |
3122 | } |
3123 | |
3124 | template<typename _RealType> |
3125 | template<typename _UniformRandomNumberGenerator> |
3126 | typename piecewise_linear_distribution<_RealType>::result_type |
3127 | piecewise_linear_distribution<_RealType>:: |
3128 | operator()(_UniformRandomNumberGenerator& __urng, |
3129 | const param_type& __param) |
3130 | { |
3131 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
3132 | __aurng(__urng); |
3133 | |
3134 | const double __p = __aurng(); |
3135 | if (__param._M_cp.empty()) |
3136 | return __p; |
3137 | |
3138 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
3139 | __param._M_cp.end(), __p); |
3140 | const size_t __i = __pos - __param._M_cp.begin(); |
3141 | |
3142 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
3143 | |
3144 | const double __a = 0.5 * __param._M_m[__i]; |
3145 | const double __b = __param._M_den[__i]; |
3146 | const double __cm = __p - __pref; |
3147 | |
3148 | _RealType __x = __param._M_int[__i]; |
3149 | if (__a == 0) |
3150 | __x += __cm / __b; |
3151 | else |
3152 | { |
3153 | const double __d = __b * __b + 4.0 * __a * __cm; |
3154 | __x += 0.5 * (std::sqrt(__d) - __b) / __a; |
3155 | } |
3156 | |
3157 | return __x; |
3158 | } |
3159 | |
3160 | template<typename _RealType> |
3161 | template<typename _ForwardIterator, |
3162 | typename _UniformRandomNumberGenerator> |
3163 | void |
3164 | piecewise_linear_distribution<_RealType>:: |
3165 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3166 | _UniformRandomNumberGenerator& __urng, |
3167 | const param_type& __param) |
3168 | { |
3169 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
3170 | // We could duplicate everything from operator()... |
3171 | while (__f != __t) |
3172 | *__f++ = this->operator()(__urng, __param); |
3173 | } |
3174 | |
3175 | template<typename _RealType, typename _CharT, typename _Traits> |
3176 | std::basic_ostream<_CharT, _Traits>& |
3177 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3178 | const piecewise_linear_distribution<_RealType>& __x) |
3179 | { |
3180 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
3181 | typedef typename __ostream_type::ios_base __ios_base; |
3182 | |
3183 | const typename __ios_base::fmtflags __flags = __os.flags(); |
3184 | const _CharT __fill = __os.fill(); |
3185 | const std::streamsize __precision = __os.precision(); |
3186 | const _CharT __space = __os.widen(' '); |
3187 | __os.flags(__ios_base::scientific | __ios_base::left); |
3188 | __os.fill(__space); |
3189 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
3190 | |
3191 | std::vector<_RealType> __int = __x.intervals(); |
3192 | __os << __int.size() - 1; |
3193 | |
3194 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
3195 | __os << __space << *__xit; |
3196 | |
3197 | std::vector<double> __den = __x.densities(); |
3198 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
3199 | __os << __space << *__dit; |
3200 | |
3201 | __os.flags(__flags); |
3202 | __os.fill(__fill); |
3203 | __os.precision(__precision); |
3204 | return __os; |
3205 | } |
3206 | |
3207 | template<typename _RealType, typename _CharT, typename _Traits> |
3208 | std::basic_istream<_CharT, _Traits>& |
3209 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3210 | piecewise_linear_distribution<_RealType>& __x) |
3211 | { |
3212 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
3213 | typedef typename __istream_type::ios_base __ios_base; |
3214 | |
3215 | const typename __ios_base::fmtflags __flags = __is.flags(); |
3216 | __is.flags(__ios_base::dec | __ios_base::skipws); |
3217 | |
3218 | size_t __n; |
3219 | if (__is >> __n) |
3220 | { |
3221 | vector<_RealType> __int_vec; |
3222 | if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
3223 | { |
3224 | vector<double> __den_vec; |
3225 | if (__detail::__extract_params(__is, __den_vec, __n + 1)) |
3226 | { |
3227 | __x.param({ __int_vec.begin(), __int_vec.end(), |
3228 | __den_vec.begin() }); |
3229 | } |
3230 | } |
3231 | } |
3232 | __is.flags(__flags); |
3233 | return __is; |
3234 | } |
3235 | |
3236 | |
3237 | template<typename _IntType> |
3238 | seed_seq::seed_seq(std::initializer_list<_IntType> __il) |
3239 | { |
3240 | for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter) |
3241 | _M_v.push_back(__detail::__mod<result_type, |
3242 | __detail::_Shift<result_type, 32>::__value>(*__iter)); |
3243 | } |
3244 | |
3245 | template<typename _InputIterator> |
3246 | seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end) |
3247 | { |
3248 | for (_InputIterator __iter = __begin; __iter != __end; ++__iter) |
3249 | _M_v.push_back(__detail::__mod<result_type, |
3250 | __detail::_Shift<result_type, 32>::__value>(*__iter)); |
3251 | } |
3252 | |
3253 | template<typename _RandomAccessIterator> |
3254 | void |
3255 | seed_seq::generate(_RandomAccessIterator __begin, |
3256 | _RandomAccessIterator __end) |
3257 | { |
3258 | typedef typename iterator_traits<_RandomAccessIterator>::value_type |
3259 | _Type; |
3260 | |
3261 | if (__begin == __end) |
3262 | return; |
3263 | |
3264 | std::fill(__begin, __end, _Type(0x8b8b8b8bu)); |
3265 | |
3266 | const size_t __n = __end - __begin; |
3267 | const size_t __s = _M_v.size(); |
3268 | const size_t __t = (__n >= 623) ? 11 |
3269 | : (__n >= 68) ? 7 |
3270 | : (__n >= 39) ? 5 |
3271 | : (__n >= 7) ? 3 |
3272 | : (__n - 1) / 2; |
3273 | const size_t __p = (__n - __t) / 2; |
3274 | const size_t __q = __p + __t; |
3275 | const size_t __m = std::max(size_t(__s + 1), __n); |
3276 | |
3277 | for (size_t __k = 0; __k < __m; ++__k) |
3278 | { |
3279 | _Type __arg = (__begin[__k % __n] |
3280 | ^ __begin[(__k + __p) % __n] |
3281 | ^ __begin[(__k - 1) % __n]); |
3282 | _Type __r1 = __arg ^ (__arg >> 27); |
3283 | __r1 = __detail::__mod<_Type, |
3284 | __detail::_Shift<_Type, 32>::__value>(1664525u * __r1); |
3285 | _Type __r2 = __r1; |
3286 | if (__k == 0) |
3287 | __r2 += __s; |
3288 | else if (__k <= __s) |
3289 | __r2 += __k % __n + _M_v[__k - 1]; |
3290 | else |
3291 | __r2 += __k % __n; |
3292 | __r2 = __detail::__mod<_Type, |
3293 | __detail::_Shift<_Type, 32>::__value>(__r2); |
3294 | __begin[(__k + __p) % __n] += __r1; |
3295 | __begin[(__k + __q) % __n] += __r2; |
3296 | __begin[__k % __n] = __r2; |
3297 | } |
3298 | |
3299 | for (size_t __k = __m; __k < __m + __n; ++__k) |
3300 | { |
3301 | _Type __arg = (__begin[__k % __n] |
3302 | + __begin[(__k + __p) % __n] |
3303 | + __begin[(__k - 1) % __n]); |
3304 | _Type __r3 = __arg ^ (__arg >> 27); |
3305 | __r3 = __detail::__mod<_Type, |
3306 | __detail::_Shift<_Type, 32>::__value>(1566083941u * __r3); |
3307 | _Type __r4 = __r3 - __k % __n; |
3308 | __r4 = __detail::__mod<_Type, |
3309 | __detail::_Shift<_Type, 32>::__value>(__r4); |
3310 | __begin[(__k + __p) % __n] ^= __r3; |
3311 | __begin[(__k + __q) % __n] ^= __r4; |
3312 | __begin[__k % __n] = __r4; |
3313 | } |
3314 | } |
3315 | |
3316 | template<typename _RealType, size_t __bits, |
3317 | typename _UniformRandomNumberGenerator> |
3318 | _RealType |
3319 | generate_canonical(_UniformRandomNumberGenerator& __urng) |
3320 | { |
3321 | static_assert(std::is_floating_point<_RealType>::value, |
3322 | "template argument must be a floating point type" ); |
3323 | |
3324 | const size_t __b |
3325 | = std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits), |
3326 | __bits); |
3327 | const long double __r = static_cast<long double>(__urng.max()) |
3328 | - static_cast<long double>(__urng.min()) + 1.0L; |
3329 | const size_t __log2r = std::log(__r) / std::log(2.0L); |
3330 | const size_t __m = std::max<size_t>(1UL, |
3331 | (__b + __log2r - 1UL) / __log2r); |
3332 | _RealType __ret; |
3333 | _RealType __sum = _RealType(0); |
3334 | _RealType __tmp = _RealType(1); |
3335 | for (size_t __k = __m; __k != 0; --__k) |
3336 | { |
3337 | __sum += _RealType(__urng() - __urng.min()) * __tmp; |
3338 | __tmp *= __r; |
3339 | } |
3340 | __ret = __sum / __tmp; |
3341 | if (__builtin_expect(__ret >= _RealType(1), 0)) |
3342 | { |
3343 | #if _GLIBCXX_USE_C99_MATH_TR1 |
3344 | __ret = std::nextafter(_RealType(1), _RealType(0)); |
3345 | #else |
3346 | __ret = _RealType(1) |
3347 | - std::numeric_limits<_RealType>::epsilon() / _RealType(2); |
3348 | #endif |
3349 | } |
3350 | return __ret; |
3351 | } |
3352 | |
3353 | _GLIBCXX_END_NAMESPACE_VERSION |
3354 | } // namespace |
3355 | |
3356 | #endif |
3357 | |