1 | // random number generation -*- C++ -*- |
2 | |
3 | // Copyright (C) 2009-2019 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** |
26 | * @file bits/random.h |
27 | * This is an internal header file, included by other library headers. |
28 | * Do not attempt to use it directly. @headername{random} |
29 | */ |
30 | |
31 | #ifndef _RANDOM_H |
32 | #define _RANDOM_H 1 |
33 | |
34 | #include <vector> |
35 | #include <bits/uniform_int_dist.h> |
36 | |
37 | namespace std _GLIBCXX_VISIBILITY(default) |
38 | { |
39 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
40 | |
41 | // [26.4] Random number generation |
42 | |
43 | /** |
44 | * @defgroup random Random Number Generation |
45 | * @ingroup numerics |
46 | * |
47 | * A facility for generating random numbers on selected distributions. |
48 | * @{ |
49 | */ |
50 | |
51 | /** |
52 | * @brief A function template for converting the output of a (integral) |
53 | * uniform random number generator to a floatng point result in the range |
54 | * [0-1). |
55 | */ |
56 | template<typename _RealType, size_t __bits, |
57 | typename _UniformRandomNumberGenerator> |
58 | _RealType |
59 | generate_canonical(_UniformRandomNumberGenerator& __g); |
60 | |
61 | /* |
62 | * Implementation-space details. |
63 | */ |
64 | namespace __detail |
65 | { |
66 | template<typename _UIntType, size_t __w, |
67 | bool = __w < static_cast<size_t> |
68 | (std::numeric_limits<_UIntType>::digits)> |
69 | struct _Shift |
70 | { static const _UIntType __value = 0; }; |
71 | |
72 | template<typename _UIntType, size_t __w> |
73 | struct _Shift<_UIntType, __w, true> |
74 | { static const _UIntType __value = _UIntType(1) << __w; }; |
75 | |
76 | template<int __s, |
77 | int __which = ((__s <= __CHAR_BIT__ * sizeof (int)) |
78 | + (__s <= __CHAR_BIT__ * sizeof (long)) |
79 | + (__s <= __CHAR_BIT__ * sizeof (long long)) |
80 | /* assume long long no bigger than __int128 */ |
81 | + (__s <= 128))> |
82 | struct _Select_uint_least_t |
83 | { |
84 | static_assert(__which < 0, /* needs to be dependent */ |
85 | "sorry, would be too much trouble for a slow result" ); |
86 | }; |
87 | |
88 | template<int __s> |
89 | struct _Select_uint_least_t<__s, 4> |
90 | { typedef unsigned int type; }; |
91 | |
92 | template<int __s> |
93 | struct _Select_uint_least_t<__s, 3> |
94 | { typedef unsigned long type; }; |
95 | |
96 | template<int __s> |
97 | struct _Select_uint_least_t<__s, 2> |
98 | { typedef unsigned long long type; }; |
99 | |
100 | #ifdef _GLIBCXX_USE_INT128 |
101 | template<int __s> |
102 | struct _Select_uint_least_t<__s, 1> |
103 | { typedef unsigned __int128 type; }; |
104 | #endif |
105 | |
106 | // Assume a != 0, a < m, c < m, x < m. |
107 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, |
108 | bool __big_enough = (!(__m & (__m - 1)) |
109 | || (_Tp(-1) - __c) / __a >= __m - 1), |
110 | bool __schrage_ok = __m % __a < __m / __a> |
111 | struct _Mod |
112 | { |
113 | typedef typename _Select_uint_least_t<std::__lg(__a) |
114 | + std::__lg(__m) + 2>::type _Tp2; |
115 | static _Tp |
116 | __calc(_Tp __x) |
117 | { return static_cast<_Tp>((_Tp2(__a) * __x + __c) % __m); } |
118 | }; |
119 | |
120 | // Schrage. |
121 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
122 | struct _Mod<_Tp, __m, __a, __c, false, true> |
123 | { |
124 | static _Tp |
125 | __calc(_Tp __x); |
126 | }; |
127 | |
128 | // Special cases: |
129 | // - for m == 2^n or m == 0, unsigned integer overflow is safe. |
130 | // - a * (m - 1) + c fits in _Tp, there is no overflow. |
131 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool __s> |
132 | struct _Mod<_Tp, __m, __a, __c, true, __s> |
133 | { |
134 | static _Tp |
135 | __calc(_Tp __x) |
136 | { |
137 | _Tp __res = __a * __x + __c; |
138 | if (__m) |
139 | __res %= __m; |
140 | return __res; |
141 | } |
142 | }; |
143 | |
144 | template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0> |
145 | inline _Tp |
146 | __mod(_Tp __x) |
147 | { return _Mod<_Tp, __m, __a, __c>::__calc(__x); } |
148 | |
149 | /* |
150 | * An adaptor class for converting the output of any Generator into |
151 | * the input for a specific Distribution. |
152 | */ |
153 | template<typename _Engine, typename _DInputType> |
154 | struct _Adaptor |
155 | { |
156 | static_assert(std::is_floating_point<_DInputType>::value, |
157 | "template argument must be a floating point type" ); |
158 | |
159 | public: |
160 | _Adaptor(_Engine& __g) |
161 | : _M_g(__g) { } |
162 | |
163 | _DInputType |
164 | min() const |
165 | { return _DInputType(0); } |
166 | |
167 | _DInputType |
168 | max() const |
169 | { return _DInputType(1); } |
170 | |
171 | /* |
172 | * Converts a value generated by the adapted random number generator |
173 | * into a value in the input domain for the dependent random number |
174 | * distribution. |
175 | */ |
176 | _DInputType |
177 | operator()() |
178 | { |
179 | return std::generate_canonical<_DInputType, |
180 | std::numeric_limits<_DInputType>::digits, |
181 | _Engine>(_M_g); |
182 | } |
183 | |
184 | private: |
185 | _Engine& _M_g; |
186 | }; |
187 | |
188 | template<typename _Sseq> |
189 | using __seed_seq_generate_t = decltype( |
190 | std::declval<_Sseq&>().generate(std::declval<uint_least32_t*>(), |
191 | std::declval<uint_least32_t*>())); |
192 | |
193 | // Detect whether _Sseq is a valid seed sequence for |
194 | // a random number engine _Engine with result type _Res. |
195 | template<typename _Sseq, typename _Engine, typename _Res, |
196 | typename _GenerateCheck = __seed_seq_generate_t<_Sseq>> |
197 | using __is_seed_seq = __and_< |
198 | __not_<is_same<__remove_cvref_t<_Sseq>, _Engine>>, |
199 | is_unsigned<typename _Sseq::result_type>, |
200 | __not_<is_convertible<_Sseq, _Res>> |
201 | >; |
202 | |
203 | } // namespace __detail |
204 | |
205 | /** |
206 | * @addtogroup random_generators Random Number Generators |
207 | * @ingroup random |
208 | * |
209 | * These classes define objects which provide random or pseudorandom |
210 | * numbers, either from a discrete or a continuous interval. The |
211 | * random number generator supplied as a part of this library are |
212 | * all uniform random number generators which provide a sequence of |
213 | * random number uniformly distributed over their range. |
214 | * |
215 | * A number generator is a function object with an operator() that |
216 | * takes zero arguments and returns a number. |
217 | * |
218 | * A compliant random number generator must satisfy the following |
219 | * requirements. <table border=1 cellpadding=10 cellspacing=0> |
220 | * <caption align=top>Random Number Generator Requirements</caption> |
221 | * <tr><td>To be documented.</td></tr> </table> |
222 | * |
223 | * @{ |
224 | */ |
225 | |
226 | /** |
227 | * @brief A model of a linear congruential random number generator. |
228 | * |
229 | * A random number generator that produces pseudorandom numbers via |
230 | * linear function: |
231 | * @f[ |
232 | * x_{i+1}\leftarrow(ax_{i} + c) \bmod m |
233 | * @f] |
234 | * |
235 | * The template parameter @p _UIntType must be an unsigned integral type |
236 | * large enough to store values up to (__m-1). If the template parameter |
237 | * @p __m is 0, the modulus @p __m used is |
238 | * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template |
239 | * parameters @p __a and @p __c must be less than @p __m. |
240 | * |
241 | * The size of the state is @f$1@f$. |
242 | */ |
243 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
244 | class linear_congruential_engine |
245 | { |
246 | static_assert(std::is_unsigned<_UIntType>::value, |
247 | "result_type must be an unsigned integral type" ); |
248 | static_assert(__m == 0u || (__a < __m && __c < __m), |
249 | "template argument substituting __m out of bounds" ); |
250 | |
251 | template<typename _Sseq> |
252 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
253 | _Sseq, linear_congruential_engine, _UIntType>::value>::type; |
254 | |
255 | public: |
256 | /** The type of the generated random value. */ |
257 | typedef _UIntType result_type; |
258 | |
259 | /** The multiplier. */ |
260 | static constexpr result_type multiplier = __a; |
261 | /** An increment. */ |
262 | static constexpr result_type increment = __c; |
263 | /** The modulus. */ |
264 | static constexpr result_type modulus = __m; |
265 | static constexpr result_type default_seed = 1u; |
266 | |
267 | /** |
268 | * @brief Constructs a %linear_congruential_engine random number |
269 | * generator engine with seed 1. |
270 | */ |
271 | linear_congruential_engine() : linear_congruential_engine(default_seed) |
272 | { } |
273 | |
274 | /** |
275 | * @brief Constructs a %linear_congruential_engine random number |
276 | * generator engine with seed @p __s. The default seed value |
277 | * is 1. |
278 | * |
279 | * @param __s The initial seed value. |
280 | */ |
281 | explicit |
282 | linear_congruential_engine(result_type __s) |
283 | { seed(__s); } |
284 | |
285 | /** |
286 | * @brief Constructs a %linear_congruential_engine random number |
287 | * generator engine seeded from the seed sequence @p __q. |
288 | * |
289 | * @param __q the seed sequence. |
290 | */ |
291 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
292 | explicit |
293 | linear_congruential_engine(_Sseq& __q) |
294 | { seed(__q); } |
295 | |
296 | /** |
297 | * @brief Reseeds the %linear_congruential_engine random number generator |
298 | * engine sequence to the seed @p __s. |
299 | * |
300 | * @param __s The new seed. |
301 | */ |
302 | void |
303 | seed(result_type __s = default_seed); |
304 | |
305 | /** |
306 | * @brief Reseeds the %linear_congruential_engine random number generator |
307 | * engine |
308 | * sequence using values from the seed sequence @p __q. |
309 | * |
310 | * @param __q the seed sequence. |
311 | */ |
312 | template<typename _Sseq> |
313 | _If_seed_seq<_Sseq> |
314 | seed(_Sseq& __q); |
315 | |
316 | /** |
317 | * @brief Gets the smallest possible value in the output range. |
318 | * |
319 | * The minimum depends on the @p __c parameter: if it is zero, the |
320 | * minimum generated must be > 0, otherwise 0 is allowed. |
321 | */ |
322 | static constexpr result_type |
323 | min() |
324 | { return __c == 0u ? 1u : 0u; } |
325 | |
326 | /** |
327 | * @brief Gets the largest possible value in the output range. |
328 | */ |
329 | static constexpr result_type |
330 | max() |
331 | { return __m - 1u; } |
332 | |
333 | /** |
334 | * @brief Discard a sequence of random numbers. |
335 | */ |
336 | void |
337 | discard(unsigned long long __z) |
338 | { |
339 | for (; __z != 0ULL; --__z) |
340 | (*this)(); |
341 | } |
342 | |
343 | /** |
344 | * @brief Gets the next random number in the sequence. |
345 | */ |
346 | result_type |
347 | operator()() |
348 | { |
349 | _M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x); |
350 | return _M_x; |
351 | } |
352 | |
353 | /** |
354 | * @brief Compares two linear congruential random number generator |
355 | * objects of the same type for equality. |
356 | * |
357 | * @param __lhs A linear congruential random number generator object. |
358 | * @param __rhs Another linear congruential random number generator |
359 | * object. |
360 | * |
361 | * @returns true if the infinite sequences of generated values |
362 | * would be equal, false otherwise. |
363 | */ |
364 | friend bool |
365 | operator==(const linear_congruential_engine& __lhs, |
366 | const linear_congruential_engine& __rhs) |
367 | { return __lhs._M_x == __rhs._M_x; } |
368 | |
369 | /** |
370 | * @brief Writes the textual representation of the state x(i) of x to |
371 | * @p __os. |
372 | * |
373 | * @param __os The output stream. |
374 | * @param __lcr A % linear_congruential_engine random number generator. |
375 | * @returns __os. |
376 | */ |
377 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
378 | _UIntType1 __m1, typename _CharT, typename _Traits> |
379 | friend std::basic_ostream<_CharT, _Traits>& |
380 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
381 | const std::linear_congruential_engine<_UIntType1, |
382 | __a1, __c1, __m1>& __lcr); |
383 | |
384 | /** |
385 | * @brief Sets the state of the engine by reading its textual |
386 | * representation from @p __is. |
387 | * |
388 | * The textual representation must have been previously written using |
389 | * an output stream whose imbued locale and whose type's template |
390 | * specialization arguments _CharT and _Traits were the same as those |
391 | * of @p __is. |
392 | * |
393 | * @param __is The input stream. |
394 | * @param __lcr A % linear_congruential_engine random number generator. |
395 | * @returns __is. |
396 | */ |
397 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
398 | _UIntType1 __m1, typename _CharT, typename _Traits> |
399 | friend std::basic_istream<_CharT, _Traits>& |
400 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
401 | std::linear_congruential_engine<_UIntType1, __a1, |
402 | __c1, __m1>& __lcr); |
403 | |
404 | private: |
405 | _UIntType _M_x; |
406 | }; |
407 | |
408 | /** |
409 | * @brief Compares two linear congruential random number generator |
410 | * objects of the same type for inequality. |
411 | * |
412 | * @param __lhs A linear congruential random number generator object. |
413 | * @param __rhs Another linear congruential random number generator |
414 | * object. |
415 | * |
416 | * @returns true if the infinite sequences of generated values |
417 | * would be different, false otherwise. |
418 | */ |
419 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
420 | inline bool |
421 | operator!=(const std::linear_congruential_engine<_UIntType, __a, |
422 | __c, __m>& __lhs, |
423 | const std::linear_congruential_engine<_UIntType, __a, |
424 | __c, __m>& __rhs) |
425 | { return !(__lhs == __rhs); } |
426 | |
427 | |
428 | /** |
429 | * A generalized feedback shift register discrete random number generator. |
430 | * |
431 | * This algorithm avoids multiplication and division and is designed to be |
432 | * friendly to a pipelined architecture. If the parameters are chosen |
433 | * correctly, this generator will produce numbers with a very long period and |
434 | * fairly good apparent entropy, although still not cryptographically strong. |
435 | * |
436 | * The best way to use this generator is with the predefined mt19937 class. |
437 | * |
438 | * This algorithm was originally invented by Makoto Matsumoto and |
439 | * Takuji Nishimura. |
440 | * |
441 | * @tparam __w Word size, the number of bits in each element of |
442 | * the state vector. |
443 | * @tparam __n The degree of recursion. |
444 | * @tparam __m The period parameter. |
445 | * @tparam __r The separation point bit index. |
446 | * @tparam __a The last row of the twist matrix. |
447 | * @tparam __u The first right-shift tempering matrix parameter. |
448 | * @tparam __d The first right-shift tempering matrix mask. |
449 | * @tparam __s The first left-shift tempering matrix parameter. |
450 | * @tparam __b The first left-shift tempering matrix mask. |
451 | * @tparam __t The second left-shift tempering matrix parameter. |
452 | * @tparam __c The second left-shift tempering matrix mask. |
453 | * @tparam __l The second right-shift tempering matrix parameter. |
454 | * @tparam __f Initialization multiplier. |
455 | */ |
456 | template<typename _UIntType, size_t __w, |
457 | size_t __n, size_t __m, size_t __r, |
458 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
459 | _UIntType __b, size_t __t, |
460 | _UIntType __c, size_t __l, _UIntType __f> |
461 | class mersenne_twister_engine |
462 | { |
463 | static_assert(std::is_unsigned<_UIntType>::value, |
464 | "result_type must be an unsigned integral type" ); |
465 | static_assert(1u <= __m && __m <= __n, |
466 | "template argument substituting __m out of bounds" ); |
467 | static_assert(__r <= __w, "template argument substituting " |
468 | "__r out of bound" ); |
469 | static_assert(__u <= __w, "template argument substituting " |
470 | "__u out of bound" ); |
471 | static_assert(__s <= __w, "template argument substituting " |
472 | "__s out of bound" ); |
473 | static_assert(__t <= __w, "template argument substituting " |
474 | "__t out of bound" ); |
475 | static_assert(__l <= __w, "template argument substituting " |
476 | "__l out of bound" ); |
477 | static_assert(__w <= std::numeric_limits<_UIntType>::digits, |
478 | "template argument substituting __w out of bound" ); |
479 | static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
480 | "template argument substituting __a out of bound" ); |
481 | static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
482 | "template argument substituting __b out of bound" ); |
483 | static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
484 | "template argument substituting __c out of bound" ); |
485 | static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
486 | "template argument substituting __d out of bound" ); |
487 | static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
488 | "template argument substituting __f out of bound" ); |
489 | |
490 | template<typename _Sseq> |
491 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
492 | _Sseq, mersenne_twister_engine, _UIntType>::value>::type; |
493 | |
494 | public: |
495 | /** The type of the generated random value. */ |
496 | typedef _UIntType result_type; |
497 | |
498 | // parameter values |
499 | static constexpr size_t word_size = __w; |
500 | static constexpr size_t state_size = __n; |
501 | static constexpr size_t shift_size = __m; |
502 | static constexpr size_t mask_bits = __r; |
503 | static constexpr result_type xor_mask = __a; |
504 | static constexpr size_t tempering_u = __u; |
505 | static constexpr result_type tempering_d = __d; |
506 | static constexpr size_t tempering_s = __s; |
507 | static constexpr result_type tempering_b = __b; |
508 | static constexpr size_t tempering_t = __t; |
509 | static constexpr result_type tempering_c = __c; |
510 | static constexpr size_t tempering_l = __l; |
511 | static constexpr result_type initialization_multiplier = __f; |
512 | static constexpr result_type default_seed = 5489u; |
513 | |
514 | // constructors and member functions |
515 | |
516 | mersenne_twister_engine() : mersenne_twister_engine(default_seed) { } |
517 | |
518 | explicit |
519 | mersenne_twister_engine(result_type __sd) |
520 | { seed(__sd); } |
521 | |
522 | /** |
523 | * @brief Constructs a %mersenne_twister_engine random number generator |
524 | * engine seeded from the seed sequence @p __q. |
525 | * |
526 | * @param __q the seed sequence. |
527 | */ |
528 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
529 | explicit |
530 | mersenne_twister_engine(_Sseq& __q) |
531 | { seed(__q); } |
532 | |
533 | void |
534 | seed(result_type __sd = default_seed); |
535 | |
536 | template<typename _Sseq> |
537 | _If_seed_seq<_Sseq> |
538 | seed(_Sseq& __q); |
539 | |
540 | /** |
541 | * @brief Gets the smallest possible value in the output range. |
542 | */ |
543 | static constexpr result_type |
544 | min() |
545 | { return 0; } |
546 | |
547 | /** |
548 | * @brief Gets the largest possible value in the output range. |
549 | */ |
550 | static constexpr result_type |
551 | max() |
552 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
553 | |
554 | /** |
555 | * @brief Discard a sequence of random numbers. |
556 | */ |
557 | void |
558 | discard(unsigned long long __z); |
559 | |
560 | result_type |
561 | operator()(); |
562 | |
563 | /** |
564 | * @brief Compares two % mersenne_twister_engine random number generator |
565 | * objects of the same type for equality. |
566 | * |
567 | * @param __lhs A % mersenne_twister_engine random number generator |
568 | * object. |
569 | * @param __rhs Another % mersenne_twister_engine random number |
570 | * generator object. |
571 | * |
572 | * @returns true if the infinite sequences of generated values |
573 | * would be equal, false otherwise. |
574 | */ |
575 | friend bool |
576 | operator==(const mersenne_twister_engine& __lhs, |
577 | const mersenne_twister_engine& __rhs) |
578 | { return (std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x) |
579 | && __lhs._M_p == __rhs._M_p); } |
580 | |
581 | /** |
582 | * @brief Inserts the current state of a % mersenne_twister_engine |
583 | * random number generator engine @p __x into the output stream |
584 | * @p __os. |
585 | * |
586 | * @param __os An output stream. |
587 | * @param __x A % mersenne_twister_engine random number generator |
588 | * engine. |
589 | * |
590 | * @returns The output stream with the state of @p __x inserted or in |
591 | * an error state. |
592 | */ |
593 | template<typename _UIntType1, |
594 | size_t __w1, size_t __n1, |
595 | size_t __m1, size_t __r1, |
596 | _UIntType1 __a1, size_t __u1, |
597 | _UIntType1 __d1, size_t __s1, |
598 | _UIntType1 __b1, size_t __t1, |
599 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
600 | typename _CharT, typename _Traits> |
601 | friend std::basic_ostream<_CharT, _Traits>& |
602 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
603 | const std::mersenne_twister_engine<_UIntType1, __w1, __n1, |
604 | __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
605 | __l1, __f1>& __x); |
606 | |
607 | /** |
608 | * @brief Extracts the current state of a % mersenne_twister_engine |
609 | * random number generator engine @p __x from the input stream |
610 | * @p __is. |
611 | * |
612 | * @param __is An input stream. |
613 | * @param __x A % mersenne_twister_engine random number generator |
614 | * engine. |
615 | * |
616 | * @returns The input stream with the state of @p __x extracted or in |
617 | * an error state. |
618 | */ |
619 | template<typename _UIntType1, |
620 | size_t __w1, size_t __n1, |
621 | size_t __m1, size_t __r1, |
622 | _UIntType1 __a1, size_t __u1, |
623 | _UIntType1 __d1, size_t __s1, |
624 | _UIntType1 __b1, size_t __t1, |
625 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
626 | typename _CharT, typename _Traits> |
627 | friend std::basic_istream<_CharT, _Traits>& |
628 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
629 | std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1, |
630 | __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
631 | __l1, __f1>& __x); |
632 | |
633 | private: |
634 | void _M_gen_rand(); |
635 | |
636 | _UIntType _M_x[state_size]; |
637 | size_t _M_p; |
638 | }; |
639 | |
640 | /** |
641 | * @brief Compares two % mersenne_twister_engine random number generator |
642 | * objects of the same type for inequality. |
643 | * |
644 | * @param __lhs A % mersenne_twister_engine random number generator |
645 | * object. |
646 | * @param __rhs Another % mersenne_twister_engine random number |
647 | * generator object. |
648 | * |
649 | * @returns true if the infinite sequences of generated values |
650 | * would be different, false otherwise. |
651 | */ |
652 | template<typename _UIntType, size_t __w, |
653 | size_t __n, size_t __m, size_t __r, |
654 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
655 | _UIntType __b, size_t __t, |
656 | _UIntType __c, size_t __l, _UIntType __f> |
657 | inline bool |
658 | operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
659 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs, |
660 | const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
661 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs) |
662 | { return !(__lhs == __rhs); } |
663 | |
664 | |
665 | /** |
666 | * @brief The Marsaglia-Zaman generator. |
667 | * |
668 | * This is a model of a Generalized Fibonacci discrete random number |
669 | * generator, sometimes referred to as the SWC generator. |
670 | * |
671 | * A discrete random number generator that produces pseudorandom |
672 | * numbers using: |
673 | * @f[ |
674 | * x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m |
675 | * @f] |
676 | * |
677 | * The size of the state is @f$r@f$ |
678 | * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$. |
679 | */ |
680 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
681 | class subtract_with_carry_engine |
682 | { |
683 | static_assert(std::is_unsigned<_UIntType>::value, |
684 | "result_type must be an unsigned integral type" ); |
685 | static_assert(0u < __s && __s < __r, |
686 | "0 < s < r" ); |
687 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
688 | "template argument substituting __w out of bounds" ); |
689 | |
690 | template<typename _Sseq> |
691 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
692 | _Sseq, subtract_with_carry_engine, _UIntType>::value>::type; |
693 | |
694 | public: |
695 | /** The type of the generated random value. */ |
696 | typedef _UIntType result_type; |
697 | |
698 | // parameter values |
699 | static constexpr size_t word_size = __w; |
700 | static constexpr size_t short_lag = __s; |
701 | static constexpr size_t long_lag = __r; |
702 | static constexpr result_type default_seed = 19780503u; |
703 | |
704 | subtract_with_carry_engine() : subtract_with_carry_engine(default_seed) |
705 | { } |
706 | |
707 | /** |
708 | * @brief Constructs an explicitly seeded %subtract_with_carry_engine |
709 | * random number generator. |
710 | */ |
711 | explicit |
712 | subtract_with_carry_engine(result_type __sd) |
713 | { seed(__sd); } |
714 | |
715 | /** |
716 | * @brief Constructs a %subtract_with_carry_engine random number engine |
717 | * seeded from the seed sequence @p __q. |
718 | * |
719 | * @param __q the seed sequence. |
720 | */ |
721 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
722 | explicit |
723 | subtract_with_carry_engine(_Sseq& __q) |
724 | { seed(__q); } |
725 | |
726 | /** |
727 | * @brief Seeds the initial state @f$x_0@f$ of the random number |
728 | * generator. |
729 | * |
730 | * N1688[4.19] modifies this as follows. If @p __value == 0, |
731 | * sets value to 19780503. In any case, with a linear |
732 | * congruential generator lcg(i) having parameters @f$ m_{lcg} = |
733 | * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value |
734 | * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m |
735 | * \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$ |
736 | * set carry to 1, otherwise sets carry to 0. |
737 | */ |
738 | void |
739 | seed(result_type __sd = default_seed); |
740 | |
741 | /** |
742 | * @brief Seeds the initial state @f$x_0@f$ of the |
743 | * % subtract_with_carry_engine random number generator. |
744 | */ |
745 | template<typename _Sseq> |
746 | _If_seed_seq<_Sseq> |
747 | seed(_Sseq& __q); |
748 | |
749 | /** |
750 | * @brief Gets the inclusive minimum value of the range of random |
751 | * integers returned by this generator. |
752 | */ |
753 | static constexpr result_type |
754 | min() |
755 | { return 0; } |
756 | |
757 | /** |
758 | * @brief Gets the inclusive maximum value of the range of random |
759 | * integers returned by this generator. |
760 | */ |
761 | static constexpr result_type |
762 | max() |
763 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
764 | |
765 | /** |
766 | * @brief Discard a sequence of random numbers. |
767 | */ |
768 | void |
769 | discard(unsigned long long __z) |
770 | { |
771 | for (; __z != 0ULL; --__z) |
772 | (*this)(); |
773 | } |
774 | |
775 | /** |
776 | * @brief Gets the next random number in the sequence. |
777 | */ |
778 | result_type |
779 | operator()(); |
780 | |
781 | /** |
782 | * @brief Compares two % subtract_with_carry_engine random number |
783 | * generator objects of the same type for equality. |
784 | * |
785 | * @param __lhs A % subtract_with_carry_engine random number generator |
786 | * object. |
787 | * @param __rhs Another % subtract_with_carry_engine random number |
788 | * generator object. |
789 | * |
790 | * @returns true if the infinite sequences of generated values |
791 | * would be equal, false otherwise. |
792 | */ |
793 | friend bool |
794 | operator==(const subtract_with_carry_engine& __lhs, |
795 | const subtract_with_carry_engine& __rhs) |
796 | { return (std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x) |
797 | && __lhs._M_carry == __rhs._M_carry |
798 | && __lhs._M_p == __rhs._M_p); } |
799 | |
800 | /** |
801 | * @brief Inserts the current state of a % subtract_with_carry_engine |
802 | * random number generator engine @p __x into the output stream |
803 | * @p __os. |
804 | * |
805 | * @param __os An output stream. |
806 | * @param __x A % subtract_with_carry_engine random number generator |
807 | * engine. |
808 | * |
809 | * @returns The output stream with the state of @p __x inserted or in |
810 | * an error state. |
811 | */ |
812 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
813 | typename _CharT, typename _Traits> |
814 | friend std::basic_ostream<_CharT, _Traits>& |
815 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
816 | const std::subtract_with_carry_engine<_UIntType1, __w1, |
817 | __s1, __r1>& __x); |
818 | |
819 | /** |
820 | * @brief Extracts the current state of a % subtract_with_carry_engine |
821 | * random number generator engine @p __x from the input stream |
822 | * @p __is. |
823 | * |
824 | * @param __is An input stream. |
825 | * @param __x A % subtract_with_carry_engine random number generator |
826 | * engine. |
827 | * |
828 | * @returns The input stream with the state of @p __x extracted or in |
829 | * an error state. |
830 | */ |
831 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
832 | typename _CharT, typename _Traits> |
833 | friend std::basic_istream<_CharT, _Traits>& |
834 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
835 | std::subtract_with_carry_engine<_UIntType1, __w1, |
836 | __s1, __r1>& __x); |
837 | |
838 | private: |
839 | /// The state of the generator. This is a ring buffer. |
840 | _UIntType _M_x[long_lag]; |
841 | _UIntType _M_carry; ///< The carry |
842 | size_t _M_p; ///< Current index of x(i - r). |
843 | }; |
844 | |
845 | /** |
846 | * @brief Compares two % subtract_with_carry_engine random number |
847 | * generator objects of the same type for inequality. |
848 | * |
849 | * @param __lhs A % subtract_with_carry_engine random number generator |
850 | * object. |
851 | * @param __rhs Another % subtract_with_carry_engine random number |
852 | * generator object. |
853 | * |
854 | * @returns true if the infinite sequences of generated values |
855 | * would be different, false otherwise. |
856 | */ |
857 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
858 | inline bool |
859 | operator!=(const std::subtract_with_carry_engine<_UIntType, __w, |
860 | __s, __r>& __lhs, |
861 | const std::subtract_with_carry_engine<_UIntType, __w, |
862 | __s, __r>& __rhs) |
863 | { return !(__lhs == __rhs); } |
864 | |
865 | |
866 | /** |
867 | * Produces random numbers from some base engine by discarding blocks of |
868 | * data. |
869 | * |
870 | * 0 <= @p __r <= @p __p |
871 | */ |
872 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
873 | class discard_block_engine |
874 | { |
875 | static_assert(1 <= __r && __r <= __p, |
876 | "template argument substituting __r out of bounds" ); |
877 | |
878 | public: |
879 | /** The type of the generated random value. */ |
880 | typedef typename _RandomNumberEngine::result_type result_type; |
881 | |
882 | template<typename _Sseq> |
883 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
884 | _Sseq, discard_block_engine, result_type>::value>::type; |
885 | |
886 | // parameter values |
887 | static constexpr size_t block_size = __p; |
888 | static constexpr size_t used_block = __r; |
889 | |
890 | /** |
891 | * @brief Constructs a default %discard_block_engine engine. |
892 | * |
893 | * The underlying engine is default constructed as well. |
894 | */ |
895 | discard_block_engine() |
896 | : _M_b(), _M_n(0) { } |
897 | |
898 | /** |
899 | * @brief Copy constructs a %discard_block_engine engine. |
900 | * |
901 | * Copies an existing base class random number generator. |
902 | * @param __rng An existing (base class) engine object. |
903 | */ |
904 | explicit |
905 | discard_block_engine(const _RandomNumberEngine& __rng) |
906 | : _M_b(__rng), _M_n(0) { } |
907 | |
908 | /** |
909 | * @brief Move constructs a %discard_block_engine engine. |
910 | * |
911 | * Copies an existing base class random number generator. |
912 | * @param __rng An existing (base class) engine object. |
913 | */ |
914 | explicit |
915 | discard_block_engine(_RandomNumberEngine&& __rng) |
916 | : _M_b(std::move(__rng)), _M_n(0) { } |
917 | |
918 | /** |
919 | * @brief Seed constructs a %discard_block_engine engine. |
920 | * |
921 | * Constructs the underlying generator engine seeded with @p __s. |
922 | * @param __s A seed value for the base class engine. |
923 | */ |
924 | explicit |
925 | discard_block_engine(result_type __s) |
926 | : _M_b(__s), _M_n(0) { } |
927 | |
928 | /** |
929 | * @brief Generator construct a %discard_block_engine engine. |
930 | * |
931 | * @param __q A seed sequence. |
932 | */ |
933 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
934 | explicit |
935 | discard_block_engine(_Sseq& __q) |
936 | : _M_b(__q), _M_n(0) |
937 | { } |
938 | |
939 | /** |
940 | * @brief Reseeds the %discard_block_engine object with the default |
941 | * seed for the underlying base class generator engine. |
942 | */ |
943 | void |
944 | seed() |
945 | { |
946 | _M_b.seed(); |
947 | _M_n = 0; |
948 | } |
949 | |
950 | /** |
951 | * @brief Reseeds the %discard_block_engine object with the default |
952 | * seed for the underlying base class generator engine. |
953 | */ |
954 | void |
955 | seed(result_type __s) |
956 | { |
957 | _M_b.seed(__s); |
958 | _M_n = 0; |
959 | } |
960 | |
961 | /** |
962 | * @brief Reseeds the %discard_block_engine object with the given seed |
963 | * sequence. |
964 | * @param __q A seed generator function. |
965 | */ |
966 | template<typename _Sseq> |
967 | _If_seed_seq<_Sseq> |
968 | seed(_Sseq& __q) |
969 | { |
970 | _M_b.seed(__q); |
971 | _M_n = 0; |
972 | } |
973 | |
974 | /** |
975 | * @brief Gets a const reference to the underlying generator engine |
976 | * object. |
977 | */ |
978 | const _RandomNumberEngine& |
979 | base() const noexcept |
980 | { return _M_b; } |
981 | |
982 | /** |
983 | * @brief Gets the minimum value in the generated random number range. |
984 | */ |
985 | static constexpr result_type |
986 | min() |
987 | { return _RandomNumberEngine::min(); } |
988 | |
989 | /** |
990 | * @brief Gets the maximum value in the generated random number range. |
991 | */ |
992 | static constexpr result_type |
993 | max() |
994 | { return _RandomNumberEngine::max(); } |
995 | |
996 | /** |
997 | * @brief Discard a sequence of random numbers. |
998 | */ |
999 | void |
1000 | discard(unsigned long long __z) |
1001 | { |
1002 | for (; __z != 0ULL; --__z) |
1003 | (*this)(); |
1004 | } |
1005 | |
1006 | /** |
1007 | * @brief Gets the next value in the generated random number sequence. |
1008 | */ |
1009 | result_type |
1010 | operator()(); |
1011 | |
1012 | /** |
1013 | * @brief Compares two %discard_block_engine random number generator |
1014 | * objects of the same type for equality. |
1015 | * |
1016 | * @param __lhs A %discard_block_engine random number generator object. |
1017 | * @param __rhs Another %discard_block_engine random number generator |
1018 | * object. |
1019 | * |
1020 | * @returns true if the infinite sequences of generated values |
1021 | * would be equal, false otherwise. |
1022 | */ |
1023 | friend bool |
1024 | operator==(const discard_block_engine& __lhs, |
1025 | const discard_block_engine& __rhs) |
1026 | { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; } |
1027 | |
1028 | /** |
1029 | * @brief Inserts the current state of a %discard_block_engine random |
1030 | * number generator engine @p __x into the output stream |
1031 | * @p __os. |
1032 | * |
1033 | * @param __os An output stream. |
1034 | * @param __x A %discard_block_engine random number generator engine. |
1035 | * |
1036 | * @returns The output stream with the state of @p __x inserted or in |
1037 | * an error state. |
1038 | */ |
1039 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
1040 | typename _CharT, typename _Traits> |
1041 | friend std::basic_ostream<_CharT, _Traits>& |
1042 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1043 | const std::discard_block_engine<_RandomNumberEngine1, |
1044 | __p1, __r1>& __x); |
1045 | |
1046 | /** |
1047 | * @brief Extracts the current state of a % subtract_with_carry_engine |
1048 | * random number generator engine @p __x from the input stream |
1049 | * @p __is. |
1050 | * |
1051 | * @param __is An input stream. |
1052 | * @param __x A %discard_block_engine random number generator engine. |
1053 | * |
1054 | * @returns The input stream with the state of @p __x extracted or in |
1055 | * an error state. |
1056 | */ |
1057 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
1058 | typename _CharT, typename _Traits> |
1059 | friend std::basic_istream<_CharT, _Traits>& |
1060 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1061 | std::discard_block_engine<_RandomNumberEngine1, |
1062 | __p1, __r1>& __x); |
1063 | |
1064 | private: |
1065 | _RandomNumberEngine _M_b; |
1066 | size_t _M_n; |
1067 | }; |
1068 | |
1069 | /** |
1070 | * @brief Compares two %discard_block_engine random number generator |
1071 | * objects of the same type for inequality. |
1072 | * |
1073 | * @param __lhs A %discard_block_engine random number generator object. |
1074 | * @param __rhs Another %discard_block_engine random number generator |
1075 | * object. |
1076 | * |
1077 | * @returns true if the infinite sequences of generated values |
1078 | * would be different, false otherwise. |
1079 | */ |
1080 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
1081 | inline bool |
1082 | operator!=(const std::discard_block_engine<_RandomNumberEngine, __p, |
1083 | __r>& __lhs, |
1084 | const std::discard_block_engine<_RandomNumberEngine, __p, |
1085 | __r>& __rhs) |
1086 | { return !(__lhs == __rhs); } |
1087 | |
1088 | |
1089 | /** |
1090 | * Produces random numbers by combining random numbers from some base |
1091 | * engine to produce random numbers with a specifies number of bits @p __w. |
1092 | */ |
1093 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
1094 | class independent_bits_engine |
1095 | { |
1096 | static_assert(std::is_unsigned<_UIntType>::value, |
1097 | "result_type must be an unsigned integral type" ); |
1098 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
1099 | "template argument substituting __w out of bounds" ); |
1100 | |
1101 | template<typename _Sseq> |
1102 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
1103 | _Sseq, independent_bits_engine, _UIntType>::value>::type; |
1104 | |
1105 | public: |
1106 | /** The type of the generated random value. */ |
1107 | typedef _UIntType result_type; |
1108 | |
1109 | /** |
1110 | * @brief Constructs a default %independent_bits_engine engine. |
1111 | * |
1112 | * The underlying engine is default constructed as well. |
1113 | */ |
1114 | independent_bits_engine() |
1115 | : _M_b() { } |
1116 | |
1117 | /** |
1118 | * @brief Copy constructs a %independent_bits_engine engine. |
1119 | * |
1120 | * Copies an existing base class random number generator. |
1121 | * @param __rng An existing (base class) engine object. |
1122 | */ |
1123 | explicit |
1124 | independent_bits_engine(const _RandomNumberEngine& __rng) |
1125 | : _M_b(__rng) { } |
1126 | |
1127 | /** |
1128 | * @brief Move constructs a %independent_bits_engine engine. |
1129 | * |
1130 | * Copies an existing base class random number generator. |
1131 | * @param __rng An existing (base class) engine object. |
1132 | */ |
1133 | explicit |
1134 | independent_bits_engine(_RandomNumberEngine&& __rng) |
1135 | : _M_b(std::move(__rng)) { } |
1136 | |
1137 | /** |
1138 | * @brief Seed constructs a %independent_bits_engine engine. |
1139 | * |
1140 | * Constructs the underlying generator engine seeded with @p __s. |
1141 | * @param __s A seed value for the base class engine. |
1142 | */ |
1143 | explicit |
1144 | independent_bits_engine(result_type __s) |
1145 | : _M_b(__s) { } |
1146 | |
1147 | /** |
1148 | * @brief Generator construct a %independent_bits_engine engine. |
1149 | * |
1150 | * @param __q A seed sequence. |
1151 | */ |
1152 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
1153 | explicit |
1154 | independent_bits_engine(_Sseq& __q) |
1155 | : _M_b(__q) |
1156 | { } |
1157 | |
1158 | /** |
1159 | * @brief Reseeds the %independent_bits_engine object with the default |
1160 | * seed for the underlying base class generator engine. |
1161 | */ |
1162 | void |
1163 | seed() |
1164 | { _M_b.seed(); } |
1165 | |
1166 | /** |
1167 | * @brief Reseeds the %independent_bits_engine object with the default |
1168 | * seed for the underlying base class generator engine. |
1169 | */ |
1170 | void |
1171 | seed(result_type __s) |
1172 | { _M_b.seed(__s); } |
1173 | |
1174 | /** |
1175 | * @brief Reseeds the %independent_bits_engine object with the given |
1176 | * seed sequence. |
1177 | * @param __q A seed generator function. |
1178 | */ |
1179 | template<typename _Sseq> |
1180 | _If_seed_seq<_Sseq> |
1181 | seed(_Sseq& __q) |
1182 | { _M_b.seed(__q); } |
1183 | |
1184 | /** |
1185 | * @brief Gets a const reference to the underlying generator engine |
1186 | * object. |
1187 | */ |
1188 | const _RandomNumberEngine& |
1189 | base() const noexcept |
1190 | { return _M_b; } |
1191 | |
1192 | /** |
1193 | * @brief Gets the minimum value in the generated random number range. |
1194 | */ |
1195 | static constexpr result_type |
1196 | min() |
1197 | { return 0U; } |
1198 | |
1199 | /** |
1200 | * @brief Gets the maximum value in the generated random number range. |
1201 | */ |
1202 | static constexpr result_type |
1203 | max() |
1204 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
1205 | |
1206 | /** |
1207 | * @brief Discard a sequence of random numbers. |
1208 | */ |
1209 | void |
1210 | discard(unsigned long long __z) |
1211 | { |
1212 | for (; __z != 0ULL; --__z) |
1213 | (*this)(); |
1214 | } |
1215 | |
1216 | /** |
1217 | * @brief Gets the next value in the generated random number sequence. |
1218 | */ |
1219 | result_type |
1220 | operator()(); |
1221 | |
1222 | /** |
1223 | * @brief Compares two %independent_bits_engine random number generator |
1224 | * objects of the same type for equality. |
1225 | * |
1226 | * @param __lhs A %independent_bits_engine random number generator |
1227 | * object. |
1228 | * @param __rhs Another %independent_bits_engine random number generator |
1229 | * object. |
1230 | * |
1231 | * @returns true if the infinite sequences of generated values |
1232 | * would be equal, false otherwise. |
1233 | */ |
1234 | friend bool |
1235 | operator==(const independent_bits_engine& __lhs, |
1236 | const independent_bits_engine& __rhs) |
1237 | { return __lhs._M_b == __rhs._M_b; } |
1238 | |
1239 | /** |
1240 | * @brief Extracts the current state of a % subtract_with_carry_engine |
1241 | * random number generator engine @p __x from the input stream |
1242 | * @p __is. |
1243 | * |
1244 | * @param __is An input stream. |
1245 | * @param __x A %independent_bits_engine random number generator |
1246 | * engine. |
1247 | * |
1248 | * @returns The input stream with the state of @p __x extracted or in |
1249 | * an error state. |
1250 | */ |
1251 | template<typename _CharT, typename _Traits> |
1252 | friend std::basic_istream<_CharT, _Traits>& |
1253 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1254 | std::independent_bits_engine<_RandomNumberEngine, |
1255 | __w, _UIntType>& __x) |
1256 | { |
1257 | __is >> __x._M_b; |
1258 | return __is; |
1259 | } |
1260 | |
1261 | private: |
1262 | _RandomNumberEngine _M_b; |
1263 | }; |
1264 | |
1265 | /** |
1266 | * @brief Compares two %independent_bits_engine random number generator |
1267 | * objects of the same type for inequality. |
1268 | * |
1269 | * @param __lhs A %independent_bits_engine random number generator |
1270 | * object. |
1271 | * @param __rhs Another %independent_bits_engine random number generator |
1272 | * object. |
1273 | * |
1274 | * @returns true if the infinite sequences of generated values |
1275 | * would be different, false otherwise. |
1276 | */ |
1277 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
1278 | inline bool |
1279 | operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w, |
1280 | _UIntType>& __lhs, |
1281 | const std::independent_bits_engine<_RandomNumberEngine, __w, |
1282 | _UIntType>& __rhs) |
1283 | { return !(__lhs == __rhs); } |
1284 | |
1285 | /** |
1286 | * @brief Inserts the current state of a %independent_bits_engine random |
1287 | * number generator engine @p __x into the output stream @p __os. |
1288 | * |
1289 | * @param __os An output stream. |
1290 | * @param __x A %independent_bits_engine random number generator engine. |
1291 | * |
1292 | * @returns The output stream with the state of @p __x inserted or in |
1293 | * an error state. |
1294 | */ |
1295 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType, |
1296 | typename _CharT, typename _Traits> |
1297 | std::basic_ostream<_CharT, _Traits>& |
1298 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1299 | const std::independent_bits_engine<_RandomNumberEngine, |
1300 | __w, _UIntType>& __x) |
1301 | { |
1302 | __os << __x.base(); |
1303 | return __os; |
1304 | } |
1305 | |
1306 | |
1307 | /** |
1308 | * @brief Produces random numbers by combining random numbers from some |
1309 | * base engine to produce random numbers with a specifies number of bits |
1310 | * @p __k. |
1311 | */ |
1312 | template<typename _RandomNumberEngine, size_t __k> |
1313 | class shuffle_order_engine |
1314 | { |
1315 | static_assert(1u <= __k, "template argument substituting " |
1316 | "__k out of bound" ); |
1317 | |
1318 | public: |
1319 | /** The type of the generated random value. */ |
1320 | typedef typename _RandomNumberEngine::result_type result_type; |
1321 | |
1322 | template<typename _Sseq> |
1323 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
1324 | _Sseq, shuffle_order_engine, result_type>::value>::type; |
1325 | |
1326 | static constexpr size_t table_size = __k; |
1327 | |
1328 | /** |
1329 | * @brief Constructs a default %shuffle_order_engine engine. |
1330 | * |
1331 | * The underlying engine is default constructed as well. |
1332 | */ |
1333 | shuffle_order_engine() |
1334 | : _M_b() |
1335 | { _M_initialize(); } |
1336 | |
1337 | /** |
1338 | * @brief Copy constructs a %shuffle_order_engine engine. |
1339 | * |
1340 | * Copies an existing base class random number generator. |
1341 | * @param __rng An existing (base class) engine object. |
1342 | */ |
1343 | explicit |
1344 | shuffle_order_engine(const _RandomNumberEngine& __rng) |
1345 | : _M_b(__rng) |
1346 | { _M_initialize(); } |
1347 | |
1348 | /** |
1349 | * @brief Move constructs a %shuffle_order_engine engine. |
1350 | * |
1351 | * Copies an existing base class random number generator. |
1352 | * @param __rng An existing (base class) engine object. |
1353 | */ |
1354 | explicit |
1355 | shuffle_order_engine(_RandomNumberEngine&& __rng) |
1356 | : _M_b(std::move(__rng)) |
1357 | { _M_initialize(); } |
1358 | |
1359 | /** |
1360 | * @brief Seed constructs a %shuffle_order_engine engine. |
1361 | * |
1362 | * Constructs the underlying generator engine seeded with @p __s. |
1363 | * @param __s A seed value for the base class engine. |
1364 | */ |
1365 | explicit |
1366 | shuffle_order_engine(result_type __s) |
1367 | : _M_b(__s) |
1368 | { _M_initialize(); } |
1369 | |
1370 | /** |
1371 | * @brief Generator construct a %shuffle_order_engine engine. |
1372 | * |
1373 | * @param __q A seed sequence. |
1374 | */ |
1375 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
1376 | explicit |
1377 | shuffle_order_engine(_Sseq& __q) |
1378 | : _M_b(__q) |
1379 | { _M_initialize(); } |
1380 | |
1381 | /** |
1382 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
1383 | for the underlying base class generator engine. |
1384 | */ |
1385 | void |
1386 | seed() |
1387 | { |
1388 | _M_b.seed(); |
1389 | _M_initialize(); |
1390 | } |
1391 | |
1392 | /** |
1393 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
1394 | * for the underlying base class generator engine. |
1395 | */ |
1396 | void |
1397 | seed(result_type __s) |
1398 | { |
1399 | _M_b.seed(__s); |
1400 | _M_initialize(); |
1401 | } |
1402 | |
1403 | /** |
1404 | * @brief Reseeds the %shuffle_order_engine object with the given seed |
1405 | * sequence. |
1406 | * @param __q A seed generator function. |
1407 | */ |
1408 | template<typename _Sseq> |
1409 | _If_seed_seq<_Sseq> |
1410 | seed(_Sseq& __q) |
1411 | { |
1412 | _M_b.seed(__q); |
1413 | _M_initialize(); |
1414 | } |
1415 | |
1416 | /** |
1417 | * Gets a const reference to the underlying generator engine object. |
1418 | */ |
1419 | const _RandomNumberEngine& |
1420 | base() const noexcept |
1421 | { return _M_b; } |
1422 | |
1423 | /** |
1424 | * Gets the minimum value in the generated random number range. |
1425 | */ |
1426 | static constexpr result_type |
1427 | min() |
1428 | { return _RandomNumberEngine::min(); } |
1429 | |
1430 | /** |
1431 | * Gets the maximum value in the generated random number range. |
1432 | */ |
1433 | static constexpr result_type |
1434 | max() |
1435 | { return _RandomNumberEngine::max(); } |
1436 | |
1437 | /** |
1438 | * Discard a sequence of random numbers. |
1439 | */ |
1440 | void |
1441 | discard(unsigned long long __z) |
1442 | { |
1443 | for (; __z != 0ULL; --__z) |
1444 | (*this)(); |
1445 | } |
1446 | |
1447 | /** |
1448 | * Gets the next value in the generated random number sequence. |
1449 | */ |
1450 | result_type |
1451 | operator()(); |
1452 | |
1453 | /** |
1454 | * Compares two %shuffle_order_engine random number generator objects |
1455 | * of the same type for equality. |
1456 | * |
1457 | * @param __lhs A %shuffle_order_engine random number generator object. |
1458 | * @param __rhs Another %shuffle_order_engine random number generator |
1459 | * object. |
1460 | * |
1461 | * @returns true if the infinite sequences of generated values |
1462 | * would be equal, false otherwise. |
1463 | */ |
1464 | friend bool |
1465 | operator==(const shuffle_order_engine& __lhs, |
1466 | const shuffle_order_engine& __rhs) |
1467 | { return (__lhs._M_b == __rhs._M_b |
1468 | && std::equal(__lhs._M_v, __lhs._M_v + __k, __rhs._M_v) |
1469 | && __lhs._M_y == __rhs._M_y); } |
1470 | |
1471 | /** |
1472 | * @brief Inserts the current state of a %shuffle_order_engine random |
1473 | * number generator engine @p __x into the output stream |
1474 | @p __os. |
1475 | * |
1476 | * @param __os An output stream. |
1477 | * @param __x A %shuffle_order_engine random number generator engine. |
1478 | * |
1479 | * @returns The output stream with the state of @p __x inserted or in |
1480 | * an error state. |
1481 | */ |
1482 | template<typename _RandomNumberEngine1, size_t __k1, |
1483 | typename _CharT, typename _Traits> |
1484 | friend std::basic_ostream<_CharT, _Traits>& |
1485 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1486 | const std::shuffle_order_engine<_RandomNumberEngine1, |
1487 | __k1>& __x); |
1488 | |
1489 | /** |
1490 | * @brief Extracts the current state of a % subtract_with_carry_engine |
1491 | * random number generator engine @p __x from the input stream |
1492 | * @p __is. |
1493 | * |
1494 | * @param __is An input stream. |
1495 | * @param __x A %shuffle_order_engine random number generator engine. |
1496 | * |
1497 | * @returns The input stream with the state of @p __x extracted or in |
1498 | * an error state. |
1499 | */ |
1500 | template<typename _RandomNumberEngine1, size_t __k1, |
1501 | typename _CharT, typename _Traits> |
1502 | friend std::basic_istream<_CharT, _Traits>& |
1503 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1504 | std::shuffle_order_engine<_RandomNumberEngine1, __k1>& __x); |
1505 | |
1506 | private: |
1507 | void _M_initialize() |
1508 | { |
1509 | for (size_t __i = 0; __i < __k; ++__i) |
1510 | _M_v[__i] = _M_b(); |
1511 | _M_y = _M_b(); |
1512 | } |
1513 | |
1514 | _RandomNumberEngine _M_b; |
1515 | result_type _M_v[__k]; |
1516 | result_type _M_y; |
1517 | }; |
1518 | |
1519 | /** |
1520 | * Compares two %shuffle_order_engine random number generator objects |
1521 | * of the same type for inequality. |
1522 | * |
1523 | * @param __lhs A %shuffle_order_engine random number generator object. |
1524 | * @param __rhs Another %shuffle_order_engine random number generator |
1525 | * object. |
1526 | * |
1527 | * @returns true if the infinite sequences of generated values |
1528 | * would be different, false otherwise. |
1529 | */ |
1530 | template<typename _RandomNumberEngine, size_t __k> |
1531 | inline bool |
1532 | operator!=(const std::shuffle_order_engine<_RandomNumberEngine, |
1533 | __k>& __lhs, |
1534 | const std::shuffle_order_engine<_RandomNumberEngine, |
1535 | __k>& __rhs) |
1536 | { return !(__lhs == __rhs); } |
1537 | |
1538 | |
1539 | /** |
1540 | * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller. |
1541 | */ |
1542 | typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL> |
1543 | minstd_rand0; |
1544 | |
1545 | /** |
1546 | * An alternative LCR (Lehmer Generator function). |
1547 | */ |
1548 | typedef linear_congruential_engine<uint_fast32_t, 48271UL, 0UL, 2147483647UL> |
1549 | minstd_rand; |
1550 | |
1551 | /** |
1552 | * The classic Mersenne Twister. |
1553 | * |
1554 | * Reference: |
1555 | * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally |
1556 | * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions |
1557 | * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30. |
1558 | */ |
1559 | typedef mersenne_twister_engine< |
1560 | uint_fast32_t, |
1561 | 32, 624, 397, 31, |
1562 | 0x9908b0dfUL, 11, |
1563 | 0xffffffffUL, 7, |
1564 | 0x9d2c5680UL, 15, |
1565 | 0xefc60000UL, 18, 1812433253UL> mt19937; |
1566 | |
1567 | /** |
1568 | * An alternative Mersenne Twister. |
1569 | */ |
1570 | typedef mersenne_twister_engine< |
1571 | uint_fast64_t, |
1572 | 64, 312, 156, 31, |
1573 | 0xb5026f5aa96619e9ULL, 29, |
1574 | 0x5555555555555555ULL, 17, |
1575 | 0x71d67fffeda60000ULL, 37, |
1576 | 0xfff7eee000000000ULL, 43, |
1577 | 6364136223846793005ULL> mt19937_64; |
1578 | |
1579 | typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24> |
1580 | ranlux24_base; |
1581 | |
1582 | typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> |
1583 | ranlux48_base; |
1584 | |
1585 | typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24; |
1586 | |
1587 | typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48; |
1588 | |
1589 | typedef shuffle_order_engine<minstd_rand0, 256> knuth_b; |
1590 | |
1591 | typedef minstd_rand0 default_random_engine; |
1592 | |
1593 | /** |
1594 | * A standard interface to a platform-specific non-deterministic |
1595 | * random number generator (if any are available). |
1596 | */ |
1597 | class random_device |
1598 | { |
1599 | public: |
1600 | /** The type of the generated random value. */ |
1601 | typedef unsigned int result_type; |
1602 | |
1603 | // constructors, destructors and member functions |
1604 | |
1605 | #ifdef _GLIBCXX_USE_DEV_RANDOM |
1606 | random_device() { _M_init("default" ); } |
1607 | |
1608 | explicit |
1609 | random_device(const std::string& __token) { _M_init(__token); } |
1610 | |
1611 | ~random_device() |
1612 | { _M_fini(); } |
1613 | #else |
1614 | random_device() { _M_init_pretr1("mt19937" ); } |
1615 | |
1616 | explicit |
1617 | random_device(const std::string& __token) |
1618 | { _M_init_pretr1(__token); } |
1619 | #endif |
1620 | |
1621 | static constexpr result_type |
1622 | min() |
1623 | { return std::numeric_limits<result_type>::min(); } |
1624 | |
1625 | static constexpr result_type |
1626 | max() |
1627 | { return std::numeric_limits<result_type>::max(); } |
1628 | |
1629 | double |
1630 | entropy() const noexcept |
1631 | { |
1632 | #ifdef _GLIBCXX_USE_DEV_RANDOM |
1633 | return this->_M_getentropy(); |
1634 | #else |
1635 | return 0.0; |
1636 | #endif |
1637 | } |
1638 | |
1639 | result_type |
1640 | operator()() |
1641 | { |
1642 | #ifdef _GLIBCXX_USE_DEV_RANDOM |
1643 | return this->_M_getval(); |
1644 | #else |
1645 | return this->_M_getval_pretr1(); |
1646 | #endif |
1647 | } |
1648 | |
1649 | // No copy functions. |
1650 | random_device(const random_device&) = delete; |
1651 | void operator=(const random_device&) = delete; |
1652 | |
1653 | private: |
1654 | |
1655 | void _M_init(const std::string& __token); |
1656 | void _M_init_pretr1(const std::string& __token); |
1657 | void _M_fini(); |
1658 | |
1659 | result_type _M_getval(); |
1660 | result_type _M_getval_pretr1(); |
1661 | double _M_getentropy() const noexcept; |
1662 | |
1663 | union |
1664 | { |
1665 | void* _M_file; |
1666 | mt19937 _M_mt; |
1667 | }; |
1668 | }; |
1669 | |
1670 | /// @} group random_generators |
1671 | |
1672 | /** |
1673 | * @addtogroup random_distributions Random Number Distributions |
1674 | * @ingroup random |
1675 | * @{ |
1676 | */ |
1677 | |
1678 | /** |
1679 | * @addtogroup random_distributions_uniform Uniform Distributions |
1680 | * @ingroup random_distributions |
1681 | * @{ |
1682 | */ |
1683 | |
1684 | // std::uniform_int_distribution is defined in <bits/uniform_int_dist.h> |
1685 | |
1686 | /** |
1687 | * @brief Return true if two uniform integer distributions have |
1688 | * different parameters. |
1689 | */ |
1690 | template<typename _IntType> |
1691 | inline bool |
1692 | operator!=(const std::uniform_int_distribution<_IntType>& __d1, |
1693 | const std::uniform_int_distribution<_IntType>& __d2) |
1694 | { return !(__d1 == __d2); } |
1695 | |
1696 | /** |
1697 | * @brief Inserts a %uniform_int_distribution random number |
1698 | * distribution @p __x into the output stream @p os. |
1699 | * |
1700 | * @param __os An output stream. |
1701 | * @param __x A %uniform_int_distribution random number distribution. |
1702 | * |
1703 | * @returns The output stream with the state of @p __x inserted or in |
1704 | * an error state. |
1705 | */ |
1706 | template<typename _IntType, typename _CharT, typename _Traits> |
1707 | std::basic_ostream<_CharT, _Traits>& |
1708 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
1709 | const std::uniform_int_distribution<_IntType>&); |
1710 | |
1711 | /** |
1712 | * @brief Extracts a %uniform_int_distribution random number distribution |
1713 | * @p __x from the input stream @p __is. |
1714 | * |
1715 | * @param __is An input stream. |
1716 | * @param __x A %uniform_int_distribution random number generator engine. |
1717 | * |
1718 | * @returns The input stream with @p __x extracted or in an error state. |
1719 | */ |
1720 | template<typename _IntType, typename _CharT, typename _Traits> |
1721 | std::basic_istream<_CharT, _Traits>& |
1722 | operator>>(std::basic_istream<_CharT, _Traits>&, |
1723 | std::uniform_int_distribution<_IntType>&); |
1724 | |
1725 | |
1726 | /** |
1727 | * @brief Uniform continuous distribution for random numbers. |
1728 | * |
1729 | * A continuous random distribution on the range [min, max) with equal |
1730 | * probability throughout the range. The URNG should be real-valued and |
1731 | * deliver number in the range [0, 1). |
1732 | */ |
1733 | template<typename _RealType = double> |
1734 | class uniform_real_distribution |
1735 | { |
1736 | static_assert(std::is_floating_point<_RealType>::value, |
1737 | "result_type must be a floating point type" ); |
1738 | |
1739 | public: |
1740 | /** The type of the range of the distribution. */ |
1741 | typedef _RealType result_type; |
1742 | |
1743 | /** Parameter type. */ |
1744 | struct param_type |
1745 | { |
1746 | typedef uniform_real_distribution<_RealType> distribution_type; |
1747 | |
1748 | param_type() : param_type(0) { } |
1749 | |
1750 | explicit |
1751 | param_type(_RealType __a, _RealType __b = _RealType(1)) |
1752 | : _M_a(__a), _M_b(__b) |
1753 | { |
1754 | __glibcxx_assert(_M_a <= _M_b); |
1755 | } |
1756 | |
1757 | result_type |
1758 | a() const |
1759 | { return _M_a; } |
1760 | |
1761 | result_type |
1762 | b() const |
1763 | { return _M_b; } |
1764 | |
1765 | friend bool |
1766 | operator==(const param_type& __p1, const param_type& __p2) |
1767 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
1768 | |
1769 | friend bool |
1770 | operator!=(const param_type& __p1, const param_type& __p2) |
1771 | { return !(__p1 == __p2); } |
1772 | |
1773 | private: |
1774 | _RealType _M_a; |
1775 | _RealType _M_b; |
1776 | }; |
1777 | |
1778 | public: |
1779 | /** |
1780 | * @brief Constructs a uniform_real_distribution object. |
1781 | * |
1782 | * The lower bound is set to 0.0 and the upper bound to 1.0 |
1783 | */ |
1784 | uniform_real_distribution() : uniform_real_distribution(0.0) { } |
1785 | |
1786 | /** |
1787 | * @brief Constructs a uniform_real_distribution object. |
1788 | * |
1789 | * @param __a [IN] The lower bound of the distribution. |
1790 | * @param __b [IN] The upper bound of the distribution. |
1791 | */ |
1792 | explicit |
1793 | uniform_real_distribution(_RealType __a, _RealType __b = _RealType(1)) |
1794 | : _M_param(__a, __b) |
1795 | { } |
1796 | |
1797 | explicit |
1798 | uniform_real_distribution(const param_type& __p) |
1799 | : _M_param(__p) |
1800 | { } |
1801 | |
1802 | /** |
1803 | * @brief Resets the distribution state. |
1804 | * |
1805 | * Does nothing for the uniform real distribution. |
1806 | */ |
1807 | void |
1808 | reset() { } |
1809 | |
1810 | result_type |
1811 | a() const |
1812 | { return _M_param.a(); } |
1813 | |
1814 | result_type |
1815 | b() const |
1816 | { return _M_param.b(); } |
1817 | |
1818 | /** |
1819 | * @brief Returns the parameter set of the distribution. |
1820 | */ |
1821 | param_type |
1822 | param() const |
1823 | { return _M_param; } |
1824 | |
1825 | /** |
1826 | * @brief Sets the parameter set of the distribution. |
1827 | * @param __param The new parameter set of the distribution. |
1828 | */ |
1829 | void |
1830 | param(const param_type& __param) |
1831 | { _M_param = __param; } |
1832 | |
1833 | /** |
1834 | * @brief Returns the inclusive lower bound of the distribution range. |
1835 | */ |
1836 | result_type |
1837 | min() const |
1838 | { return this->a(); } |
1839 | |
1840 | /** |
1841 | * @brief Returns the inclusive upper bound of the distribution range. |
1842 | */ |
1843 | result_type |
1844 | max() const |
1845 | { return this->b(); } |
1846 | |
1847 | /** |
1848 | * @brief Generating functions. |
1849 | */ |
1850 | template<typename _UniformRandomNumberGenerator> |
1851 | result_type |
1852 | operator()(_UniformRandomNumberGenerator& __urng) |
1853 | { return this->operator()(__urng, _M_param); } |
1854 | |
1855 | template<typename _UniformRandomNumberGenerator> |
1856 | result_type |
1857 | operator()(_UniformRandomNumberGenerator& __urng, |
1858 | const param_type& __p) |
1859 | { |
1860 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1861 | __aurng(__urng); |
1862 | return (__aurng() * (__p.b() - __p.a())) + __p.a(); |
1863 | } |
1864 | |
1865 | template<typename _ForwardIterator, |
1866 | typename _UniformRandomNumberGenerator> |
1867 | void |
1868 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
1869 | _UniformRandomNumberGenerator& __urng) |
1870 | { this->__generate(__f, __t, __urng, _M_param); } |
1871 | |
1872 | template<typename _ForwardIterator, |
1873 | typename _UniformRandomNumberGenerator> |
1874 | void |
1875 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
1876 | _UniformRandomNumberGenerator& __urng, |
1877 | const param_type& __p) |
1878 | { this->__generate_impl(__f, __t, __urng, __p); } |
1879 | |
1880 | template<typename _UniformRandomNumberGenerator> |
1881 | void |
1882 | __generate(result_type* __f, result_type* __t, |
1883 | _UniformRandomNumberGenerator& __urng, |
1884 | const param_type& __p) |
1885 | { this->__generate_impl(__f, __t, __urng, __p); } |
1886 | |
1887 | /** |
1888 | * @brief Return true if two uniform real distributions have |
1889 | * the same parameters. |
1890 | */ |
1891 | friend bool |
1892 | operator==(const uniform_real_distribution& __d1, |
1893 | const uniform_real_distribution& __d2) |
1894 | { return __d1._M_param == __d2._M_param; } |
1895 | |
1896 | private: |
1897 | template<typename _ForwardIterator, |
1898 | typename _UniformRandomNumberGenerator> |
1899 | void |
1900 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1901 | _UniformRandomNumberGenerator& __urng, |
1902 | const param_type& __p); |
1903 | |
1904 | param_type _M_param; |
1905 | }; |
1906 | |
1907 | /** |
1908 | * @brief Return true if two uniform real distributions have |
1909 | * different parameters. |
1910 | */ |
1911 | template<typename _IntType> |
1912 | inline bool |
1913 | operator!=(const std::uniform_real_distribution<_IntType>& __d1, |
1914 | const std::uniform_real_distribution<_IntType>& __d2) |
1915 | { return !(__d1 == __d2); } |
1916 | |
1917 | /** |
1918 | * @brief Inserts a %uniform_real_distribution random number |
1919 | * distribution @p __x into the output stream @p __os. |
1920 | * |
1921 | * @param __os An output stream. |
1922 | * @param __x A %uniform_real_distribution random number distribution. |
1923 | * |
1924 | * @returns The output stream with the state of @p __x inserted or in |
1925 | * an error state. |
1926 | */ |
1927 | template<typename _RealType, typename _CharT, typename _Traits> |
1928 | std::basic_ostream<_CharT, _Traits>& |
1929 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
1930 | const std::uniform_real_distribution<_RealType>&); |
1931 | |
1932 | /** |
1933 | * @brief Extracts a %uniform_real_distribution random number distribution |
1934 | * @p __x from the input stream @p __is. |
1935 | * |
1936 | * @param __is An input stream. |
1937 | * @param __x A %uniform_real_distribution random number generator engine. |
1938 | * |
1939 | * @returns The input stream with @p __x extracted or in an error state. |
1940 | */ |
1941 | template<typename _RealType, typename _CharT, typename _Traits> |
1942 | std::basic_istream<_CharT, _Traits>& |
1943 | operator>>(std::basic_istream<_CharT, _Traits>&, |
1944 | std::uniform_real_distribution<_RealType>&); |
1945 | |
1946 | /// @} group random_distributions_uniform |
1947 | |
1948 | /** |
1949 | * @addtogroup random_distributions_normal Normal Distributions |
1950 | * @ingroup random_distributions |
1951 | * @{ |
1952 | */ |
1953 | |
1954 | /** |
1955 | * @brief A normal continuous distribution for random numbers. |
1956 | * |
1957 | * The formula for the normal probability density function is |
1958 | * @f[ |
1959 | * p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}} |
1960 | * e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} } |
1961 | * @f] |
1962 | */ |
1963 | template<typename _RealType = double> |
1964 | class normal_distribution |
1965 | { |
1966 | static_assert(std::is_floating_point<_RealType>::value, |
1967 | "result_type must be a floating point type" ); |
1968 | |
1969 | public: |
1970 | /** The type of the range of the distribution. */ |
1971 | typedef _RealType result_type; |
1972 | |
1973 | /** Parameter type. */ |
1974 | struct param_type |
1975 | { |
1976 | typedef normal_distribution<_RealType> distribution_type; |
1977 | |
1978 | param_type() : param_type(0.0) { } |
1979 | |
1980 | explicit |
1981 | param_type(_RealType __mean, _RealType __stddev = _RealType(1)) |
1982 | : _M_mean(__mean), _M_stddev(__stddev) |
1983 | { |
1984 | __glibcxx_assert(_M_stddev > _RealType(0)); |
1985 | } |
1986 | |
1987 | _RealType |
1988 | mean() const |
1989 | { return _M_mean; } |
1990 | |
1991 | _RealType |
1992 | stddev() const |
1993 | { return _M_stddev; } |
1994 | |
1995 | friend bool |
1996 | operator==(const param_type& __p1, const param_type& __p2) |
1997 | { return (__p1._M_mean == __p2._M_mean |
1998 | && __p1._M_stddev == __p2._M_stddev); } |
1999 | |
2000 | friend bool |
2001 | operator!=(const param_type& __p1, const param_type& __p2) |
2002 | { return !(__p1 == __p2); } |
2003 | |
2004 | private: |
2005 | _RealType _M_mean; |
2006 | _RealType _M_stddev; |
2007 | }; |
2008 | |
2009 | public: |
2010 | normal_distribution() : normal_distribution(0.0) { } |
2011 | |
2012 | /** |
2013 | * Constructs a normal distribution with parameters @f$mean@f$ and |
2014 | * standard deviation. |
2015 | */ |
2016 | explicit |
2017 | normal_distribution(result_type __mean, |
2018 | result_type __stddev = result_type(1)) |
2019 | : _M_param(__mean, __stddev) |
2020 | { } |
2021 | |
2022 | explicit |
2023 | normal_distribution(const param_type& __p) |
2024 | : _M_param(__p) |
2025 | { } |
2026 | |
2027 | /** |
2028 | * @brief Resets the distribution state. |
2029 | */ |
2030 | void |
2031 | reset() |
2032 | { _M_saved_available = false; } |
2033 | |
2034 | /** |
2035 | * @brief Returns the mean of the distribution. |
2036 | */ |
2037 | _RealType |
2038 | mean() const |
2039 | { return _M_param.mean(); } |
2040 | |
2041 | /** |
2042 | * @brief Returns the standard deviation of the distribution. |
2043 | */ |
2044 | _RealType |
2045 | stddev() const |
2046 | { return _M_param.stddev(); } |
2047 | |
2048 | /** |
2049 | * @brief Returns the parameter set of the distribution. |
2050 | */ |
2051 | param_type |
2052 | param() const |
2053 | { return _M_param; } |
2054 | |
2055 | /** |
2056 | * @brief Sets the parameter set of the distribution. |
2057 | * @param __param The new parameter set of the distribution. |
2058 | */ |
2059 | void |
2060 | param(const param_type& __param) |
2061 | { _M_param = __param; } |
2062 | |
2063 | /** |
2064 | * @brief Returns the greatest lower bound value of the distribution. |
2065 | */ |
2066 | result_type |
2067 | min() const |
2068 | { return std::numeric_limits<result_type>::lowest(); } |
2069 | |
2070 | /** |
2071 | * @brief Returns the least upper bound value of the distribution. |
2072 | */ |
2073 | result_type |
2074 | max() const |
2075 | { return std::numeric_limits<result_type>::max(); } |
2076 | |
2077 | /** |
2078 | * @brief Generating functions. |
2079 | */ |
2080 | template<typename _UniformRandomNumberGenerator> |
2081 | result_type |
2082 | operator()(_UniformRandomNumberGenerator& __urng) |
2083 | { return this->operator()(__urng, _M_param); } |
2084 | |
2085 | template<typename _UniformRandomNumberGenerator> |
2086 | result_type |
2087 | operator()(_UniformRandomNumberGenerator& __urng, |
2088 | const param_type& __p); |
2089 | |
2090 | template<typename _ForwardIterator, |
2091 | typename _UniformRandomNumberGenerator> |
2092 | void |
2093 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2094 | _UniformRandomNumberGenerator& __urng) |
2095 | { this->__generate(__f, __t, __urng, _M_param); } |
2096 | |
2097 | template<typename _ForwardIterator, |
2098 | typename _UniformRandomNumberGenerator> |
2099 | void |
2100 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2101 | _UniformRandomNumberGenerator& __urng, |
2102 | const param_type& __p) |
2103 | { this->__generate_impl(__f, __t, __urng, __p); } |
2104 | |
2105 | template<typename _UniformRandomNumberGenerator> |
2106 | void |
2107 | __generate(result_type* __f, result_type* __t, |
2108 | _UniformRandomNumberGenerator& __urng, |
2109 | const param_type& __p) |
2110 | { this->__generate_impl(__f, __t, __urng, __p); } |
2111 | |
2112 | /** |
2113 | * @brief Return true if two normal distributions have |
2114 | * the same parameters and the sequences that would |
2115 | * be generated are equal. |
2116 | */ |
2117 | template<typename _RealType1> |
2118 | friend bool |
2119 | operator==(const std::normal_distribution<_RealType1>& __d1, |
2120 | const std::normal_distribution<_RealType1>& __d2); |
2121 | |
2122 | /** |
2123 | * @brief Inserts a %normal_distribution random number distribution |
2124 | * @p __x into the output stream @p __os. |
2125 | * |
2126 | * @param __os An output stream. |
2127 | * @param __x A %normal_distribution random number distribution. |
2128 | * |
2129 | * @returns The output stream with the state of @p __x inserted or in |
2130 | * an error state. |
2131 | */ |
2132 | template<typename _RealType1, typename _CharT, typename _Traits> |
2133 | friend std::basic_ostream<_CharT, _Traits>& |
2134 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2135 | const std::normal_distribution<_RealType1>& __x); |
2136 | |
2137 | /** |
2138 | * @brief Extracts a %normal_distribution random number distribution |
2139 | * @p __x from the input stream @p __is. |
2140 | * |
2141 | * @param __is An input stream. |
2142 | * @param __x A %normal_distribution random number generator engine. |
2143 | * |
2144 | * @returns The input stream with @p __x extracted or in an error |
2145 | * state. |
2146 | */ |
2147 | template<typename _RealType1, typename _CharT, typename _Traits> |
2148 | friend std::basic_istream<_CharT, _Traits>& |
2149 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2150 | std::normal_distribution<_RealType1>& __x); |
2151 | |
2152 | private: |
2153 | template<typename _ForwardIterator, |
2154 | typename _UniformRandomNumberGenerator> |
2155 | void |
2156 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2157 | _UniformRandomNumberGenerator& __urng, |
2158 | const param_type& __p); |
2159 | |
2160 | param_type _M_param; |
2161 | result_type _M_saved = 0; |
2162 | bool _M_saved_available = false; |
2163 | }; |
2164 | |
2165 | /** |
2166 | * @brief Return true if two normal distributions are different. |
2167 | */ |
2168 | template<typename _RealType> |
2169 | inline bool |
2170 | operator!=(const std::normal_distribution<_RealType>& __d1, |
2171 | const std::normal_distribution<_RealType>& __d2) |
2172 | { return !(__d1 == __d2); } |
2173 | |
2174 | |
2175 | /** |
2176 | * @brief A lognormal_distribution random number distribution. |
2177 | * |
2178 | * The formula for the normal probability mass function is |
2179 | * @f[ |
2180 | * p(x|m,s) = \frac{1}{sx\sqrt{2\pi}} |
2181 | * \exp{-\frac{(\ln{x} - m)^2}{2s^2}} |
2182 | * @f] |
2183 | */ |
2184 | template<typename _RealType = double> |
2185 | class lognormal_distribution |
2186 | { |
2187 | static_assert(std::is_floating_point<_RealType>::value, |
2188 | "result_type must be a floating point type" ); |
2189 | |
2190 | public: |
2191 | /** The type of the range of the distribution. */ |
2192 | typedef _RealType result_type; |
2193 | |
2194 | /** Parameter type. */ |
2195 | struct param_type |
2196 | { |
2197 | typedef lognormal_distribution<_RealType> distribution_type; |
2198 | |
2199 | param_type() : param_type(0.0) { } |
2200 | |
2201 | explicit |
2202 | param_type(_RealType __m, _RealType __s = _RealType(1)) |
2203 | : _M_m(__m), _M_s(__s) |
2204 | { } |
2205 | |
2206 | _RealType |
2207 | m() const |
2208 | { return _M_m; } |
2209 | |
2210 | _RealType |
2211 | s() const |
2212 | { return _M_s; } |
2213 | |
2214 | friend bool |
2215 | operator==(const param_type& __p1, const param_type& __p2) |
2216 | { return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; } |
2217 | |
2218 | friend bool |
2219 | operator!=(const param_type& __p1, const param_type& __p2) |
2220 | { return !(__p1 == __p2); } |
2221 | |
2222 | private: |
2223 | _RealType _M_m; |
2224 | _RealType _M_s; |
2225 | }; |
2226 | |
2227 | lognormal_distribution() : lognormal_distribution(0.0) { } |
2228 | |
2229 | explicit |
2230 | lognormal_distribution(_RealType __m, _RealType __s = _RealType(1)) |
2231 | : _M_param(__m, __s), _M_nd() |
2232 | { } |
2233 | |
2234 | explicit |
2235 | lognormal_distribution(const param_type& __p) |
2236 | : _M_param(__p), _M_nd() |
2237 | { } |
2238 | |
2239 | /** |
2240 | * Resets the distribution state. |
2241 | */ |
2242 | void |
2243 | reset() |
2244 | { _M_nd.reset(); } |
2245 | |
2246 | /** |
2247 | * |
2248 | */ |
2249 | _RealType |
2250 | m() const |
2251 | { return _M_param.m(); } |
2252 | |
2253 | _RealType |
2254 | s() const |
2255 | { return _M_param.s(); } |
2256 | |
2257 | /** |
2258 | * @brief Returns the parameter set of the distribution. |
2259 | */ |
2260 | param_type |
2261 | param() const |
2262 | { return _M_param; } |
2263 | |
2264 | /** |
2265 | * @brief Sets the parameter set of the distribution. |
2266 | * @param __param The new parameter set of the distribution. |
2267 | */ |
2268 | void |
2269 | param(const param_type& __param) |
2270 | { _M_param = __param; } |
2271 | |
2272 | /** |
2273 | * @brief Returns the greatest lower bound value of the distribution. |
2274 | */ |
2275 | result_type |
2276 | min() const |
2277 | { return result_type(0); } |
2278 | |
2279 | /** |
2280 | * @brief Returns the least upper bound value of the distribution. |
2281 | */ |
2282 | result_type |
2283 | max() const |
2284 | { return std::numeric_limits<result_type>::max(); } |
2285 | |
2286 | /** |
2287 | * @brief Generating functions. |
2288 | */ |
2289 | template<typename _UniformRandomNumberGenerator> |
2290 | result_type |
2291 | operator()(_UniformRandomNumberGenerator& __urng) |
2292 | { return this->operator()(__urng, _M_param); } |
2293 | |
2294 | template<typename _UniformRandomNumberGenerator> |
2295 | result_type |
2296 | operator()(_UniformRandomNumberGenerator& __urng, |
2297 | const param_type& __p) |
2298 | { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); } |
2299 | |
2300 | template<typename _ForwardIterator, |
2301 | typename _UniformRandomNumberGenerator> |
2302 | void |
2303 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2304 | _UniformRandomNumberGenerator& __urng) |
2305 | { this->__generate(__f, __t, __urng, _M_param); } |
2306 | |
2307 | template<typename _ForwardIterator, |
2308 | typename _UniformRandomNumberGenerator> |
2309 | void |
2310 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2311 | _UniformRandomNumberGenerator& __urng, |
2312 | const param_type& __p) |
2313 | { this->__generate_impl(__f, __t, __urng, __p); } |
2314 | |
2315 | template<typename _UniformRandomNumberGenerator> |
2316 | void |
2317 | __generate(result_type* __f, result_type* __t, |
2318 | _UniformRandomNumberGenerator& __urng, |
2319 | const param_type& __p) |
2320 | { this->__generate_impl(__f, __t, __urng, __p); } |
2321 | |
2322 | /** |
2323 | * @brief Return true if two lognormal distributions have |
2324 | * the same parameters and the sequences that would |
2325 | * be generated are equal. |
2326 | */ |
2327 | friend bool |
2328 | operator==(const lognormal_distribution& __d1, |
2329 | const lognormal_distribution& __d2) |
2330 | { return (__d1._M_param == __d2._M_param |
2331 | && __d1._M_nd == __d2._M_nd); } |
2332 | |
2333 | /** |
2334 | * @brief Inserts a %lognormal_distribution random number distribution |
2335 | * @p __x into the output stream @p __os. |
2336 | * |
2337 | * @param __os An output stream. |
2338 | * @param __x A %lognormal_distribution random number distribution. |
2339 | * |
2340 | * @returns The output stream with the state of @p __x inserted or in |
2341 | * an error state. |
2342 | */ |
2343 | template<typename _RealType1, typename _CharT, typename _Traits> |
2344 | friend std::basic_ostream<_CharT, _Traits>& |
2345 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2346 | const std::lognormal_distribution<_RealType1>& __x); |
2347 | |
2348 | /** |
2349 | * @brief Extracts a %lognormal_distribution random number distribution |
2350 | * @p __x from the input stream @p __is. |
2351 | * |
2352 | * @param __is An input stream. |
2353 | * @param __x A %lognormal_distribution random number |
2354 | * generator engine. |
2355 | * |
2356 | * @returns The input stream with @p __x extracted or in an error state. |
2357 | */ |
2358 | template<typename _RealType1, typename _CharT, typename _Traits> |
2359 | friend std::basic_istream<_CharT, _Traits>& |
2360 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2361 | std::lognormal_distribution<_RealType1>& __x); |
2362 | |
2363 | private: |
2364 | template<typename _ForwardIterator, |
2365 | typename _UniformRandomNumberGenerator> |
2366 | void |
2367 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2368 | _UniformRandomNumberGenerator& __urng, |
2369 | const param_type& __p); |
2370 | |
2371 | param_type _M_param; |
2372 | |
2373 | std::normal_distribution<result_type> _M_nd; |
2374 | }; |
2375 | |
2376 | /** |
2377 | * @brief Return true if two lognormal distributions are different. |
2378 | */ |
2379 | template<typename _RealType> |
2380 | inline bool |
2381 | operator!=(const std::lognormal_distribution<_RealType>& __d1, |
2382 | const std::lognormal_distribution<_RealType>& __d2) |
2383 | { return !(__d1 == __d2); } |
2384 | |
2385 | |
2386 | /** |
2387 | * @brief A gamma continuous distribution for random numbers. |
2388 | * |
2389 | * The formula for the gamma probability density function is: |
2390 | * @f[ |
2391 | * p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)} |
2392 | * (x/\beta)^{\alpha - 1} e^{-x/\beta} |
2393 | * @f] |
2394 | */ |
2395 | template<typename _RealType = double> |
2396 | class gamma_distribution |
2397 | { |
2398 | static_assert(std::is_floating_point<_RealType>::value, |
2399 | "result_type must be a floating point type" ); |
2400 | |
2401 | public: |
2402 | /** The type of the range of the distribution. */ |
2403 | typedef _RealType result_type; |
2404 | |
2405 | /** Parameter type. */ |
2406 | struct param_type |
2407 | { |
2408 | typedef gamma_distribution<_RealType> distribution_type; |
2409 | friend class gamma_distribution<_RealType>; |
2410 | |
2411 | param_type() : param_type(1.0) { } |
2412 | |
2413 | explicit |
2414 | param_type(_RealType __alpha_val, _RealType __beta_val = _RealType(1)) |
2415 | : _M_alpha(__alpha_val), _M_beta(__beta_val) |
2416 | { |
2417 | __glibcxx_assert(_M_alpha > _RealType(0)); |
2418 | _M_initialize(); |
2419 | } |
2420 | |
2421 | _RealType |
2422 | alpha() const |
2423 | { return _M_alpha; } |
2424 | |
2425 | _RealType |
2426 | beta() const |
2427 | { return _M_beta; } |
2428 | |
2429 | friend bool |
2430 | operator==(const param_type& __p1, const param_type& __p2) |
2431 | { return (__p1._M_alpha == __p2._M_alpha |
2432 | && __p1._M_beta == __p2._M_beta); } |
2433 | |
2434 | friend bool |
2435 | operator!=(const param_type& __p1, const param_type& __p2) |
2436 | { return !(__p1 == __p2); } |
2437 | |
2438 | private: |
2439 | void |
2440 | _M_initialize(); |
2441 | |
2442 | _RealType _M_alpha; |
2443 | _RealType _M_beta; |
2444 | |
2445 | _RealType _M_malpha, _M_a2; |
2446 | }; |
2447 | |
2448 | public: |
2449 | /** |
2450 | * @brief Constructs a gamma distribution with parameters 1 and 1. |
2451 | */ |
2452 | gamma_distribution() : gamma_distribution(1.0) { } |
2453 | |
2454 | /** |
2455 | * @brief Constructs a gamma distribution with parameters |
2456 | * @f$\alpha@f$ and @f$\beta@f$. |
2457 | */ |
2458 | explicit |
2459 | gamma_distribution(_RealType __alpha_val, |
2460 | _RealType __beta_val = _RealType(1)) |
2461 | : _M_param(__alpha_val, __beta_val), _M_nd() |
2462 | { } |
2463 | |
2464 | explicit |
2465 | gamma_distribution(const param_type& __p) |
2466 | : _M_param(__p), _M_nd() |
2467 | { } |
2468 | |
2469 | /** |
2470 | * @brief Resets the distribution state. |
2471 | */ |
2472 | void |
2473 | reset() |
2474 | { _M_nd.reset(); } |
2475 | |
2476 | /** |
2477 | * @brief Returns the @f$\alpha@f$ of the distribution. |
2478 | */ |
2479 | _RealType |
2480 | alpha() const |
2481 | { return _M_param.alpha(); } |
2482 | |
2483 | /** |
2484 | * @brief Returns the @f$\beta@f$ of the distribution. |
2485 | */ |
2486 | _RealType |
2487 | beta() const |
2488 | { return _M_param.beta(); } |
2489 | |
2490 | /** |
2491 | * @brief Returns the parameter set of the distribution. |
2492 | */ |
2493 | param_type |
2494 | param() const |
2495 | { return _M_param; } |
2496 | |
2497 | /** |
2498 | * @brief Sets the parameter set of the distribution. |
2499 | * @param __param The new parameter set of the distribution. |
2500 | */ |
2501 | void |
2502 | param(const param_type& __param) |
2503 | { _M_param = __param; } |
2504 | |
2505 | /** |
2506 | * @brief Returns the greatest lower bound value of the distribution. |
2507 | */ |
2508 | result_type |
2509 | min() const |
2510 | { return result_type(0); } |
2511 | |
2512 | /** |
2513 | * @brief Returns the least upper bound value of the distribution. |
2514 | */ |
2515 | result_type |
2516 | max() const |
2517 | { return std::numeric_limits<result_type>::max(); } |
2518 | |
2519 | /** |
2520 | * @brief Generating functions. |
2521 | */ |
2522 | template<typename _UniformRandomNumberGenerator> |
2523 | result_type |
2524 | operator()(_UniformRandomNumberGenerator& __urng) |
2525 | { return this->operator()(__urng, _M_param); } |
2526 | |
2527 | template<typename _UniformRandomNumberGenerator> |
2528 | result_type |
2529 | operator()(_UniformRandomNumberGenerator& __urng, |
2530 | const param_type& __p); |
2531 | |
2532 | template<typename _ForwardIterator, |
2533 | typename _UniformRandomNumberGenerator> |
2534 | void |
2535 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2536 | _UniformRandomNumberGenerator& __urng) |
2537 | { this->__generate(__f, __t, __urng, _M_param); } |
2538 | |
2539 | template<typename _ForwardIterator, |
2540 | typename _UniformRandomNumberGenerator> |
2541 | void |
2542 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2543 | _UniformRandomNumberGenerator& __urng, |
2544 | const param_type& __p) |
2545 | { this->__generate_impl(__f, __t, __urng, __p); } |
2546 | |
2547 | template<typename _UniformRandomNumberGenerator> |
2548 | void |
2549 | __generate(result_type* __f, result_type* __t, |
2550 | _UniformRandomNumberGenerator& __urng, |
2551 | const param_type& __p) |
2552 | { this->__generate_impl(__f, __t, __urng, __p); } |
2553 | |
2554 | /** |
2555 | * @brief Return true if two gamma distributions have the same |
2556 | * parameters and the sequences that would be generated |
2557 | * are equal. |
2558 | */ |
2559 | friend bool |
2560 | operator==(const gamma_distribution& __d1, |
2561 | const gamma_distribution& __d2) |
2562 | { return (__d1._M_param == __d2._M_param |
2563 | && __d1._M_nd == __d2._M_nd); } |
2564 | |
2565 | /** |
2566 | * @brief Inserts a %gamma_distribution random number distribution |
2567 | * @p __x into the output stream @p __os. |
2568 | * |
2569 | * @param __os An output stream. |
2570 | * @param __x A %gamma_distribution random number distribution. |
2571 | * |
2572 | * @returns The output stream with the state of @p __x inserted or in |
2573 | * an error state. |
2574 | */ |
2575 | template<typename _RealType1, typename _CharT, typename _Traits> |
2576 | friend std::basic_ostream<_CharT, _Traits>& |
2577 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2578 | const std::gamma_distribution<_RealType1>& __x); |
2579 | |
2580 | /** |
2581 | * @brief Extracts a %gamma_distribution random number distribution |
2582 | * @p __x from the input stream @p __is. |
2583 | * |
2584 | * @param __is An input stream. |
2585 | * @param __x A %gamma_distribution random number generator engine. |
2586 | * |
2587 | * @returns The input stream with @p __x extracted or in an error state. |
2588 | */ |
2589 | template<typename _RealType1, typename _CharT, typename _Traits> |
2590 | friend std::basic_istream<_CharT, _Traits>& |
2591 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2592 | std::gamma_distribution<_RealType1>& __x); |
2593 | |
2594 | private: |
2595 | template<typename _ForwardIterator, |
2596 | typename _UniformRandomNumberGenerator> |
2597 | void |
2598 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2599 | _UniformRandomNumberGenerator& __urng, |
2600 | const param_type& __p); |
2601 | |
2602 | param_type _M_param; |
2603 | |
2604 | std::normal_distribution<result_type> _M_nd; |
2605 | }; |
2606 | |
2607 | /** |
2608 | * @brief Return true if two gamma distributions are different. |
2609 | */ |
2610 | template<typename _RealType> |
2611 | inline bool |
2612 | operator!=(const std::gamma_distribution<_RealType>& __d1, |
2613 | const std::gamma_distribution<_RealType>& __d2) |
2614 | { return !(__d1 == __d2); } |
2615 | |
2616 | |
2617 | /** |
2618 | * @brief A chi_squared_distribution random number distribution. |
2619 | * |
2620 | * The formula for the normal probability mass function is |
2621 | * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$ |
2622 | */ |
2623 | template<typename _RealType = double> |
2624 | class chi_squared_distribution |
2625 | { |
2626 | static_assert(std::is_floating_point<_RealType>::value, |
2627 | "result_type must be a floating point type" ); |
2628 | |
2629 | public: |
2630 | /** The type of the range of the distribution. */ |
2631 | typedef _RealType result_type; |
2632 | |
2633 | /** Parameter type. */ |
2634 | struct param_type |
2635 | { |
2636 | typedef chi_squared_distribution<_RealType> distribution_type; |
2637 | |
2638 | param_type() : param_type(1) { } |
2639 | |
2640 | explicit |
2641 | param_type(_RealType __n) |
2642 | : _M_n(__n) |
2643 | { } |
2644 | |
2645 | _RealType |
2646 | n() const |
2647 | { return _M_n; } |
2648 | |
2649 | friend bool |
2650 | operator==(const param_type& __p1, const param_type& __p2) |
2651 | { return __p1._M_n == __p2._M_n; } |
2652 | |
2653 | friend bool |
2654 | operator!=(const param_type& __p1, const param_type& __p2) |
2655 | { return !(__p1 == __p2); } |
2656 | |
2657 | private: |
2658 | _RealType _M_n; |
2659 | }; |
2660 | |
2661 | chi_squared_distribution() : chi_squared_distribution(1) { } |
2662 | |
2663 | explicit |
2664 | chi_squared_distribution(_RealType __n) |
2665 | : _M_param(__n), _M_gd(__n / 2) |
2666 | { } |
2667 | |
2668 | explicit |
2669 | chi_squared_distribution(const param_type& __p) |
2670 | : _M_param(__p), _M_gd(__p.n() / 2) |
2671 | { } |
2672 | |
2673 | /** |
2674 | * @brief Resets the distribution state. |
2675 | */ |
2676 | void |
2677 | reset() |
2678 | { _M_gd.reset(); } |
2679 | |
2680 | /** |
2681 | * |
2682 | */ |
2683 | _RealType |
2684 | n() const |
2685 | { return _M_param.n(); } |
2686 | |
2687 | /** |
2688 | * @brief Returns the parameter set of the distribution. |
2689 | */ |
2690 | param_type |
2691 | param() const |
2692 | { return _M_param; } |
2693 | |
2694 | /** |
2695 | * @brief Sets the parameter set of the distribution. |
2696 | * @param __param The new parameter set of the distribution. |
2697 | */ |
2698 | void |
2699 | param(const param_type& __param) |
2700 | { |
2701 | _M_param = __param; |
2702 | typedef typename std::gamma_distribution<result_type>::param_type |
2703 | param_type; |
2704 | _M_gd.param(param_type{__param.n() / 2}); |
2705 | } |
2706 | |
2707 | /** |
2708 | * @brief Returns the greatest lower bound value of the distribution. |
2709 | */ |
2710 | result_type |
2711 | min() const |
2712 | { return result_type(0); } |
2713 | |
2714 | /** |
2715 | * @brief Returns the least upper bound value of the distribution. |
2716 | */ |
2717 | result_type |
2718 | max() const |
2719 | { return std::numeric_limits<result_type>::max(); } |
2720 | |
2721 | /** |
2722 | * @brief Generating functions. |
2723 | */ |
2724 | template<typename _UniformRandomNumberGenerator> |
2725 | result_type |
2726 | operator()(_UniformRandomNumberGenerator& __urng) |
2727 | { return 2 * _M_gd(__urng); } |
2728 | |
2729 | template<typename _UniformRandomNumberGenerator> |
2730 | result_type |
2731 | operator()(_UniformRandomNumberGenerator& __urng, |
2732 | const param_type& __p) |
2733 | { |
2734 | typedef typename std::gamma_distribution<result_type>::param_type |
2735 | param_type; |
2736 | return 2 * _M_gd(__urng, param_type(__p.n() / 2)); |
2737 | } |
2738 | |
2739 | template<typename _ForwardIterator, |
2740 | typename _UniformRandomNumberGenerator> |
2741 | void |
2742 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2743 | _UniformRandomNumberGenerator& __urng) |
2744 | { this->__generate_impl(__f, __t, __urng); } |
2745 | |
2746 | template<typename _ForwardIterator, |
2747 | typename _UniformRandomNumberGenerator> |
2748 | void |
2749 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2750 | _UniformRandomNumberGenerator& __urng, |
2751 | const param_type& __p) |
2752 | { typename std::gamma_distribution<result_type>::param_type |
2753 | __p2(__p.n() / 2); |
2754 | this->__generate_impl(__f, __t, __urng, __p2); } |
2755 | |
2756 | template<typename _UniformRandomNumberGenerator> |
2757 | void |
2758 | __generate(result_type* __f, result_type* __t, |
2759 | _UniformRandomNumberGenerator& __urng) |
2760 | { this->__generate_impl(__f, __t, __urng); } |
2761 | |
2762 | template<typename _UniformRandomNumberGenerator> |
2763 | void |
2764 | __generate(result_type* __f, result_type* __t, |
2765 | _UniformRandomNumberGenerator& __urng, |
2766 | const param_type& __p) |
2767 | { typename std::gamma_distribution<result_type>::param_type |
2768 | __p2(__p.n() / 2); |
2769 | this->__generate_impl(__f, __t, __urng, __p2); } |
2770 | |
2771 | /** |
2772 | * @brief Return true if two Chi-squared distributions have |
2773 | * the same parameters and the sequences that would be |
2774 | * generated are equal. |
2775 | */ |
2776 | friend bool |
2777 | operator==(const chi_squared_distribution& __d1, |
2778 | const chi_squared_distribution& __d2) |
2779 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
2780 | |
2781 | /** |
2782 | * @brief Inserts a %chi_squared_distribution random number distribution |
2783 | * @p __x into the output stream @p __os. |
2784 | * |
2785 | * @param __os An output stream. |
2786 | * @param __x A %chi_squared_distribution random number distribution. |
2787 | * |
2788 | * @returns The output stream with the state of @p __x inserted or in |
2789 | * an error state. |
2790 | */ |
2791 | template<typename _RealType1, typename _CharT, typename _Traits> |
2792 | friend std::basic_ostream<_CharT, _Traits>& |
2793 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2794 | const std::chi_squared_distribution<_RealType1>& __x); |
2795 | |
2796 | /** |
2797 | * @brief Extracts a %chi_squared_distribution random number distribution |
2798 | * @p __x from the input stream @p __is. |
2799 | * |
2800 | * @param __is An input stream. |
2801 | * @param __x A %chi_squared_distribution random number |
2802 | * generator engine. |
2803 | * |
2804 | * @returns The input stream with @p __x extracted or in an error state. |
2805 | */ |
2806 | template<typename _RealType1, typename _CharT, typename _Traits> |
2807 | friend std::basic_istream<_CharT, _Traits>& |
2808 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2809 | std::chi_squared_distribution<_RealType1>& __x); |
2810 | |
2811 | private: |
2812 | template<typename _ForwardIterator, |
2813 | typename _UniformRandomNumberGenerator> |
2814 | void |
2815 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2816 | _UniformRandomNumberGenerator& __urng); |
2817 | |
2818 | template<typename _ForwardIterator, |
2819 | typename _UniformRandomNumberGenerator> |
2820 | void |
2821 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2822 | _UniformRandomNumberGenerator& __urng, |
2823 | const typename |
2824 | std::gamma_distribution<result_type>::param_type& __p); |
2825 | |
2826 | param_type _M_param; |
2827 | |
2828 | std::gamma_distribution<result_type> _M_gd; |
2829 | }; |
2830 | |
2831 | /** |
2832 | * @brief Return true if two Chi-squared distributions are different. |
2833 | */ |
2834 | template<typename _RealType> |
2835 | inline bool |
2836 | operator!=(const std::chi_squared_distribution<_RealType>& __d1, |
2837 | const std::chi_squared_distribution<_RealType>& __d2) |
2838 | { return !(__d1 == __d2); } |
2839 | |
2840 | |
2841 | /** |
2842 | * @brief A cauchy_distribution random number distribution. |
2843 | * |
2844 | * The formula for the normal probability mass function is |
2845 | * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$ |
2846 | */ |
2847 | template<typename _RealType = double> |
2848 | class cauchy_distribution |
2849 | { |
2850 | static_assert(std::is_floating_point<_RealType>::value, |
2851 | "result_type must be a floating point type" ); |
2852 | |
2853 | public: |
2854 | /** The type of the range of the distribution. */ |
2855 | typedef _RealType result_type; |
2856 | |
2857 | /** Parameter type. */ |
2858 | struct param_type |
2859 | { |
2860 | typedef cauchy_distribution<_RealType> distribution_type; |
2861 | |
2862 | param_type() : param_type(0) { } |
2863 | |
2864 | explicit |
2865 | param_type(_RealType __a, _RealType __b = _RealType(1)) |
2866 | : _M_a(__a), _M_b(__b) |
2867 | { } |
2868 | |
2869 | _RealType |
2870 | a() const |
2871 | { return _M_a; } |
2872 | |
2873 | _RealType |
2874 | b() const |
2875 | { return _M_b; } |
2876 | |
2877 | friend bool |
2878 | operator==(const param_type& __p1, const param_type& __p2) |
2879 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
2880 | |
2881 | friend bool |
2882 | operator!=(const param_type& __p1, const param_type& __p2) |
2883 | { return !(__p1 == __p2); } |
2884 | |
2885 | private: |
2886 | _RealType _M_a; |
2887 | _RealType _M_b; |
2888 | }; |
2889 | |
2890 | cauchy_distribution() : cauchy_distribution(0.0) { } |
2891 | |
2892 | explicit |
2893 | cauchy_distribution(_RealType __a, _RealType __b = 1.0) |
2894 | : _M_param(__a, __b) |
2895 | { } |
2896 | |
2897 | explicit |
2898 | cauchy_distribution(const param_type& __p) |
2899 | : _M_param(__p) |
2900 | { } |
2901 | |
2902 | /** |
2903 | * @brief Resets the distribution state. |
2904 | */ |
2905 | void |
2906 | reset() |
2907 | { } |
2908 | |
2909 | /** |
2910 | * |
2911 | */ |
2912 | _RealType |
2913 | a() const |
2914 | { return _M_param.a(); } |
2915 | |
2916 | _RealType |
2917 | b() const |
2918 | { return _M_param.b(); } |
2919 | |
2920 | /** |
2921 | * @brief Returns the parameter set of the distribution. |
2922 | */ |
2923 | param_type |
2924 | param() const |
2925 | { return _M_param; } |
2926 | |
2927 | /** |
2928 | * @brief Sets the parameter set of the distribution. |
2929 | * @param __param The new parameter set of the distribution. |
2930 | */ |
2931 | void |
2932 | param(const param_type& __param) |
2933 | { _M_param = __param; } |
2934 | |
2935 | /** |
2936 | * @brief Returns the greatest lower bound value of the distribution. |
2937 | */ |
2938 | result_type |
2939 | min() const |
2940 | { return std::numeric_limits<result_type>::lowest(); } |
2941 | |
2942 | /** |
2943 | * @brief Returns the least upper bound value of the distribution. |
2944 | */ |
2945 | result_type |
2946 | max() const |
2947 | { return std::numeric_limits<result_type>::max(); } |
2948 | |
2949 | /** |
2950 | * @brief Generating functions. |
2951 | */ |
2952 | template<typename _UniformRandomNumberGenerator> |
2953 | result_type |
2954 | operator()(_UniformRandomNumberGenerator& __urng) |
2955 | { return this->operator()(__urng, _M_param); } |
2956 | |
2957 | template<typename _UniformRandomNumberGenerator> |
2958 | result_type |
2959 | operator()(_UniformRandomNumberGenerator& __urng, |
2960 | const param_type& __p); |
2961 | |
2962 | template<typename _ForwardIterator, |
2963 | typename _UniformRandomNumberGenerator> |
2964 | void |
2965 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2966 | _UniformRandomNumberGenerator& __urng) |
2967 | { this->__generate(__f, __t, __urng, _M_param); } |
2968 | |
2969 | template<typename _ForwardIterator, |
2970 | typename _UniformRandomNumberGenerator> |
2971 | void |
2972 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2973 | _UniformRandomNumberGenerator& __urng, |
2974 | const param_type& __p) |
2975 | { this->__generate_impl(__f, __t, __urng, __p); } |
2976 | |
2977 | template<typename _UniformRandomNumberGenerator> |
2978 | void |
2979 | __generate(result_type* __f, result_type* __t, |
2980 | _UniformRandomNumberGenerator& __urng, |
2981 | const param_type& __p) |
2982 | { this->__generate_impl(__f, __t, __urng, __p); } |
2983 | |
2984 | /** |
2985 | * @brief Return true if two Cauchy distributions have |
2986 | * the same parameters. |
2987 | */ |
2988 | friend bool |
2989 | operator==(const cauchy_distribution& __d1, |
2990 | const cauchy_distribution& __d2) |
2991 | { return __d1._M_param == __d2._M_param; } |
2992 | |
2993 | private: |
2994 | template<typename _ForwardIterator, |
2995 | typename _UniformRandomNumberGenerator> |
2996 | void |
2997 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2998 | _UniformRandomNumberGenerator& __urng, |
2999 | const param_type& __p); |
3000 | |
3001 | param_type _M_param; |
3002 | }; |
3003 | |
3004 | /** |
3005 | * @brief Return true if two Cauchy distributions have |
3006 | * different parameters. |
3007 | */ |
3008 | template<typename _RealType> |
3009 | inline bool |
3010 | operator!=(const std::cauchy_distribution<_RealType>& __d1, |
3011 | const std::cauchy_distribution<_RealType>& __d2) |
3012 | { return !(__d1 == __d2); } |
3013 | |
3014 | /** |
3015 | * @brief Inserts a %cauchy_distribution random number distribution |
3016 | * @p __x into the output stream @p __os. |
3017 | * |
3018 | * @param __os An output stream. |
3019 | * @param __x A %cauchy_distribution random number distribution. |
3020 | * |
3021 | * @returns The output stream with the state of @p __x inserted or in |
3022 | * an error state. |
3023 | */ |
3024 | template<typename _RealType, typename _CharT, typename _Traits> |
3025 | std::basic_ostream<_CharT, _Traits>& |
3026 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3027 | const std::cauchy_distribution<_RealType>& __x); |
3028 | |
3029 | /** |
3030 | * @brief Extracts a %cauchy_distribution random number distribution |
3031 | * @p __x from the input stream @p __is. |
3032 | * |
3033 | * @param __is An input stream. |
3034 | * @param __x A %cauchy_distribution random number |
3035 | * generator engine. |
3036 | * |
3037 | * @returns The input stream with @p __x extracted or in an error state. |
3038 | */ |
3039 | template<typename _RealType, typename _CharT, typename _Traits> |
3040 | std::basic_istream<_CharT, _Traits>& |
3041 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3042 | std::cauchy_distribution<_RealType>& __x); |
3043 | |
3044 | |
3045 | /** |
3046 | * @brief A fisher_f_distribution random number distribution. |
3047 | * |
3048 | * The formula for the normal probability mass function is |
3049 | * @f[ |
3050 | * p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} |
3051 | * (\frac{m}{n})^{m/2} x^{(m/2)-1} |
3052 | * (1 + \frac{mx}{n})^{-(m+n)/2} |
3053 | * @f] |
3054 | */ |
3055 | template<typename _RealType = double> |
3056 | class fisher_f_distribution |
3057 | { |
3058 | static_assert(std::is_floating_point<_RealType>::value, |
3059 | "result_type must be a floating point type" ); |
3060 | |
3061 | public: |
3062 | /** The type of the range of the distribution. */ |
3063 | typedef _RealType result_type; |
3064 | |
3065 | /** Parameter type. */ |
3066 | struct param_type |
3067 | { |
3068 | typedef fisher_f_distribution<_RealType> distribution_type; |
3069 | |
3070 | param_type() : param_type(1) { } |
3071 | |
3072 | explicit |
3073 | param_type(_RealType __m, _RealType __n = _RealType(1)) |
3074 | : _M_m(__m), _M_n(__n) |
3075 | { } |
3076 | |
3077 | _RealType |
3078 | m() const |
3079 | { return _M_m; } |
3080 | |
3081 | _RealType |
3082 | n() const |
3083 | { return _M_n; } |
3084 | |
3085 | friend bool |
3086 | operator==(const param_type& __p1, const param_type& __p2) |
3087 | { return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; } |
3088 | |
3089 | friend bool |
3090 | operator!=(const param_type& __p1, const param_type& __p2) |
3091 | { return !(__p1 == __p2); } |
3092 | |
3093 | private: |
3094 | _RealType _M_m; |
3095 | _RealType _M_n; |
3096 | }; |
3097 | |
3098 | fisher_f_distribution() : fisher_f_distribution(1.0) { } |
3099 | |
3100 | explicit |
3101 | fisher_f_distribution(_RealType __m, |
3102 | _RealType __n = _RealType(1)) |
3103 | : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2) |
3104 | { } |
3105 | |
3106 | explicit |
3107 | fisher_f_distribution(const param_type& __p) |
3108 | : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2) |
3109 | { } |
3110 | |
3111 | /** |
3112 | * @brief Resets the distribution state. |
3113 | */ |
3114 | void |
3115 | reset() |
3116 | { |
3117 | _M_gd_x.reset(); |
3118 | _M_gd_y.reset(); |
3119 | } |
3120 | |
3121 | /** |
3122 | * |
3123 | */ |
3124 | _RealType |
3125 | m() const |
3126 | { return _M_param.m(); } |
3127 | |
3128 | _RealType |
3129 | n() const |
3130 | { return _M_param.n(); } |
3131 | |
3132 | /** |
3133 | * @brief Returns the parameter set of the distribution. |
3134 | */ |
3135 | param_type |
3136 | param() const |
3137 | { return _M_param; } |
3138 | |
3139 | /** |
3140 | * @brief Sets the parameter set of the distribution. |
3141 | * @param __param The new parameter set of the distribution. |
3142 | */ |
3143 | void |
3144 | param(const param_type& __param) |
3145 | { _M_param = __param; } |
3146 | |
3147 | /** |
3148 | * @brief Returns the greatest lower bound value of the distribution. |
3149 | */ |
3150 | result_type |
3151 | min() const |
3152 | { return result_type(0); } |
3153 | |
3154 | /** |
3155 | * @brief Returns the least upper bound value of the distribution. |
3156 | */ |
3157 | result_type |
3158 | max() const |
3159 | { return std::numeric_limits<result_type>::max(); } |
3160 | |
3161 | /** |
3162 | * @brief Generating functions. |
3163 | */ |
3164 | template<typename _UniformRandomNumberGenerator> |
3165 | result_type |
3166 | operator()(_UniformRandomNumberGenerator& __urng) |
3167 | { return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); } |
3168 | |
3169 | template<typename _UniformRandomNumberGenerator> |
3170 | result_type |
3171 | operator()(_UniformRandomNumberGenerator& __urng, |
3172 | const param_type& __p) |
3173 | { |
3174 | typedef typename std::gamma_distribution<result_type>::param_type |
3175 | param_type; |
3176 | return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n()) |
3177 | / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m())); |
3178 | } |
3179 | |
3180 | template<typename _ForwardIterator, |
3181 | typename _UniformRandomNumberGenerator> |
3182 | void |
3183 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3184 | _UniformRandomNumberGenerator& __urng) |
3185 | { this->__generate_impl(__f, __t, __urng); } |
3186 | |
3187 | template<typename _ForwardIterator, |
3188 | typename _UniformRandomNumberGenerator> |
3189 | void |
3190 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3191 | _UniformRandomNumberGenerator& __urng, |
3192 | const param_type& __p) |
3193 | { this->__generate_impl(__f, __t, __urng, __p); } |
3194 | |
3195 | template<typename _UniformRandomNumberGenerator> |
3196 | void |
3197 | __generate(result_type* __f, result_type* __t, |
3198 | _UniformRandomNumberGenerator& __urng) |
3199 | { this->__generate_impl(__f, __t, __urng); } |
3200 | |
3201 | template<typename _UniformRandomNumberGenerator> |
3202 | void |
3203 | __generate(result_type* __f, result_type* __t, |
3204 | _UniformRandomNumberGenerator& __urng, |
3205 | const param_type& __p) |
3206 | { this->__generate_impl(__f, __t, __urng, __p); } |
3207 | |
3208 | /** |
3209 | * @brief Return true if two Fisher f distributions have |
3210 | * the same parameters and the sequences that would |
3211 | * be generated are equal. |
3212 | */ |
3213 | friend bool |
3214 | operator==(const fisher_f_distribution& __d1, |
3215 | const fisher_f_distribution& __d2) |
3216 | { return (__d1._M_param == __d2._M_param |
3217 | && __d1._M_gd_x == __d2._M_gd_x |
3218 | && __d1._M_gd_y == __d2._M_gd_y); } |
3219 | |
3220 | /** |
3221 | * @brief Inserts a %fisher_f_distribution random number distribution |
3222 | * @p __x into the output stream @p __os. |
3223 | * |
3224 | * @param __os An output stream. |
3225 | * @param __x A %fisher_f_distribution random number distribution. |
3226 | * |
3227 | * @returns The output stream with the state of @p __x inserted or in |
3228 | * an error state. |
3229 | */ |
3230 | template<typename _RealType1, typename _CharT, typename _Traits> |
3231 | friend std::basic_ostream<_CharT, _Traits>& |
3232 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3233 | const std::fisher_f_distribution<_RealType1>& __x); |
3234 | |
3235 | /** |
3236 | * @brief Extracts a %fisher_f_distribution random number distribution |
3237 | * @p __x from the input stream @p __is. |
3238 | * |
3239 | * @param __is An input stream. |
3240 | * @param __x A %fisher_f_distribution random number |
3241 | * generator engine. |
3242 | * |
3243 | * @returns The input stream with @p __x extracted or in an error state. |
3244 | */ |
3245 | template<typename _RealType1, typename _CharT, typename _Traits> |
3246 | friend std::basic_istream<_CharT, _Traits>& |
3247 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3248 | std::fisher_f_distribution<_RealType1>& __x); |
3249 | |
3250 | private: |
3251 | template<typename _ForwardIterator, |
3252 | typename _UniformRandomNumberGenerator> |
3253 | void |
3254 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3255 | _UniformRandomNumberGenerator& __urng); |
3256 | |
3257 | template<typename _ForwardIterator, |
3258 | typename _UniformRandomNumberGenerator> |
3259 | void |
3260 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3261 | _UniformRandomNumberGenerator& __urng, |
3262 | const param_type& __p); |
3263 | |
3264 | param_type _M_param; |
3265 | |
3266 | std::gamma_distribution<result_type> _M_gd_x, _M_gd_y; |
3267 | }; |
3268 | |
3269 | /** |
3270 | * @brief Return true if two Fisher f distributions are different. |
3271 | */ |
3272 | template<typename _RealType> |
3273 | inline bool |
3274 | operator!=(const std::fisher_f_distribution<_RealType>& __d1, |
3275 | const std::fisher_f_distribution<_RealType>& __d2) |
3276 | { return !(__d1 == __d2); } |
3277 | |
3278 | /** |
3279 | * @brief A student_t_distribution random number distribution. |
3280 | * |
3281 | * The formula for the normal probability mass function is: |
3282 | * @f[ |
3283 | * p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)} |
3284 | * (1 + \frac{x^2}{n}) ^{-(n+1)/2} |
3285 | * @f] |
3286 | */ |
3287 | template<typename _RealType = double> |
3288 | class student_t_distribution |
3289 | { |
3290 | static_assert(std::is_floating_point<_RealType>::value, |
3291 | "result_type must be a floating point type" ); |
3292 | |
3293 | public: |
3294 | /** The type of the range of the distribution. */ |
3295 | typedef _RealType result_type; |
3296 | |
3297 | /** Parameter type. */ |
3298 | struct param_type |
3299 | { |
3300 | typedef student_t_distribution<_RealType> distribution_type; |
3301 | |
3302 | param_type() : param_type(1) { } |
3303 | |
3304 | explicit |
3305 | param_type(_RealType __n) |
3306 | : _M_n(__n) |
3307 | { } |
3308 | |
3309 | _RealType |
3310 | n() const |
3311 | { return _M_n; } |
3312 | |
3313 | friend bool |
3314 | operator==(const param_type& __p1, const param_type& __p2) |
3315 | { return __p1._M_n == __p2._M_n; } |
3316 | |
3317 | friend bool |
3318 | operator!=(const param_type& __p1, const param_type& __p2) |
3319 | { return !(__p1 == __p2); } |
3320 | |
3321 | private: |
3322 | _RealType _M_n; |
3323 | }; |
3324 | |
3325 | student_t_distribution() : student_t_distribution(1.0) { } |
3326 | |
3327 | explicit |
3328 | student_t_distribution(_RealType __n) |
3329 | : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2) |
3330 | { } |
3331 | |
3332 | explicit |
3333 | student_t_distribution(const param_type& __p) |
3334 | : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2) |
3335 | { } |
3336 | |
3337 | /** |
3338 | * @brief Resets the distribution state. |
3339 | */ |
3340 | void |
3341 | reset() |
3342 | { |
3343 | _M_nd.reset(); |
3344 | _M_gd.reset(); |
3345 | } |
3346 | |
3347 | /** |
3348 | * |
3349 | */ |
3350 | _RealType |
3351 | n() const |
3352 | { return _M_param.n(); } |
3353 | |
3354 | /** |
3355 | * @brief Returns the parameter set of the distribution. |
3356 | */ |
3357 | param_type |
3358 | param() const |
3359 | { return _M_param; } |
3360 | |
3361 | /** |
3362 | * @brief Sets the parameter set of the distribution. |
3363 | * @param __param The new parameter set of the distribution. |
3364 | */ |
3365 | void |
3366 | param(const param_type& __param) |
3367 | { _M_param = __param; } |
3368 | |
3369 | /** |
3370 | * @brief Returns the greatest lower bound value of the distribution. |
3371 | */ |
3372 | result_type |
3373 | min() const |
3374 | { return std::numeric_limits<result_type>::lowest(); } |
3375 | |
3376 | /** |
3377 | * @brief Returns the least upper bound value of the distribution. |
3378 | */ |
3379 | result_type |
3380 | max() const |
3381 | { return std::numeric_limits<result_type>::max(); } |
3382 | |
3383 | /** |
3384 | * @brief Generating functions. |
3385 | */ |
3386 | template<typename _UniformRandomNumberGenerator> |
3387 | result_type |
3388 | operator()(_UniformRandomNumberGenerator& __urng) |
3389 | { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); } |
3390 | |
3391 | template<typename _UniformRandomNumberGenerator> |
3392 | result_type |
3393 | operator()(_UniformRandomNumberGenerator& __urng, |
3394 | const param_type& __p) |
3395 | { |
3396 | typedef typename std::gamma_distribution<result_type>::param_type |
3397 | param_type; |
3398 | |
3399 | const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2)); |
3400 | return _M_nd(__urng) * std::sqrt(__p.n() / __g); |
3401 | } |
3402 | |
3403 | template<typename _ForwardIterator, |
3404 | typename _UniformRandomNumberGenerator> |
3405 | void |
3406 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3407 | _UniformRandomNumberGenerator& __urng) |
3408 | { this->__generate_impl(__f, __t, __urng); } |
3409 | |
3410 | template<typename _ForwardIterator, |
3411 | typename _UniformRandomNumberGenerator> |
3412 | void |
3413 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3414 | _UniformRandomNumberGenerator& __urng, |
3415 | const param_type& __p) |
3416 | { this->__generate_impl(__f, __t, __urng, __p); } |
3417 | |
3418 | template<typename _UniformRandomNumberGenerator> |
3419 | void |
3420 | __generate(result_type* __f, result_type* __t, |
3421 | _UniformRandomNumberGenerator& __urng) |
3422 | { this->__generate_impl(__f, __t, __urng); } |
3423 | |
3424 | template<typename _UniformRandomNumberGenerator> |
3425 | void |
3426 | __generate(result_type* __f, result_type* __t, |
3427 | _UniformRandomNumberGenerator& __urng, |
3428 | const param_type& __p) |
3429 | { this->__generate_impl(__f, __t, __urng, __p); } |
3430 | |
3431 | /** |
3432 | * @brief Return true if two Student t distributions have |
3433 | * the same parameters and the sequences that would |
3434 | * be generated are equal. |
3435 | */ |
3436 | friend bool |
3437 | operator==(const student_t_distribution& __d1, |
3438 | const student_t_distribution& __d2) |
3439 | { return (__d1._M_param == __d2._M_param |
3440 | && __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); } |
3441 | |
3442 | /** |
3443 | * @brief Inserts a %student_t_distribution random number distribution |
3444 | * @p __x into the output stream @p __os. |
3445 | * |
3446 | * @param __os An output stream. |
3447 | * @param __x A %student_t_distribution random number distribution. |
3448 | * |
3449 | * @returns The output stream with the state of @p __x inserted or in |
3450 | * an error state. |
3451 | */ |
3452 | template<typename _RealType1, typename _CharT, typename _Traits> |
3453 | friend std::basic_ostream<_CharT, _Traits>& |
3454 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3455 | const std::student_t_distribution<_RealType1>& __x); |
3456 | |
3457 | /** |
3458 | * @brief Extracts a %student_t_distribution random number distribution |
3459 | * @p __x from the input stream @p __is. |
3460 | * |
3461 | * @param __is An input stream. |
3462 | * @param __x A %student_t_distribution random number |
3463 | * generator engine. |
3464 | * |
3465 | * @returns The input stream with @p __x extracted or in an error state. |
3466 | */ |
3467 | template<typename _RealType1, typename _CharT, typename _Traits> |
3468 | friend std::basic_istream<_CharT, _Traits>& |
3469 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3470 | std::student_t_distribution<_RealType1>& __x); |
3471 | |
3472 | private: |
3473 | template<typename _ForwardIterator, |
3474 | typename _UniformRandomNumberGenerator> |
3475 | void |
3476 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3477 | _UniformRandomNumberGenerator& __urng); |
3478 | template<typename _ForwardIterator, |
3479 | typename _UniformRandomNumberGenerator> |
3480 | void |
3481 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3482 | _UniformRandomNumberGenerator& __urng, |
3483 | const param_type& __p); |
3484 | |
3485 | param_type _M_param; |
3486 | |
3487 | std::normal_distribution<result_type> _M_nd; |
3488 | std::gamma_distribution<result_type> _M_gd; |
3489 | }; |
3490 | |
3491 | /** |
3492 | * @brief Return true if two Student t distributions are different. |
3493 | */ |
3494 | template<typename _RealType> |
3495 | inline bool |
3496 | operator!=(const std::student_t_distribution<_RealType>& __d1, |
3497 | const std::student_t_distribution<_RealType>& __d2) |
3498 | { return !(__d1 == __d2); } |
3499 | |
3500 | |
3501 | /// @} group random_distributions_normal |
3502 | |
3503 | /** |
3504 | * @addtogroup random_distributions_bernoulli Bernoulli Distributions |
3505 | * @ingroup random_distributions |
3506 | * @{ |
3507 | */ |
3508 | |
3509 | /** |
3510 | * @brief A Bernoulli random number distribution. |
3511 | * |
3512 | * Generates a sequence of true and false values with likelihood @f$p@f$ |
3513 | * that true will come up and @f$(1 - p)@f$ that false will appear. |
3514 | */ |
3515 | class bernoulli_distribution |
3516 | { |
3517 | public: |
3518 | /** The type of the range of the distribution. */ |
3519 | typedef bool result_type; |
3520 | |
3521 | /** Parameter type. */ |
3522 | struct param_type |
3523 | { |
3524 | typedef bernoulli_distribution distribution_type; |
3525 | |
3526 | param_type() : param_type(0.5) { } |
3527 | |
3528 | explicit |
3529 | param_type(double __p) |
3530 | : _M_p(__p) |
3531 | { |
3532 | __glibcxx_assert((_M_p >= 0.0) && (_M_p <= 1.0)); |
3533 | } |
3534 | |
3535 | double |
3536 | p() const |
3537 | { return _M_p; } |
3538 | |
3539 | friend bool |
3540 | operator==(const param_type& __p1, const param_type& __p2) |
3541 | { return __p1._M_p == __p2._M_p; } |
3542 | |
3543 | friend bool |
3544 | operator!=(const param_type& __p1, const param_type& __p2) |
3545 | { return !(__p1 == __p2); } |
3546 | |
3547 | private: |
3548 | double _M_p; |
3549 | }; |
3550 | |
3551 | public: |
3552 | /** |
3553 | * @brief Constructs a Bernoulli distribution with likelihood 0.5. |
3554 | */ |
3555 | bernoulli_distribution() : bernoulli_distribution(0.5) { } |
3556 | |
3557 | /** |
3558 | * @brief Constructs a Bernoulli distribution with likelihood @p p. |
3559 | * |
3560 | * @param __p [IN] The likelihood of a true result being returned. |
3561 | * Must be in the interval @f$[0, 1]@f$. |
3562 | */ |
3563 | explicit |
3564 | bernoulli_distribution(double __p) |
3565 | : _M_param(__p) |
3566 | { } |
3567 | |
3568 | explicit |
3569 | bernoulli_distribution(const param_type& __p) |
3570 | : _M_param(__p) |
3571 | { } |
3572 | |
3573 | /** |
3574 | * @brief Resets the distribution state. |
3575 | * |
3576 | * Does nothing for a Bernoulli distribution. |
3577 | */ |
3578 | void |
3579 | reset() { } |
3580 | |
3581 | /** |
3582 | * @brief Returns the @p p parameter of the distribution. |
3583 | */ |
3584 | double |
3585 | p() const |
3586 | { return _M_param.p(); } |
3587 | |
3588 | /** |
3589 | * @brief Returns the parameter set of the distribution. |
3590 | */ |
3591 | param_type |
3592 | param() const |
3593 | { return _M_param; } |
3594 | |
3595 | /** |
3596 | * @brief Sets the parameter set of the distribution. |
3597 | * @param __param The new parameter set of the distribution. |
3598 | */ |
3599 | void |
3600 | param(const param_type& __param) |
3601 | { _M_param = __param; } |
3602 | |
3603 | /** |
3604 | * @brief Returns the greatest lower bound value of the distribution. |
3605 | */ |
3606 | result_type |
3607 | min() const |
3608 | { return std::numeric_limits<result_type>::min(); } |
3609 | |
3610 | /** |
3611 | * @brief Returns the least upper bound value of the distribution. |
3612 | */ |
3613 | result_type |
3614 | max() const |
3615 | { return std::numeric_limits<result_type>::max(); } |
3616 | |
3617 | /** |
3618 | * @brief Generating functions. |
3619 | */ |
3620 | template<typename _UniformRandomNumberGenerator> |
3621 | result_type |
3622 | operator()(_UniformRandomNumberGenerator& __urng) |
3623 | { return this->operator()(__urng, _M_param); } |
3624 | |
3625 | template<typename _UniformRandomNumberGenerator> |
3626 | result_type |
3627 | operator()(_UniformRandomNumberGenerator& __urng, |
3628 | const param_type& __p) |
3629 | { |
3630 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
3631 | __aurng(__urng); |
3632 | if ((__aurng() - __aurng.min()) |
3633 | < __p.p() * (__aurng.max() - __aurng.min())) |
3634 | return true; |
3635 | return false; |
3636 | } |
3637 | |
3638 | template<typename _ForwardIterator, |
3639 | typename _UniformRandomNumberGenerator> |
3640 | void |
3641 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3642 | _UniformRandomNumberGenerator& __urng) |
3643 | { this->__generate(__f, __t, __urng, _M_param); } |
3644 | |
3645 | template<typename _ForwardIterator, |
3646 | typename _UniformRandomNumberGenerator> |
3647 | void |
3648 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3649 | _UniformRandomNumberGenerator& __urng, const param_type& __p) |
3650 | { this->__generate_impl(__f, __t, __urng, __p); } |
3651 | |
3652 | template<typename _UniformRandomNumberGenerator> |
3653 | void |
3654 | __generate(result_type* __f, result_type* __t, |
3655 | _UniformRandomNumberGenerator& __urng, |
3656 | const param_type& __p) |
3657 | { this->__generate_impl(__f, __t, __urng, __p); } |
3658 | |
3659 | /** |
3660 | * @brief Return true if two Bernoulli distributions have |
3661 | * the same parameters. |
3662 | */ |
3663 | friend bool |
3664 | operator==(const bernoulli_distribution& __d1, |
3665 | const bernoulli_distribution& __d2) |
3666 | { return __d1._M_param == __d2._M_param; } |
3667 | |
3668 | private: |
3669 | template<typename _ForwardIterator, |
3670 | typename _UniformRandomNumberGenerator> |
3671 | void |
3672 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3673 | _UniformRandomNumberGenerator& __urng, |
3674 | const param_type& __p); |
3675 | |
3676 | param_type _M_param; |
3677 | }; |
3678 | |
3679 | /** |
3680 | * @brief Return true if two Bernoulli distributions have |
3681 | * different parameters. |
3682 | */ |
3683 | inline bool |
3684 | operator!=(const std::bernoulli_distribution& __d1, |
3685 | const std::bernoulli_distribution& __d2) |
3686 | { return !(__d1 == __d2); } |
3687 | |
3688 | /** |
3689 | * @brief Inserts a %bernoulli_distribution random number distribution |
3690 | * @p __x into the output stream @p __os. |
3691 | * |
3692 | * @param __os An output stream. |
3693 | * @param __x A %bernoulli_distribution random number distribution. |
3694 | * |
3695 | * @returns The output stream with the state of @p __x inserted or in |
3696 | * an error state. |
3697 | */ |
3698 | template<typename _CharT, typename _Traits> |
3699 | std::basic_ostream<_CharT, _Traits>& |
3700 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3701 | const std::bernoulli_distribution& __x); |
3702 | |
3703 | /** |
3704 | * @brief Extracts a %bernoulli_distribution random number distribution |
3705 | * @p __x from the input stream @p __is. |
3706 | * |
3707 | * @param __is An input stream. |
3708 | * @param __x A %bernoulli_distribution random number generator engine. |
3709 | * |
3710 | * @returns The input stream with @p __x extracted or in an error state. |
3711 | */ |
3712 | template<typename _CharT, typename _Traits> |
3713 | std::basic_istream<_CharT, _Traits>& |
3714 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3715 | std::bernoulli_distribution& __x) |
3716 | { |
3717 | double __p; |
3718 | if (__is >> __p) |
3719 | __x.param(bernoulli_distribution::param_type(__p)); |
3720 | return __is; |
3721 | } |
3722 | |
3723 | |
3724 | /** |
3725 | * @brief A discrete binomial random number distribution. |
3726 | * |
3727 | * The formula for the binomial probability density function is |
3728 | * @f$p(i|t,p) = \binom{t}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
3729 | * and @f$p@f$ are the parameters of the distribution. |
3730 | */ |
3731 | template<typename _IntType = int> |
3732 | class binomial_distribution |
3733 | { |
3734 | static_assert(std::is_integral<_IntType>::value, |
3735 | "result_type must be an integral type" ); |
3736 | |
3737 | public: |
3738 | /** The type of the range of the distribution. */ |
3739 | typedef _IntType result_type; |
3740 | |
3741 | /** Parameter type. */ |
3742 | struct param_type |
3743 | { |
3744 | typedef binomial_distribution<_IntType> distribution_type; |
3745 | friend class binomial_distribution<_IntType>; |
3746 | |
3747 | param_type() : param_type(1) { } |
3748 | |
3749 | explicit |
3750 | param_type(_IntType __t, double __p = 0.5) |
3751 | : _M_t(__t), _M_p(__p) |
3752 | { |
3753 | __glibcxx_assert((_M_t >= _IntType(0)) |
3754 | && (_M_p >= 0.0) |
3755 | && (_M_p <= 1.0)); |
3756 | _M_initialize(); |
3757 | } |
3758 | |
3759 | _IntType |
3760 | t() const |
3761 | { return _M_t; } |
3762 | |
3763 | double |
3764 | p() const |
3765 | { return _M_p; } |
3766 | |
3767 | friend bool |
3768 | operator==(const param_type& __p1, const param_type& __p2) |
3769 | { return __p1._M_t == __p2._M_t && __p1._M_p == __p2._M_p; } |
3770 | |
3771 | friend bool |
3772 | operator!=(const param_type& __p1, const param_type& __p2) |
3773 | { return !(__p1 == __p2); } |
3774 | |
3775 | private: |
3776 | void |
3777 | _M_initialize(); |
3778 | |
3779 | _IntType _M_t; |
3780 | double _M_p; |
3781 | |
3782 | double _M_q; |
3783 | #if _GLIBCXX_USE_C99_MATH_TR1 |
3784 | double _M_d1, _M_d2, _M_s1, _M_s2, _M_c, |
3785 | _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p; |
3786 | #endif |
3787 | bool _M_easy; |
3788 | }; |
3789 | |
3790 | // constructors and member functions |
3791 | |
3792 | binomial_distribution() : binomial_distribution(1) { } |
3793 | |
3794 | explicit |
3795 | binomial_distribution(_IntType __t, double __p = 0.5) |
3796 | : _M_param(__t, __p), _M_nd() |
3797 | { } |
3798 | |
3799 | explicit |
3800 | binomial_distribution(const param_type& __p) |
3801 | : _M_param(__p), _M_nd() |
3802 | { } |
3803 | |
3804 | /** |
3805 | * @brief Resets the distribution state. |
3806 | */ |
3807 | void |
3808 | reset() |
3809 | { _M_nd.reset(); } |
3810 | |
3811 | /** |
3812 | * @brief Returns the distribution @p t parameter. |
3813 | */ |
3814 | _IntType |
3815 | t() const |
3816 | { return _M_param.t(); } |
3817 | |
3818 | /** |
3819 | * @brief Returns the distribution @p p parameter. |
3820 | */ |
3821 | double |
3822 | p() const |
3823 | { return _M_param.p(); } |
3824 | |
3825 | /** |
3826 | * @brief Returns the parameter set of the distribution. |
3827 | */ |
3828 | param_type |
3829 | param() const |
3830 | { return _M_param; } |
3831 | |
3832 | /** |
3833 | * @brief Sets the parameter set of the distribution. |
3834 | * @param __param The new parameter set of the distribution. |
3835 | */ |
3836 | void |
3837 | param(const param_type& __param) |
3838 | { _M_param = __param; } |
3839 | |
3840 | /** |
3841 | * @brief Returns the greatest lower bound value of the distribution. |
3842 | */ |
3843 | result_type |
3844 | min() const |
3845 | { return 0; } |
3846 | |
3847 | /** |
3848 | * @brief Returns the least upper bound value of the distribution. |
3849 | */ |
3850 | result_type |
3851 | max() const |
3852 | { return _M_param.t(); } |
3853 | |
3854 | /** |
3855 | * @brief Generating functions. |
3856 | */ |
3857 | template<typename _UniformRandomNumberGenerator> |
3858 | result_type |
3859 | operator()(_UniformRandomNumberGenerator& __urng) |
3860 | { return this->operator()(__urng, _M_param); } |
3861 | |
3862 | template<typename _UniformRandomNumberGenerator> |
3863 | result_type |
3864 | operator()(_UniformRandomNumberGenerator& __urng, |
3865 | const param_type& __p); |
3866 | |
3867 | template<typename _ForwardIterator, |
3868 | typename _UniformRandomNumberGenerator> |
3869 | void |
3870 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3871 | _UniformRandomNumberGenerator& __urng) |
3872 | { this->__generate(__f, __t, __urng, _M_param); } |
3873 | |
3874 | template<typename _ForwardIterator, |
3875 | typename _UniformRandomNumberGenerator> |
3876 | void |
3877 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3878 | _UniformRandomNumberGenerator& __urng, |
3879 | const param_type& __p) |
3880 | { this->__generate_impl(__f, __t, __urng, __p); } |
3881 | |
3882 | template<typename _UniformRandomNumberGenerator> |
3883 | void |
3884 | __generate(result_type* __f, result_type* __t, |
3885 | _UniformRandomNumberGenerator& __urng, |
3886 | const param_type& __p) |
3887 | { this->__generate_impl(__f, __t, __urng, __p); } |
3888 | |
3889 | /** |
3890 | * @brief Return true if two binomial distributions have |
3891 | * the same parameters and the sequences that would |
3892 | * be generated are equal. |
3893 | */ |
3894 | friend bool |
3895 | operator==(const binomial_distribution& __d1, |
3896 | const binomial_distribution& __d2) |
3897 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
3898 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
3899 | #else |
3900 | { return __d1._M_param == __d2._M_param; } |
3901 | #endif |
3902 | |
3903 | /** |
3904 | * @brief Inserts a %binomial_distribution random number distribution |
3905 | * @p __x into the output stream @p __os. |
3906 | * |
3907 | * @param __os An output stream. |
3908 | * @param __x A %binomial_distribution random number distribution. |
3909 | * |
3910 | * @returns The output stream with the state of @p __x inserted or in |
3911 | * an error state. |
3912 | */ |
3913 | template<typename _IntType1, |
3914 | typename _CharT, typename _Traits> |
3915 | friend std::basic_ostream<_CharT, _Traits>& |
3916 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3917 | const std::binomial_distribution<_IntType1>& __x); |
3918 | |
3919 | /** |
3920 | * @brief Extracts a %binomial_distribution random number distribution |
3921 | * @p __x from the input stream @p __is. |
3922 | * |
3923 | * @param __is An input stream. |
3924 | * @param __x A %binomial_distribution random number generator engine. |
3925 | * |
3926 | * @returns The input stream with @p __x extracted or in an error |
3927 | * state. |
3928 | */ |
3929 | template<typename _IntType1, |
3930 | typename _CharT, typename _Traits> |
3931 | friend std::basic_istream<_CharT, _Traits>& |
3932 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3933 | std::binomial_distribution<_IntType1>& __x); |
3934 | |
3935 | private: |
3936 | template<typename _ForwardIterator, |
3937 | typename _UniformRandomNumberGenerator> |
3938 | void |
3939 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3940 | _UniformRandomNumberGenerator& __urng, |
3941 | const param_type& __p); |
3942 | |
3943 | template<typename _UniformRandomNumberGenerator> |
3944 | result_type |
3945 | _M_waiting(_UniformRandomNumberGenerator& __urng, |
3946 | _IntType __t, double __q); |
3947 | |
3948 | param_type _M_param; |
3949 | |
3950 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
3951 | std::normal_distribution<double> _M_nd; |
3952 | }; |
3953 | |
3954 | /** |
3955 | * @brief Return true if two binomial distributions are different. |
3956 | */ |
3957 | template<typename _IntType> |
3958 | inline bool |
3959 | operator!=(const std::binomial_distribution<_IntType>& __d1, |
3960 | const std::binomial_distribution<_IntType>& __d2) |
3961 | { return !(__d1 == __d2); } |
3962 | |
3963 | |
3964 | /** |
3965 | * @brief A discrete geometric random number distribution. |
3966 | * |
3967 | * The formula for the geometric probability density function is |
3968 | * @f$p(i|p) = p(1 - p)^{i}@f$ where @f$p@f$ is the parameter of the |
3969 | * distribution. |
3970 | */ |
3971 | template<typename _IntType = int> |
3972 | class geometric_distribution |
3973 | { |
3974 | static_assert(std::is_integral<_IntType>::value, |
3975 | "result_type must be an integral type" ); |
3976 | |
3977 | public: |
3978 | /** The type of the range of the distribution. */ |
3979 | typedef _IntType result_type; |
3980 | |
3981 | /** Parameter type. */ |
3982 | struct param_type |
3983 | { |
3984 | typedef geometric_distribution<_IntType> distribution_type; |
3985 | friend class geometric_distribution<_IntType>; |
3986 | |
3987 | param_type() : param_type(0.5) { } |
3988 | |
3989 | explicit |
3990 | param_type(double __p) |
3991 | : _M_p(__p) |
3992 | { |
3993 | __glibcxx_assert((_M_p > 0.0) && (_M_p < 1.0)); |
3994 | _M_initialize(); |
3995 | } |
3996 | |
3997 | double |
3998 | p() const |
3999 | { return _M_p; } |
4000 | |
4001 | friend bool |
4002 | operator==(const param_type& __p1, const param_type& __p2) |
4003 | { return __p1._M_p == __p2._M_p; } |
4004 | |
4005 | friend bool |
4006 | operator!=(const param_type& __p1, const param_type& __p2) |
4007 | { return !(__p1 == __p2); } |
4008 | |
4009 | private: |
4010 | void |
4011 | _M_initialize() |
4012 | { _M_log_1_p = std::log(1.0 - _M_p); } |
4013 | |
4014 | double _M_p; |
4015 | |
4016 | double _M_log_1_p; |
4017 | }; |
4018 | |
4019 | // constructors and member functions |
4020 | |
4021 | geometric_distribution() : geometric_distribution(0.5) { } |
4022 | |
4023 | explicit |
4024 | geometric_distribution(double __p) |
4025 | : _M_param(__p) |
4026 | { } |
4027 | |
4028 | explicit |
4029 | geometric_distribution(const param_type& __p) |
4030 | : _M_param(__p) |
4031 | { } |
4032 | |
4033 | /** |
4034 | * @brief Resets the distribution state. |
4035 | * |
4036 | * Does nothing for the geometric distribution. |
4037 | */ |
4038 | void |
4039 | reset() { } |
4040 | |
4041 | /** |
4042 | * @brief Returns the distribution parameter @p p. |
4043 | */ |
4044 | double |
4045 | p() const |
4046 | { return _M_param.p(); } |
4047 | |
4048 | /** |
4049 | * @brief Returns the parameter set of the distribution. |
4050 | */ |
4051 | param_type |
4052 | param() const |
4053 | { return _M_param; } |
4054 | |
4055 | /** |
4056 | * @brief Sets the parameter set of the distribution. |
4057 | * @param __param The new parameter set of the distribution. |
4058 | */ |
4059 | void |
4060 | param(const param_type& __param) |
4061 | { _M_param = __param; } |
4062 | |
4063 | /** |
4064 | * @brief Returns the greatest lower bound value of the distribution. |
4065 | */ |
4066 | result_type |
4067 | min() const |
4068 | { return 0; } |
4069 | |
4070 | /** |
4071 | * @brief Returns the least upper bound value of the distribution. |
4072 | */ |
4073 | result_type |
4074 | max() const |
4075 | { return std::numeric_limits<result_type>::max(); } |
4076 | |
4077 | /** |
4078 | * @brief Generating functions. |
4079 | */ |
4080 | template<typename _UniformRandomNumberGenerator> |
4081 | result_type |
4082 | operator()(_UniformRandomNumberGenerator& __urng) |
4083 | { return this->operator()(__urng, _M_param); } |
4084 | |
4085 | template<typename _UniformRandomNumberGenerator> |
4086 | result_type |
4087 | operator()(_UniformRandomNumberGenerator& __urng, |
4088 | const param_type& __p); |
4089 | |
4090 | template<typename _ForwardIterator, |
4091 | typename _UniformRandomNumberGenerator> |
4092 | void |
4093 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4094 | _UniformRandomNumberGenerator& __urng) |
4095 | { this->__generate(__f, __t, __urng, _M_param); } |
4096 | |
4097 | template<typename _ForwardIterator, |
4098 | typename _UniformRandomNumberGenerator> |
4099 | void |
4100 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4101 | _UniformRandomNumberGenerator& __urng, |
4102 | const param_type& __p) |
4103 | { this->__generate_impl(__f, __t, __urng, __p); } |
4104 | |
4105 | template<typename _UniformRandomNumberGenerator> |
4106 | void |
4107 | __generate(result_type* __f, result_type* __t, |
4108 | _UniformRandomNumberGenerator& __urng, |
4109 | const param_type& __p) |
4110 | { this->__generate_impl(__f, __t, __urng, __p); } |
4111 | |
4112 | /** |
4113 | * @brief Return true if two geometric distributions have |
4114 | * the same parameters. |
4115 | */ |
4116 | friend bool |
4117 | operator==(const geometric_distribution& __d1, |
4118 | const geometric_distribution& __d2) |
4119 | { return __d1._M_param == __d2._M_param; } |
4120 | |
4121 | private: |
4122 | template<typename _ForwardIterator, |
4123 | typename _UniformRandomNumberGenerator> |
4124 | void |
4125 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4126 | _UniformRandomNumberGenerator& __urng, |
4127 | const param_type& __p); |
4128 | |
4129 | param_type _M_param; |
4130 | }; |
4131 | |
4132 | /** |
4133 | * @brief Return true if two geometric distributions have |
4134 | * different parameters. |
4135 | */ |
4136 | template<typename _IntType> |
4137 | inline bool |
4138 | operator!=(const std::geometric_distribution<_IntType>& __d1, |
4139 | const std::geometric_distribution<_IntType>& __d2) |
4140 | { return !(__d1 == __d2); } |
4141 | |
4142 | /** |
4143 | * @brief Inserts a %geometric_distribution random number distribution |
4144 | * @p __x into the output stream @p __os. |
4145 | * |
4146 | * @param __os An output stream. |
4147 | * @param __x A %geometric_distribution random number distribution. |
4148 | * |
4149 | * @returns The output stream with the state of @p __x inserted or in |
4150 | * an error state. |
4151 | */ |
4152 | template<typename _IntType, |
4153 | typename _CharT, typename _Traits> |
4154 | std::basic_ostream<_CharT, _Traits>& |
4155 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4156 | const std::geometric_distribution<_IntType>& __x); |
4157 | |
4158 | /** |
4159 | * @brief Extracts a %geometric_distribution random number distribution |
4160 | * @p __x from the input stream @p __is. |
4161 | * |
4162 | * @param __is An input stream. |
4163 | * @param __x A %geometric_distribution random number generator engine. |
4164 | * |
4165 | * @returns The input stream with @p __x extracted or in an error state. |
4166 | */ |
4167 | template<typename _IntType, |
4168 | typename _CharT, typename _Traits> |
4169 | std::basic_istream<_CharT, _Traits>& |
4170 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4171 | std::geometric_distribution<_IntType>& __x); |
4172 | |
4173 | |
4174 | /** |
4175 | * @brief A negative_binomial_distribution random number distribution. |
4176 | * |
4177 | * The formula for the negative binomial probability mass function is |
4178 | * @f$p(i) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
4179 | * and @f$p@f$ are the parameters of the distribution. |
4180 | */ |
4181 | template<typename _IntType = int> |
4182 | class negative_binomial_distribution |
4183 | { |
4184 | static_assert(std::is_integral<_IntType>::value, |
4185 | "result_type must be an integral type" ); |
4186 | |
4187 | public: |
4188 | /** The type of the range of the distribution. */ |
4189 | typedef _IntType result_type; |
4190 | |
4191 | /** Parameter type. */ |
4192 | struct param_type |
4193 | { |
4194 | typedef negative_binomial_distribution<_IntType> distribution_type; |
4195 | |
4196 | param_type() : param_type(1) { } |
4197 | |
4198 | explicit |
4199 | param_type(_IntType __k, double __p = 0.5) |
4200 | : _M_k(__k), _M_p(__p) |
4201 | { |
4202 | __glibcxx_assert((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0)); |
4203 | } |
4204 | |
4205 | _IntType |
4206 | k() const |
4207 | { return _M_k; } |
4208 | |
4209 | double |
4210 | p() const |
4211 | { return _M_p; } |
4212 | |
4213 | friend bool |
4214 | operator==(const param_type& __p1, const param_type& __p2) |
4215 | { return __p1._M_k == __p2._M_k && __p1._M_p == __p2._M_p; } |
4216 | |
4217 | friend bool |
4218 | operator!=(const param_type& __p1, const param_type& __p2) |
4219 | { return !(__p1 == __p2); } |
4220 | |
4221 | private: |
4222 | _IntType _M_k; |
4223 | double _M_p; |
4224 | }; |
4225 | |
4226 | negative_binomial_distribution() : negative_binomial_distribution(1) { } |
4227 | |
4228 | explicit |
4229 | negative_binomial_distribution(_IntType __k, double __p = 0.5) |
4230 | : _M_param(__k, __p), _M_gd(__k, (1.0 - __p) / __p) |
4231 | { } |
4232 | |
4233 | explicit |
4234 | negative_binomial_distribution(const param_type& __p) |
4235 | : _M_param(__p), _M_gd(__p.k(), (1.0 - __p.p()) / __p.p()) |
4236 | { } |
4237 | |
4238 | /** |
4239 | * @brief Resets the distribution state. |
4240 | */ |
4241 | void |
4242 | reset() |
4243 | { _M_gd.reset(); } |
4244 | |
4245 | /** |
4246 | * @brief Return the @f$k@f$ parameter of the distribution. |
4247 | */ |
4248 | _IntType |
4249 | k() const |
4250 | { return _M_param.k(); } |
4251 | |
4252 | /** |
4253 | * @brief Return the @f$p@f$ parameter of the distribution. |
4254 | */ |
4255 | double |
4256 | p() const |
4257 | { return _M_param.p(); } |
4258 | |
4259 | /** |
4260 | * @brief Returns the parameter set of the distribution. |
4261 | */ |
4262 | param_type |
4263 | param() const |
4264 | { return _M_param; } |
4265 | |
4266 | /** |
4267 | * @brief Sets the parameter set of the distribution. |
4268 | * @param __param The new parameter set of the distribution. |
4269 | */ |
4270 | void |
4271 | param(const param_type& __param) |
4272 | { _M_param = __param; } |
4273 | |
4274 | /** |
4275 | * @brief Returns the greatest lower bound value of the distribution. |
4276 | */ |
4277 | result_type |
4278 | min() const |
4279 | { return result_type(0); } |
4280 | |
4281 | /** |
4282 | * @brief Returns the least upper bound value of the distribution. |
4283 | */ |
4284 | result_type |
4285 | max() const |
4286 | { return std::numeric_limits<result_type>::max(); } |
4287 | |
4288 | /** |
4289 | * @brief Generating functions. |
4290 | */ |
4291 | template<typename _UniformRandomNumberGenerator> |
4292 | result_type |
4293 | operator()(_UniformRandomNumberGenerator& __urng); |
4294 | |
4295 | template<typename _UniformRandomNumberGenerator> |
4296 | result_type |
4297 | operator()(_UniformRandomNumberGenerator& __urng, |
4298 | const param_type& __p); |
4299 | |
4300 | template<typename _ForwardIterator, |
4301 | typename _UniformRandomNumberGenerator> |
4302 | void |
4303 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4304 | _UniformRandomNumberGenerator& __urng) |
4305 | { this->__generate_impl(__f, __t, __urng); } |
4306 | |
4307 | template<typename _ForwardIterator, |
4308 | typename _UniformRandomNumberGenerator> |
4309 | void |
4310 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4311 | _UniformRandomNumberGenerator& __urng, |
4312 | const param_type& __p) |
4313 | { this->__generate_impl(__f, __t, __urng, __p); } |
4314 | |
4315 | template<typename _UniformRandomNumberGenerator> |
4316 | void |
4317 | __generate(result_type* __f, result_type* __t, |
4318 | _UniformRandomNumberGenerator& __urng) |
4319 | { this->__generate_impl(__f, __t, __urng); } |
4320 | |
4321 | template<typename _UniformRandomNumberGenerator> |
4322 | void |
4323 | __generate(result_type* __f, result_type* __t, |
4324 | _UniformRandomNumberGenerator& __urng, |
4325 | const param_type& __p) |
4326 | { this->__generate_impl(__f, __t, __urng, __p); } |
4327 | |
4328 | /** |
4329 | * @brief Return true if two negative binomial distributions have |
4330 | * the same parameters and the sequences that would be |
4331 | * generated are equal. |
4332 | */ |
4333 | friend bool |
4334 | operator==(const negative_binomial_distribution& __d1, |
4335 | const negative_binomial_distribution& __d2) |
4336 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
4337 | |
4338 | /** |
4339 | * @brief Inserts a %negative_binomial_distribution random |
4340 | * number distribution @p __x into the output stream @p __os. |
4341 | * |
4342 | * @param __os An output stream. |
4343 | * @param __x A %negative_binomial_distribution random number |
4344 | * distribution. |
4345 | * |
4346 | * @returns The output stream with the state of @p __x inserted or in |
4347 | * an error state. |
4348 | */ |
4349 | template<typename _IntType1, typename _CharT, typename _Traits> |
4350 | friend std::basic_ostream<_CharT, _Traits>& |
4351 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4352 | const std::negative_binomial_distribution<_IntType1>& __x); |
4353 | |
4354 | /** |
4355 | * @brief Extracts a %negative_binomial_distribution random number |
4356 | * distribution @p __x from the input stream @p __is. |
4357 | * |
4358 | * @param __is An input stream. |
4359 | * @param __x A %negative_binomial_distribution random number |
4360 | * generator engine. |
4361 | * |
4362 | * @returns The input stream with @p __x extracted or in an error state. |
4363 | */ |
4364 | template<typename _IntType1, typename _CharT, typename _Traits> |
4365 | friend std::basic_istream<_CharT, _Traits>& |
4366 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4367 | std::negative_binomial_distribution<_IntType1>& __x); |
4368 | |
4369 | private: |
4370 | template<typename _ForwardIterator, |
4371 | typename _UniformRandomNumberGenerator> |
4372 | void |
4373 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4374 | _UniformRandomNumberGenerator& __urng); |
4375 | template<typename _ForwardIterator, |
4376 | typename _UniformRandomNumberGenerator> |
4377 | void |
4378 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4379 | _UniformRandomNumberGenerator& __urng, |
4380 | const param_type& __p); |
4381 | |
4382 | param_type _M_param; |
4383 | |
4384 | std::gamma_distribution<double> _M_gd; |
4385 | }; |
4386 | |
4387 | /** |
4388 | * @brief Return true if two negative binomial distributions are different. |
4389 | */ |
4390 | template<typename _IntType> |
4391 | inline bool |
4392 | operator!=(const std::negative_binomial_distribution<_IntType>& __d1, |
4393 | const std::negative_binomial_distribution<_IntType>& __d2) |
4394 | { return !(__d1 == __d2); } |
4395 | |
4396 | |
4397 | /// @} group random_distributions_bernoulli |
4398 | |
4399 | /** |
4400 | * @addtogroup random_distributions_poisson Poisson Distributions |
4401 | * @ingroup random_distributions |
4402 | * @{ |
4403 | */ |
4404 | |
4405 | /** |
4406 | * @brief A discrete Poisson random number distribution. |
4407 | * |
4408 | * The formula for the Poisson probability density function is |
4409 | * @f$p(i|\mu) = \frac{\mu^i}{i!} e^{-\mu}@f$ where @f$\mu@f$ is the |
4410 | * parameter of the distribution. |
4411 | */ |
4412 | template<typename _IntType = int> |
4413 | class poisson_distribution |
4414 | { |
4415 | static_assert(std::is_integral<_IntType>::value, |
4416 | "result_type must be an integral type" ); |
4417 | |
4418 | public: |
4419 | /** The type of the range of the distribution. */ |
4420 | typedef _IntType result_type; |
4421 | |
4422 | /** Parameter type. */ |
4423 | struct param_type |
4424 | { |
4425 | typedef poisson_distribution<_IntType> distribution_type; |
4426 | friend class poisson_distribution<_IntType>; |
4427 | |
4428 | param_type() : param_type(1.0) { } |
4429 | |
4430 | explicit |
4431 | param_type(double __mean) |
4432 | : _M_mean(__mean) |
4433 | { |
4434 | __glibcxx_assert(_M_mean > 0.0); |
4435 | _M_initialize(); |
4436 | } |
4437 | |
4438 | double |
4439 | mean() const |
4440 | { return _M_mean; } |
4441 | |
4442 | friend bool |
4443 | operator==(const param_type& __p1, const param_type& __p2) |
4444 | { return __p1._M_mean == __p2._M_mean; } |
4445 | |
4446 | friend bool |
4447 | operator!=(const param_type& __p1, const param_type& __p2) |
4448 | { return !(__p1 == __p2); } |
4449 | |
4450 | private: |
4451 | // Hosts either log(mean) or the threshold of the simple method. |
4452 | void |
4453 | _M_initialize(); |
4454 | |
4455 | double _M_mean; |
4456 | |
4457 | double _M_lm_thr; |
4458 | #if _GLIBCXX_USE_C99_MATH_TR1 |
4459 | double _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb; |
4460 | #endif |
4461 | }; |
4462 | |
4463 | // constructors and member functions |
4464 | |
4465 | poisson_distribution() : poisson_distribution(1.0) { } |
4466 | |
4467 | explicit |
4468 | poisson_distribution(double __mean) |
4469 | : _M_param(__mean), _M_nd() |
4470 | { } |
4471 | |
4472 | explicit |
4473 | poisson_distribution(const param_type& __p) |
4474 | : _M_param(__p), _M_nd() |
4475 | { } |
4476 | |
4477 | /** |
4478 | * @brief Resets the distribution state. |
4479 | */ |
4480 | void |
4481 | reset() |
4482 | { _M_nd.reset(); } |
4483 | |
4484 | /** |
4485 | * @brief Returns the distribution parameter @p mean. |
4486 | */ |
4487 | double |
4488 | mean() const |
4489 | { return _M_param.mean(); } |
4490 | |
4491 | /** |
4492 | * @brief Returns the parameter set of the distribution. |
4493 | */ |
4494 | param_type |
4495 | param() const |
4496 | { return _M_param; } |
4497 | |
4498 | /** |
4499 | * @brief Sets the parameter set of the distribution. |
4500 | * @param __param The new parameter set of the distribution. |
4501 | */ |
4502 | void |
4503 | param(const param_type& __param) |
4504 | { _M_param = __param; } |
4505 | |
4506 | /** |
4507 | * @brief Returns the greatest lower bound value of the distribution. |
4508 | */ |
4509 | result_type |
4510 | min() const |
4511 | { return 0; } |
4512 | |
4513 | /** |
4514 | * @brief Returns the least upper bound value of the distribution. |
4515 | */ |
4516 | result_type |
4517 | max() const |
4518 | { return std::numeric_limits<result_type>::max(); } |
4519 | |
4520 | /** |
4521 | * @brief Generating functions. |
4522 | */ |
4523 | template<typename _UniformRandomNumberGenerator> |
4524 | result_type |
4525 | operator()(_UniformRandomNumberGenerator& __urng) |
4526 | { return this->operator()(__urng, _M_param); } |
4527 | |
4528 | template<typename _UniformRandomNumberGenerator> |
4529 | result_type |
4530 | operator()(_UniformRandomNumberGenerator& __urng, |
4531 | const param_type& __p); |
4532 | |
4533 | template<typename _ForwardIterator, |
4534 | typename _UniformRandomNumberGenerator> |
4535 | void |
4536 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4537 | _UniformRandomNumberGenerator& __urng) |
4538 | { this->__generate(__f, __t, __urng, _M_param); } |
4539 | |
4540 | template<typename _ForwardIterator, |
4541 | typename _UniformRandomNumberGenerator> |
4542 | void |
4543 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4544 | _UniformRandomNumberGenerator& __urng, |
4545 | const param_type& __p) |
4546 | { this->__generate_impl(__f, __t, __urng, __p); } |
4547 | |
4548 | template<typename _UniformRandomNumberGenerator> |
4549 | void |
4550 | __generate(result_type* __f, result_type* __t, |
4551 | _UniformRandomNumberGenerator& __urng, |
4552 | const param_type& __p) |
4553 | { this->__generate_impl(__f, __t, __urng, __p); } |
4554 | |
4555 | /** |
4556 | * @brief Return true if two Poisson distributions have the same |
4557 | * parameters and the sequences that would be generated |
4558 | * are equal. |
4559 | */ |
4560 | friend bool |
4561 | operator==(const poisson_distribution& __d1, |
4562 | const poisson_distribution& __d2) |
4563 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
4564 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
4565 | #else |
4566 | { return __d1._M_param == __d2._M_param; } |
4567 | #endif |
4568 | |
4569 | /** |
4570 | * @brief Inserts a %poisson_distribution random number distribution |
4571 | * @p __x into the output stream @p __os. |
4572 | * |
4573 | * @param __os An output stream. |
4574 | * @param __x A %poisson_distribution random number distribution. |
4575 | * |
4576 | * @returns The output stream with the state of @p __x inserted or in |
4577 | * an error state. |
4578 | */ |
4579 | template<typename _IntType1, typename _CharT, typename _Traits> |
4580 | friend std::basic_ostream<_CharT, _Traits>& |
4581 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4582 | const std::poisson_distribution<_IntType1>& __x); |
4583 | |
4584 | /** |
4585 | * @brief Extracts a %poisson_distribution random number distribution |
4586 | * @p __x from the input stream @p __is. |
4587 | * |
4588 | * @param __is An input stream. |
4589 | * @param __x A %poisson_distribution random number generator engine. |
4590 | * |
4591 | * @returns The input stream with @p __x extracted or in an error |
4592 | * state. |
4593 | */ |
4594 | template<typename _IntType1, typename _CharT, typename _Traits> |
4595 | friend std::basic_istream<_CharT, _Traits>& |
4596 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4597 | std::poisson_distribution<_IntType1>& __x); |
4598 | |
4599 | private: |
4600 | template<typename _ForwardIterator, |
4601 | typename _UniformRandomNumberGenerator> |
4602 | void |
4603 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4604 | _UniformRandomNumberGenerator& __urng, |
4605 | const param_type& __p); |
4606 | |
4607 | param_type _M_param; |
4608 | |
4609 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
4610 | std::normal_distribution<double> _M_nd; |
4611 | }; |
4612 | |
4613 | /** |
4614 | * @brief Return true if two Poisson distributions are different. |
4615 | */ |
4616 | template<typename _IntType> |
4617 | inline bool |
4618 | operator!=(const std::poisson_distribution<_IntType>& __d1, |
4619 | const std::poisson_distribution<_IntType>& __d2) |
4620 | { return !(__d1 == __d2); } |
4621 | |
4622 | |
4623 | /** |
4624 | * @brief An exponential continuous distribution for random numbers. |
4625 | * |
4626 | * The formula for the exponential probability density function is |
4627 | * @f$p(x|\lambda) = \lambda e^{-\lambda x}@f$. |
4628 | * |
4629 | * <table border=1 cellpadding=10 cellspacing=0> |
4630 | * <caption align=top>Distribution Statistics</caption> |
4631 | * <tr><td>Mean</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
4632 | * <tr><td>Median</td><td>@f$\frac{\ln 2}{\lambda}@f$</td></tr> |
4633 | * <tr><td>Mode</td><td>@f$zero@f$</td></tr> |
4634 | * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr> |
4635 | * <tr><td>Standard Deviation</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
4636 | * </table> |
4637 | */ |
4638 | template<typename _RealType = double> |
4639 | class exponential_distribution |
4640 | { |
4641 | static_assert(std::is_floating_point<_RealType>::value, |
4642 | "result_type must be a floating point type" ); |
4643 | |
4644 | public: |
4645 | /** The type of the range of the distribution. */ |
4646 | typedef _RealType result_type; |
4647 | |
4648 | /** Parameter type. */ |
4649 | struct param_type |
4650 | { |
4651 | typedef exponential_distribution<_RealType> distribution_type; |
4652 | |
4653 | param_type() : param_type(1.0) { } |
4654 | |
4655 | explicit |
4656 | param_type(_RealType __lambda) |
4657 | : _M_lambda(__lambda) |
4658 | { |
4659 | __glibcxx_assert(_M_lambda > _RealType(0)); |
4660 | } |
4661 | |
4662 | _RealType |
4663 | lambda() const |
4664 | { return _M_lambda; } |
4665 | |
4666 | friend bool |
4667 | operator==(const param_type& __p1, const param_type& __p2) |
4668 | { return __p1._M_lambda == __p2._M_lambda; } |
4669 | |
4670 | friend bool |
4671 | operator!=(const param_type& __p1, const param_type& __p2) |
4672 | { return !(__p1 == __p2); } |
4673 | |
4674 | private: |
4675 | _RealType _M_lambda; |
4676 | }; |
4677 | |
4678 | public: |
4679 | /** |
4680 | * @brief Constructs an exponential distribution with inverse scale |
4681 | * parameter 1.0 |
4682 | */ |
4683 | exponential_distribution() : exponential_distribution(1.0) { } |
4684 | |
4685 | /** |
4686 | * @brief Constructs an exponential distribution with inverse scale |
4687 | * parameter @f$\lambda@f$. |
4688 | */ |
4689 | explicit |
4690 | exponential_distribution(_RealType __lambda) |
4691 | : _M_param(__lambda) |
4692 | { } |
4693 | |
4694 | explicit |
4695 | exponential_distribution(const param_type& __p) |
4696 | : _M_param(__p) |
4697 | { } |
4698 | |
4699 | /** |
4700 | * @brief Resets the distribution state. |
4701 | * |
4702 | * Has no effect on exponential distributions. |
4703 | */ |
4704 | void |
4705 | reset() { } |
4706 | |
4707 | /** |
4708 | * @brief Returns the inverse scale parameter of the distribution. |
4709 | */ |
4710 | _RealType |
4711 | lambda() const |
4712 | { return _M_param.lambda(); } |
4713 | |
4714 | /** |
4715 | * @brief Returns the parameter set of the distribution. |
4716 | */ |
4717 | param_type |
4718 | param() const |
4719 | { return _M_param; } |
4720 | |
4721 | /** |
4722 | * @brief Sets the parameter set of the distribution. |
4723 | * @param __param The new parameter set of the distribution. |
4724 | */ |
4725 | void |
4726 | param(const param_type& __param) |
4727 | { _M_param = __param; } |
4728 | |
4729 | /** |
4730 | * @brief Returns the greatest lower bound value of the distribution. |
4731 | */ |
4732 | result_type |
4733 | min() const |
4734 | { return result_type(0); } |
4735 | |
4736 | /** |
4737 | * @brief Returns the least upper bound value of the distribution. |
4738 | */ |
4739 | result_type |
4740 | max() const |
4741 | { return std::numeric_limits<result_type>::max(); } |
4742 | |
4743 | /** |
4744 | * @brief Generating functions. |
4745 | */ |
4746 | template<typename _UniformRandomNumberGenerator> |
4747 | result_type |
4748 | operator()(_UniformRandomNumberGenerator& __urng) |
4749 | { return this->operator()(__urng, _M_param); } |
4750 | |
4751 | template<typename _UniformRandomNumberGenerator> |
4752 | result_type |
4753 | operator()(_UniformRandomNumberGenerator& __urng, |
4754 | const param_type& __p) |
4755 | { |
4756 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
4757 | __aurng(__urng); |
4758 | return -std::log(result_type(1) - __aurng()) / __p.lambda(); |
4759 | } |
4760 | |
4761 | template<typename _ForwardIterator, |
4762 | typename _UniformRandomNumberGenerator> |
4763 | void |
4764 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4765 | _UniformRandomNumberGenerator& __urng) |
4766 | { this->__generate(__f, __t, __urng, _M_param); } |
4767 | |
4768 | template<typename _ForwardIterator, |
4769 | typename _UniformRandomNumberGenerator> |
4770 | void |
4771 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4772 | _UniformRandomNumberGenerator& __urng, |
4773 | const param_type& __p) |
4774 | { this->__generate_impl(__f, __t, __urng, __p); } |
4775 | |
4776 | template<typename _UniformRandomNumberGenerator> |
4777 | void |
4778 | __generate(result_type* __f, result_type* __t, |
4779 | _UniformRandomNumberGenerator& __urng, |
4780 | const param_type& __p) |
4781 | { this->__generate_impl(__f, __t, __urng, __p); } |
4782 | |
4783 | /** |
4784 | * @brief Return true if two exponential distributions have the same |
4785 | * parameters. |
4786 | */ |
4787 | friend bool |
4788 | operator==(const exponential_distribution& __d1, |
4789 | const exponential_distribution& __d2) |
4790 | { return __d1._M_param == __d2._M_param; } |
4791 | |
4792 | private: |
4793 | template<typename _ForwardIterator, |
4794 | typename _UniformRandomNumberGenerator> |
4795 | void |
4796 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4797 | _UniformRandomNumberGenerator& __urng, |
4798 | const param_type& __p); |
4799 | |
4800 | param_type _M_param; |
4801 | }; |
4802 | |
4803 | /** |
4804 | * @brief Return true if two exponential distributions have different |
4805 | * parameters. |
4806 | */ |
4807 | template<typename _RealType> |
4808 | inline bool |
4809 | operator!=(const std::exponential_distribution<_RealType>& __d1, |
4810 | const std::exponential_distribution<_RealType>& __d2) |
4811 | { return !(__d1 == __d2); } |
4812 | |
4813 | /** |
4814 | * @brief Inserts a %exponential_distribution random number distribution |
4815 | * @p __x into the output stream @p __os. |
4816 | * |
4817 | * @param __os An output stream. |
4818 | * @param __x A %exponential_distribution random number distribution. |
4819 | * |
4820 | * @returns The output stream with the state of @p __x inserted or in |
4821 | * an error state. |
4822 | */ |
4823 | template<typename _RealType, typename _CharT, typename _Traits> |
4824 | std::basic_ostream<_CharT, _Traits>& |
4825 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4826 | const std::exponential_distribution<_RealType>& __x); |
4827 | |
4828 | /** |
4829 | * @brief Extracts a %exponential_distribution random number distribution |
4830 | * @p __x from the input stream @p __is. |
4831 | * |
4832 | * @param __is An input stream. |
4833 | * @param __x A %exponential_distribution random number |
4834 | * generator engine. |
4835 | * |
4836 | * @returns The input stream with @p __x extracted or in an error state. |
4837 | */ |
4838 | template<typename _RealType, typename _CharT, typename _Traits> |
4839 | std::basic_istream<_CharT, _Traits>& |
4840 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4841 | std::exponential_distribution<_RealType>& __x); |
4842 | |
4843 | |
4844 | /** |
4845 | * @brief A weibull_distribution random number distribution. |
4846 | * |
4847 | * The formula for the normal probability density function is: |
4848 | * @f[ |
4849 | * p(x|\alpha,\beta) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1} |
4850 | * \exp{(-(\frac{x}{\beta})^\alpha)} |
4851 | * @f] |
4852 | */ |
4853 | template<typename _RealType = double> |
4854 | class weibull_distribution |
4855 | { |
4856 | static_assert(std::is_floating_point<_RealType>::value, |
4857 | "result_type must be a floating point type" ); |
4858 | |
4859 | public: |
4860 | /** The type of the range of the distribution. */ |
4861 | typedef _RealType result_type; |
4862 | |
4863 | /** Parameter type. */ |
4864 | struct param_type |
4865 | { |
4866 | typedef weibull_distribution<_RealType> distribution_type; |
4867 | |
4868 | param_type() : param_type(1.0) { } |
4869 | |
4870 | explicit |
4871 | param_type(_RealType __a, _RealType __b = _RealType(1.0)) |
4872 | : _M_a(__a), _M_b(__b) |
4873 | { } |
4874 | |
4875 | _RealType |
4876 | a() const |
4877 | { return _M_a; } |
4878 | |
4879 | _RealType |
4880 | b() const |
4881 | { return _M_b; } |
4882 | |
4883 | friend bool |
4884 | operator==(const param_type& __p1, const param_type& __p2) |
4885 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
4886 | |
4887 | friend bool |
4888 | operator!=(const param_type& __p1, const param_type& __p2) |
4889 | { return !(__p1 == __p2); } |
4890 | |
4891 | private: |
4892 | _RealType _M_a; |
4893 | _RealType _M_b; |
4894 | }; |
4895 | |
4896 | weibull_distribution() : weibull_distribution(1.0) { } |
4897 | |
4898 | explicit |
4899 | weibull_distribution(_RealType __a, _RealType __b = _RealType(1)) |
4900 | : _M_param(__a, __b) |
4901 | { } |
4902 | |
4903 | explicit |
4904 | weibull_distribution(const param_type& __p) |
4905 | : _M_param(__p) |
4906 | { } |
4907 | |
4908 | /** |
4909 | * @brief Resets the distribution state. |
4910 | */ |
4911 | void |
4912 | reset() |
4913 | { } |
4914 | |
4915 | /** |
4916 | * @brief Return the @f$a@f$ parameter of the distribution. |
4917 | */ |
4918 | _RealType |
4919 | a() const |
4920 | { return _M_param.a(); } |
4921 | |
4922 | /** |
4923 | * @brief Return the @f$b@f$ parameter of the distribution. |
4924 | */ |
4925 | _RealType |
4926 | b() const |
4927 | { return _M_param.b(); } |
4928 | |
4929 | /** |
4930 | * @brief Returns the parameter set of the distribution. |
4931 | */ |
4932 | param_type |
4933 | param() const |
4934 | { return _M_param; } |
4935 | |
4936 | /** |
4937 | * @brief Sets the parameter set of the distribution. |
4938 | * @param __param The new parameter set of the distribution. |
4939 | */ |
4940 | void |
4941 | param(const param_type& __param) |
4942 | { _M_param = __param; } |
4943 | |
4944 | /** |
4945 | * @brief Returns the greatest lower bound value of the distribution. |
4946 | */ |
4947 | result_type |
4948 | min() const |
4949 | { return result_type(0); } |
4950 | |
4951 | /** |
4952 | * @brief Returns the least upper bound value of the distribution. |
4953 | */ |
4954 | result_type |
4955 | max() const |
4956 | { return std::numeric_limits<result_type>::max(); } |
4957 | |
4958 | /** |
4959 | * @brief Generating functions. |
4960 | */ |
4961 | template<typename _UniformRandomNumberGenerator> |
4962 | result_type |
4963 | operator()(_UniformRandomNumberGenerator& __urng) |
4964 | { return this->operator()(__urng, _M_param); } |
4965 | |
4966 | template<typename _UniformRandomNumberGenerator> |
4967 | result_type |
4968 | operator()(_UniformRandomNumberGenerator& __urng, |
4969 | const param_type& __p); |
4970 | |
4971 | template<typename _ForwardIterator, |
4972 | typename _UniformRandomNumberGenerator> |
4973 | void |
4974 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4975 | _UniformRandomNumberGenerator& __urng) |
4976 | { this->__generate(__f, __t, __urng, _M_param); } |
4977 | |
4978 | template<typename _ForwardIterator, |
4979 | typename _UniformRandomNumberGenerator> |
4980 | void |
4981 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4982 | _UniformRandomNumberGenerator& __urng, |
4983 | const param_type& __p) |
4984 | { this->__generate_impl(__f, __t, __urng, __p); } |
4985 | |
4986 | template<typename _UniformRandomNumberGenerator> |
4987 | void |
4988 | __generate(result_type* __f, result_type* __t, |
4989 | _UniformRandomNumberGenerator& __urng, |
4990 | const param_type& __p) |
4991 | { this->__generate_impl(__f, __t, __urng, __p); } |
4992 | |
4993 | /** |
4994 | * @brief Return true if two Weibull distributions have the same |
4995 | * parameters. |
4996 | */ |
4997 | friend bool |
4998 | operator==(const weibull_distribution& __d1, |
4999 | const weibull_distribution& __d2) |
5000 | { return __d1._M_param == __d2._M_param; } |
5001 | |
5002 | private: |
5003 | template<typename _ForwardIterator, |
5004 | typename _UniformRandomNumberGenerator> |
5005 | void |
5006 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5007 | _UniformRandomNumberGenerator& __urng, |
5008 | const param_type& __p); |
5009 | |
5010 | param_type _M_param; |
5011 | }; |
5012 | |
5013 | /** |
5014 | * @brief Return true if two Weibull distributions have different |
5015 | * parameters. |
5016 | */ |
5017 | template<typename _RealType> |
5018 | inline bool |
5019 | operator!=(const std::weibull_distribution<_RealType>& __d1, |
5020 | const std::weibull_distribution<_RealType>& __d2) |
5021 | { return !(__d1 == __d2); } |
5022 | |
5023 | /** |
5024 | * @brief Inserts a %weibull_distribution random number distribution |
5025 | * @p __x into the output stream @p __os. |
5026 | * |
5027 | * @param __os An output stream. |
5028 | * @param __x A %weibull_distribution random number distribution. |
5029 | * |
5030 | * @returns The output stream with the state of @p __x inserted or in |
5031 | * an error state. |
5032 | */ |
5033 | template<typename _RealType, typename _CharT, typename _Traits> |
5034 | std::basic_ostream<_CharT, _Traits>& |
5035 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5036 | const std::weibull_distribution<_RealType>& __x); |
5037 | |
5038 | /** |
5039 | * @brief Extracts a %weibull_distribution random number distribution |
5040 | * @p __x from the input stream @p __is. |
5041 | * |
5042 | * @param __is An input stream. |
5043 | * @param __x A %weibull_distribution random number |
5044 | * generator engine. |
5045 | * |
5046 | * @returns The input stream with @p __x extracted or in an error state. |
5047 | */ |
5048 | template<typename _RealType, typename _CharT, typename _Traits> |
5049 | std::basic_istream<_CharT, _Traits>& |
5050 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5051 | std::weibull_distribution<_RealType>& __x); |
5052 | |
5053 | |
5054 | /** |
5055 | * @brief A extreme_value_distribution random number distribution. |
5056 | * |
5057 | * The formula for the normal probability mass function is |
5058 | * @f[ |
5059 | * p(x|a,b) = \frac{1}{b} |
5060 | * \exp( \frac{a-x}{b} - \exp(\frac{a-x}{b})) |
5061 | * @f] |
5062 | */ |
5063 | template<typename _RealType = double> |
5064 | class extreme_value_distribution |
5065 | { |
5066 | static_assert(std::is_floating_point<_RealType>::value, |
5067 | "result_type must be a floating point type" ); |
5068 | |
5069 | public: |
5070 | /** The type of the range of the distribution. */ |
5071 | typedef _RealType result_type; |
5072 | |
5073 | /** Parameter type. */ |
5074 | struct param_type |
5075 | { |
5076 | typedef extreme_value_distribution<_RealType> distribution_type; |
5077 | |
5078 | param_type() : param_type(0.0) { } |
5079 | |
5080 | explicit |
5081 | param_type(_RealType __a, _RealType __b = _RealType(1.0)) |
5082 | : _M_a(__a), _M_b(__b) |
5083 | { } |
5084 | |
5085 | _RealType |
5086 | a() const |
5087 | { return _M_a; } |
5088 | |
5089 | _RealType |
5090 | b() const |
5091 | { return _M_b; } |
5092 | |
5093 | friend bool |
5094 | operator==(const param_type& __p1, const param_type& __p2) |
5095 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
5096 | |
5097 | friend bool |
5098 | operator!=(const param_type& __p1, const param_type& __p2) |
5099 | { return !(__p1 == __p2); } |
5100 | |
5101 | private: |
5102 | _RealType _M_a; |
5103 | _RealType _M_b; |
5104 | }; |
5105 | |
5106 | extreme_value_distribution() : extreme_value_distribution(0.0) { } |
5107 | |
5108 | explicit |
5109 | extreme_value_distribution(_RealType __a, _RealType __b = _RealType(1)) |
5110 | : _M_param(__a, __b) |
5111 | { } |
5112 | |
5113 | explicit |
5114 | extreme_value_distribution(const param_type& __p) |
5115 | : _M_param(__p) |
5116 | { } |
5117 | |
5118 | /** |
5119 | * @brief Resets the distribution state. |
5120 | */ |
5121 | void |
5122 | reset() |
5123 | { } |
5124 | |
5125 | /** |
5126 | * @brief Return the @f$a@f$ parameter of the distribution. |
5127 | */ |
5128 | _RealType |
5129 | a() const |
5130 | { return _M_param.a(); } |
5131 | |
5132 | /** |
5133 | * @brief Return the @f$b@f$ parameter of the distribution. |
5134 | */ |
5135 | _RealType |
5136 | b() const |
5137 | { return _M_param.b(); } |
5138 | |
5139 | /** |
5140 | * @brief Returns the parameter set of the distribution. |
5141 | */ |
5142 | param_type |
5143 | param() const |
5144 | { return _M_param; } |
5145 | |
5146 | /** |
5147 | * @brief Sets the parameter set of the distribution. |
5148 | * @param __param The new parameter set of the distribution. |
5149 | */ |
5150 | void |
5151 | param(const param_type& __param) |
5152 | { _M_param = __param; } |
5153 | |
5154 | /** |
5155 | * @brief Returns the greatest lower bound value of the distribution. |
5156 | */ |
5157 | result_type |
5158 | min() const |
5159 | { return std::numeric_limits<result_type>::lowest(); } |
5160 | |
5161 | /** |
5162 | * @brief Returns the least upper bound value of the distribution. |
5163 | */ |
5164 | result_type |
5165 | max() const |
5166 | { return std::numeric_limits<result_type>::max(); } |
5167 | |
5168 | /** |
5169 | * @brief Generating functions. |
5170 | */ |
5171 | template<typename _UniformRandomNumberGenerator> |
5172 | result_type |
5173 | operator()(_UniformRandomNumberGenerator& __urng) |
5174 | { return this->operator()(__urng, _M_param); } |
5175 | |
5176 | template<typename _UniformRandomNumberGenerator> |
5177 | result_type |
5178 | operator()(_UniformRandomNumberGenerator& __urng, |
5179 | const param_type& __p); |
5180 | |
5181 | template<typename _ForwardIterator, |
5182 | typename _UniformRandomNumberGenerator> |
5183 | void |
5184 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5185 | _UniformRandomNumberGenerator& __urng) |
5186 | { this->__generate(__f, __t, __urng, _M_param); } |
5187 | |
5188 | template<typename _ForwardIterator, |
5189 | typename _UniformRandomNumberGenerator> |
5190 | void |
5191 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5192 | _UniformRandomNumberGenerator& __urng, |
5193 | const param_type& __p) |
5194 | { this->__generate_impl(__f, __t, __urng, __p); } |
5195 | |
5196 | template<typename _UniformRandomNumberGenerator> |
5197 | void |
5198 | __generate(result_type* __f, result_type* __t, |
5199 | _UniformRandomNumberGenerator& __urng, |
5200 | const param_type& __p) |
5201 | { this->__generate_impl(__f, __t, __urng, __p); } |
5202 | |
5203 | /** |
5204 | * @brief Return true if two extreme value distributions have the same |
5205 | * parameters. |
5206 | */ |
5207 | friend bool |
5208 | operator==(const extreme_value_distribution& __d1, |
5209 | const extreme_value_distribution& __d2) |
5210 | { return __d1._M_param == __d2._M_param; } |
5211 | |
5212 | private: |
5213 | template<typename _ForwardIterator, |
5214 | typename _UniformRandomNumberGenerator> |
5215 | void |
5216 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5217 | _UniformRandomNumberGenerator& __urng, |
5218 | const param_type& __p); |
5219 | |
5220 | param_type _M_param; |
5221 | }; |
5222 | |
5223 | /** |
5224 | * @brief Return true if two extreme value distributions have different |
5225 | * parameters. |
5226 | */ |
5227 | template<typename _RealType> |
5228 | inline bool |
5229 | operator!=(const std::extreme_value_distribution<_RealType>& __d1, |
5230 | const std::extreme_value_distribution<_RealType>& __d2) |
5231 | { return !(__d1 == __d2); } |
5232 | |
5233 | /** |
5234 | * @brief Inserts a %extreme_value_distribution random number distribution |
5235 | * @p __x into the output stream @p __os. |
5236 | * |
5237 | * @param __os An output stream. |
5238 | * @param __x A %extreme_value_distribution random number distribution. |
5239 | * |
5240 | * @returns The output stream with the state of @p __x inserted or in |
5241 | * an error state. |
5242 | */ |
5243 | template<typename _RealType, typename _CharT, typename _Traits> |
5244 | std::basic_ostream<_CharT, _Traits>& |
5245 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5246 | const std::extreme_value_distribution<_RealType>& __x); |
5247 | |
5248 | /** |
5249 | * @brief Extracts a %extreme_value_distribution random number |
5250 | * distribution @p __x from the input stream @p __is. |
5251 | * |
5252 | * @param __is An input stream. |
5253 | * @param __x A %extreme_value_distribution random number |
5254 | * generator engine. |
5255 | * |
5256 | * @returns The input stream with @p __x extracted or in an error state. |
5257 | */ |
5258 | template<typename _RealType, typename _CharT, typename _Traits> |
5259 | std::basic_istream<_CharT, _Traits>& |
5260 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5261 | std::extreme_value_distribution<_RealType>& __x); |
5262 | |
5263 | |
5264 | /** |
5265 | * @brief A discrete_distribution random number distribution. |
5266 | * |
5267 | * The formula for the discrete probability mass function is |
5268 | * |
5269 | */ |
5270 | template<typename _IntType = int> |
5271 | class discrete_distribution |
5272 | { |
5273 | static_assert(std::is_integral<_IntType>::value, |
5274 | "result_type must be an integral type" ); |
5275 | |
5276 | public: |
5277 | /** The type of the range of the distribution. */ |
5278 | typedef _IntType result_type; |
5279 | |
5280 | /** Parameter type. */ |
5281 | struct param_type |
5282 | { |
5283 | typedef discrete_distribution<_IntType> distribution_type; |
5284 | friend class discrete_distribution<_IntType>; |
5285 | |
5286 | param_type() |
5287 | : _M_prob(), _M_cp() |
5288 | { } |
5289 | |
5290 | template<typename _InputIterator> |
5291 | param_type(_InputIterator __wbegin, |
5292 | _InputIterator __wend) |
5293 | : _M_prob(__wbegin, __wend), _M_cp() |
5294 | { _M_initialize(); } |
5295 | |
5296 | param_type(initializer_list<double> __wil) |
5297 | : _M_prob(__wil.begin(), __wil.end()), _M_cp() |
5298 | { _M_initialize(); } |
5299 | |
5300 | template<typename _Func> |
5301 | param_type(size_t __nw, double __xmin, double __xmax, |
5302 | _Func __fw); |
5303 | |
5304 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
5305 | param_type(const param_type&) = default; |
5306 | param_type& operator=(const param_type&) = default; |
5307 | |
5308 | std::vector<double> |
5309 | probabilities() const |
5310 | { return _M_prob.empty() ? std::vector<double>(1, 1.0) : _M_prob; } |
5311 | |
5312 | friend bool |
5313 | operator==(const param_type& __p1, const param_type& __p2) |
5314 | { return __p1._M_prob == __p2._M_prob; } |
5315 | |
5316 | friend bool |
5317 | operator!=(const param_type& __p1, const param_type& __p2) |
5318 | { return !(__p1 == __p2); } |
5319 | |
5320 | private: |
5321 | void |
5322 | _M_initialize(); |
5323 | |
5324 | std::vector<double> _M_prob; |
5325 | std::vector<double> _M_cp; |
5326 | }; |
5327 | |
5328 | discrete_distribution() |
5329 | : _M_param() |
5330 | { } |
5331 | |
5332 | template<typename _InputIterator> |
5333 | discrete_distribution(_InputIterator __wbegin, |
5334 | _InputIterator __wend) |
5335 | : _M_param(__wbegin, __wend) |
5336 | { } |
5337 | |
5338 | discrete_distribution(initializer_list<double> __wl) |
5339 | : _M_param(__wl) |
5340 | { } |
5341 | |
5342 | template<typename _Func> |
5343 | discrete_distribution(size_t __nw, double __xmin, double __xmax, |
5344 | _Func __fw) |
5345 | : _M_param(__nw, __xmin, __xmax, __fw) |
5346 | { } |
5347 | |
5348 | explicit |
5349 | discrete_distribution(const param_type& __p) |
5350 | : _M_param(__p) |
5351 | { } |
5352 | |
5353 | /** |
5354 | * @brief Resets the distribution state. |
5355 | */ |
5356 | void |
5357 | reset() |
5358 | { } |
5359 | |
5360 | /** |
5361 | * @brief Returns the probabilities of the distribution. |
5362 | */ |
5363 | std::vector<double> |
5364 | probabilities() const |
5365 | { |
5366 | return _M_param._M_prob.empty() |
5367 | ? std::vector<double>(1, 1.0) : _M_param._M_prob; |
5368 | } |
5369 | |
5370 | /** |
5371 | * @brief Returns the parameter set of the distribution. |
5372 | */ |
5373 | param_type |
5374 | param() const |
5375 | { return _M_param; } |
5376 | |
5377 | /** |
5378 | * @brief Sets the parameter set of the distribution. |
5379 | * @param __param The new parameter set of the distribution. |
5380 | */ |
5381 | void |
5382 | param(const param_type& __param) |
5383 | { _M_param = __param; } |
5384 | |
5385 | /** |
5386 | * @brief Returns the greatest lower bound value of the distribution. |
5387 | */ |
5388 | result_type |
5389 | min() const |
5390 | { return result_type(0); } |
5391 | |
5392 | /** |
5393 | * @brief Returns the least upper bound value of the distribution. |
5394 | */ |
5395 | result_type |
5396 | max() const |
5397 | { |
5398 | return _M_param._M_prob.empty() |
5399 | ? result_type(0) : result_type(_M_param._M_prob.size() - 1); |
5400 | } |
5401 | |
5402 | /** |
5403 | * @brief Generating functions. |
5404 | */ |
5405 | template<typename _UniformRandomNumberGenerator> |
5406 | result_type |
5407 | operator()(_UniformRandomNumberGenerator& __urng) |
5408 | { return this->operator()(__urng, _M_param); } |
5409 | |
5410 | template<typename _UniformRandomNumberGenerator> |
5411 | result_type |
5412 | operator()(_UniformRandomNumberGenerator& __urng, |
5413 | const param_type& __p); |
5414 | |
5415 | template<typename _ForwardIterator, |
5416 | typename _UniformRandomNumberGenerator> |
5417 | void |
5418 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5419 | _UniformRandomNumberGenerator& __urng) |
5420 | { this->__generate(__f, __t, __urng, _M_param); } |
5421 | |
5422 | template<typename _ForwardIterator, |
5423 | typename _UniformRandomNumberGenerator> |
5424 | void |
5425 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5426 | _UniformRandomNumberGenerator& __urng, |
5427 | const param_type& __p) |
5428 | { this->__generate_impl(__f, __t, __urng, __p); } |
5429 | |
5430 | template<typename _UniformRandomNumberGenerator> |
5431 | void |
5432 | __generate(result_type* __f, result_type* __t, |
5433 | _UniformRandomNumberGenerator& __urng, |
5434 | const param_type& __p) |
5435 | { this->__generate_impl(__f, __t, __urng, __p); } |
5436 | |
5437 | /** |
5438 | * @brief Return true if two discrete distributions have the same |
5439 | * parameters. |
5440 | */ |
5441 | friend bool |
5442 | operator==(const discrete_distribution& __d1, |
5443 | const discrete_distribution& __d2) |
5444 | { return __d1._M_param == __d2._M_param; } |
5445 | |
5446 | /** |
5447 | * @brief Inserts a %discrete_distribution random number distribution |
5448 | * @p __x into the output stream @p __os. |
5449 | * |
5450 | * @param __os An output stream. |
5451 | * @param __x A %discrete_distribution random number distribution. |
5452 | * |
5453 | * @returns The output stream with the state of @p __x inserted or in |
5454 | * an error state. |
5455 | */ |
5456 | template<typename _IntType1, typename _CharT, typename _Traits> |
5457 | friend std::basic_ostream<_CharT, _Traits>& |
5458 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5459 | const std::discrete_distribution<_IntType1>& __x); |
5460 | |
5461 | /** |
5462 | * @brief Extracts a %discrete_distribution random number distribution |
5463 | * @p __x from the input stream @p __is. |
5464 | * |
5465 | * @param __is An input stream. |
5466 | * @param __x A %discrete_distribution random number |
5467 | * generator engine. |
5468 | * |
5469 | * @returns The input stream with @p __x extracted or in an error |
5470 | * state. |
5471 | */ |
5472 | template<typename _IntType1, typename _CharT, typename _Traits> |
5473 | friend std::basic_istream<_CharT, _Traits>& |
5474 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5475 | std::discrete_distribution<_IntType1>& __x); |
5476 | |
5477 | private: |
5478 | template<typename _ForwardIterator, |
5479 | typename _UniformRandomNumberGenerator> |
5480 | void |
5481 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5482 | _UniformRandomNumberGenerator& __urng, |
5483 | const param_type& __p); |
5484 | |
5485 | param_type _M_param; |
5486 | }; |
5487 | |
5488 | /** |
5489 | * @brief Return true if two discrete distributions have different |
5490 | * parameters. |
5491 | */ |
5492 | template<typename _IntType> |
5493 | inline bool |
5494 | operator!=(const std::discrete_distribution<_IntType>& __d1, |
5495 | const std::discrete_distribution<_IntType>& __d2) |
5496 | { return !(__d1 == __d2); } |
5497 | |
5498 | |
5499 | /** |
5500 | * @brief A piecewise_constant_distribution random number distribution. |
5501 | * |
5502 | * The formula for the piecewise constant probability mass function is |
5503 | * |
5504 | */ |
5505 | template<typename _RealType = double> |
5506 | class piecewise_constant_distribution |
5507 | { |
5508 | static_assert(std::is_floating_point<_RealType>::value, |
5509 | "result_type must be a floating point type" ); |
5510 | |
5511 | public: |
5512 | /** The type of the range of the distribution. */ |
5513 | typedef _RealType result_type; |
5514 | |
5515 | /** Parameter type. */ |
5516 | struct param_type |
5517 | { |
5518 | typedef piecewise_constant_distribution<_RealType> distribution_type; |
5519 | friend class piecewise_constant_distribution<_RealType>; |
5520 | |
5521 | param_type() |
5522 | : _M_int(), _M_den(), _M_cp() |
5523 | { } |
5524 | |
5525 | template<typename _InputIteratorB, typename _InputIteratorW> |
5526 | param_type(_InputIteratorB __bfirst, |
5527 | _InputIteratorB __bend, |
5528 | _InputIteratorW __wbegin); |
5529 | |
5530 | template<typename _Func> |
5531 | param_type(initializer_list<_RealType> __bi, _Func __fw); |
5532 | |
5533 | template<typename _Func> |
5534 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
5535 | _Func __fw); |
5536 | |
5537 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
5538 | param_type(const param_type&) = default; |
5539 | param_type& operator=(const param_type&) = default; |
5540 | |
5541 | std::vector<_RealType> |
5542 | intervals() const |
5543 | { |
5544 | if (_M_int.empty()) |
5545 | { |
5546 | std::vector<_RealType> __tmp(2); |
5547 | __tmp[1] = _RealType(1); |
5548 | return __tmp; |
5549 | } |
5550 | else |
5551 | return _M_int; |
5552 | } |
5553 | |
5554 | std::vector<double> |
5555 | densities() const |
5556 | { return _M_den.empty() ? std::vector<double>(1, 1.0) : _M_den; } |
5557 | |
5558 | friend bool |
5559 | operator==(const param_type& __p1, const param_type& __p2) |
5560 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
5561 | |
5562 | friend bool |
5563 | operator!=(const param_type& __p1, const param_type& __p2) |
5564 | { return !(__p1 == __p2); } |
5565 | |
5566 | private: |
5567 | void |
5568 | _M_initialize(); |
5569 | |
5570 | std::vector<_RealType> _M_int; |
5571 | std::vector<double> _M_den; |
5572 | std::vector<double> _M_cp; |
5573 | }; |
5574 | |
5575 | piecewise_constant_distribution() |
5576 | : _M_param() |
5577 | { } |
5578 | |
5579 | template<typename _InputIteratorB, typename _InputIteratorW> |
5580 | piecewise_constant_distribution(_InputIteratorB __bfirst, |
5581 | _InputIteratorB __bend, |
5582 | _InputIteratorW __wbegin) |
5583 | : _M_param(__bfirst, __bend, __wbegin) |
5584 | { } |
5585 | |
5586 | template<typename _Func> |
5587 | piecewise_constant_distribution(initializer_list<_RealType> __bl, |
5588 | _Func __fw) |
5589 | : _M_param(__bl, __fw) |
5590 | { } |
5591 | |
5592 | template<typename _Func> |
5593 | piecewise_constant_distribution(size_t __nw, |
5594 | _RealType __xmin, _RealType __xmax, |
5595 | _Func __fw) |
5596 | : _M_param(__nw, __xmin, __xmax, __fw) |
5597 | { } |
5598 | |
5599 | explicit |
5600 | piecewise_constant_distribution(const param_type& __p) |
5601 | : _M_param(__p) |
5602 | { } |
5603 | |
5604 | /** |
5605 | * @brief Resets the distribution state. |
5606 | */ |
5607 | void |
5608 | reset() |
5609 | { } |
5610 | |
5611 | /** |
5612 | * @brief Returns a vector of the intervals. |
5613 | */ |
5614 | std::vector<_RealType> |
5615 | intervals() const |
5616 | { |
5617 | if (_M_param._M_int.empty()) |
5618 | { |
5619 | std::vector<_RealType> __tmp(2); |
5620 | __tmp[1] = _RealType(1); |
5621 | return __tmp; |
5622 | } |
5623 | else |
5624 | return _M_param._M_int; |
5625 | } |
5626 | |
5627 | /** |
5628 | * @brief Returns a vector of the probability densities. |
5629 | */ |
5630 | std::vector<double> |
5631 | densities() const |
5632 | { |
5633 | return _M_param._M_den.empty() |
5634 | ? std::vector<double>(1, 1.0) : _M_param._M_den; |
5635 | } |
5636 | |
5637 | /** |
5638 | * @brief Returns the parameter set of the distribution. |
5639 | */ |
5640 | param_type |
5641 | param() const |
5642 | { return _M_param; } |
5643 | |
5644 | /** |
5645 | * @brief Sets the parameter set of the distribution. |
5646 | * @param __param The new parameter set of the distribution. |
5647 | */ |
5648 | void |
5649 | param(const param_type& __param) |
5650 | { _M_param = __param; } |
5651 | |
5652 | /** |
5653 | * @brief Returns the greatest lower bound value of the distribution. |
5654 | */ |
5655 | result_type |
5656 | min() const |
5657 | { |
5658 | return _M_param._M_int.empty() |
5659 | ? result_type(0) : _M_param._M_int.front(); |
5660 | } |
5661 | |
5662 | /** |
5663 | * @brief Returns the least upper bound value of the distribution. |
5664 | */ |
5665 | result_type |
5666 | max() const |
5667 | { |
5668 | return _M_param._M_int.empty() |
5669 | ? result_type(1) : _M_param._M_int.back(); |
5670 | } |
5671 | |
5672 | /** |
5673 | * @brief Generating functions. |
5674 | */ |
5675 | template<typename _UniformRandomNumberGenerator> |
5676 | result_type |
5677 | operator()(_UniformRandomNumberGenerator& __urng) |
5678 | { return this->operator()(__urng, _M_param); } |
5679 | |
5680 | template<typename _UniformRandomNumberGenerator> |
5681 | result_type |
5682 | operator()(_UniformRandomNumberGenerator& __urng, |
5683 | const param_type& __p); |
5684 | |
5685 | template<typename _ForwardIterator, |
5686 | typename _UniformRandomNumberGenerator> |
5687 | void |
5688 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5689 | _UniformRandomNumberGenerator& __urng) |
5690 | { this->__generate(__f, __t, __urng, _M_param); } |
5691 | |
5692 | template<typename _ForwardIterator, |
5693 | typename _UniformRandomNumberGenerator> |
5694 | void |
5695 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5696 | _UniformRandomNumberGenerator& __urng, |
5697 | const param_type& __p) |
5698 | { this->__generate_impl(__f, __t, __urng, __p); } |
5699 | |
5700 | template<typename _UniformRandomNumberGenerator> |
5701 | void |
5702 | __generate(result_type* __f, result_type* __t, |
5703 | _UniformRandomNumberGenerator& __urng, |
5704 | const param_type& __p) |
5705 | { this->__generate_impl(__f, __t, __urng, __p); } |
5706 | |
5707 | /** |
5708 | * @brief Return true if two piecewise constant distributions have the |
5709 | * same parameters. |
5710 | */ |
5711 | friend bool |
5712 | operator==(const piecewise_constant_distribution& __d1, |
5713 | const piecewise_constant_distribution& __d2) |
5714 | { return __d1._M_param == __d2._M_param; } |
5715 | |
5716 | /** |
5717 | * @brief Inserts a %piecewise_constant_distribution random |
5718 | * number distribution @p __x into the output stream @p __os. |
5719 | * |
5720 | * @param __os An output stream. |
5721 | * @param __x A %piecewise_constant_distribution random number |
5722 | * distribution. |
5723 | * |
5724 | * @returns The output stream with the state of @p __x inserted or in |
5725 | * an error state. |
5726 | */ |
5727 | template<typename _RealType1, typename _CharT, typename _Traits> |
5728 | friend std::basic_ostream<_CharT, _Traits>& |
5729 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5730 | const std::piecewise_constant_distribution<_RealType1>& __x); |
5731 | |
5732 | /** |
5733 | * @brief Extracts a %piecewise_constant_distribution random |
5734 | * number distribution @p __x from the input stream @p __is. |
5735 | * |
5736 | * @param __is An input stream. |
5737 | * @param __x A %piecewise_constant_distribution random number |
5738 | * generator engine. |
5739 | * |
5740 | * @returns The input stream with @p __x extracted or in an error |
5741 | * state. |
5742 | */ |
5743 | template<typename _RealType1, typename _CharT, typename _Traits> |
5744 | friend std::basic_istream<_CharT, _Traits>& |
5745 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5746 | std::piecewise_constant_distribution<_RealType1>& __x); |
5747 | |
5748 | private: |
5749 | template<typename _ForwardIterator, |
5750 | typename _UniformRandomNumberGenerator> |
5751 | void |
5752 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5753 | _UniformRandomNumberGenerator& __urng, |
5754 | const param_type& __p); |
5755 | |
5756 | param_type _M_param; |
5757 | }; |
5758 | |
5759 | /** |
5760 | * @brief Return true if two piecewise constant distributions have |
5761 | * different parameters. |
5762 | */ |
5763 | template<typename _RealType> |
5764 | inline bool |
5765 | operator!=(const std::piecewise_constant_distribution<_RealType>& __d1, |
5766 | const std::piecewise_constant_distribution<_RealType>& __d2) |
5767 | { return !(__d1 == __d2); } |
5768 | |
5769 | |
5770 | /** |
5771 | * @brief A piecewise_linear_distribution random number distribution. |
5772 | * |
5773 | * The formula for the piecewise linear probability mass function is |
5774 | * |
5775 | */ |
5776 | template<typename _RealType = double> |
5777 | class piecewise_linear_distribution |
5778 | { |
5779 | static_assert(std::is_floating_point<_RealType>::value, |
5780 | "result_type must be a floating point type" ); |
5781 | |
5782 | public: |
5783 | /** The type of the range of the distribution. */ |
5784 | typedef _RealType result_type; |
5785 | |
5786 | /** Parameter type. */ |
5787 | struct param_type |
5788 | { |
5789 | typedef piecewise_linear_distribution<_RealType> distribution_type; |
5790 | friend class piecewise_linear_distribution<_RealType>; |
5791 | |
5792 | param_type() |
5793 | : _M_int(), _M_den(), _M_cp(), _M_m() |
5794 | { } |
5795 | |
5796 | template<typename _InputIteratorB, typename _InputIteratorW> |
5797 | param_type(_InputIteratorB __bfirst, |
5798 | _InputIteratorB __bend, |
5799 | _InputIteratorW __wbegin); |
5800 | |
5801 | template<typename _Func> |
5802 | param_type(initializer_list<_RealType> __bl, _Func __fw); |
5803 | |
5804 | template<typename _Func> |
5805 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
5806 | _Func __fw); |
5807 | |
5808 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
5809 | param_type(const param_type&) = default; |
5810 | param_type& operator=(const param_type&) = default; |
5811 | |
5812 | std::vector<_RealType> |
5813 | intervals() const |
5814 | { |
5815 | if (_M_int.empty()) |
5816 | { |
5817 | std::vector<_RealType> __tmp(2); |
5818 | __tmp[1] = _RealType(1); |
5819 | return __tmp; |
5820 | } |
5821 | else |
5822 | return _M_int; |
5823 | } |
5824 | |
5825 | std::vector<double> |
5826 | densities() const |
5827 | { return _M_den.empty() ? std::vector<double>(2, 1.0) : _M_den; } |
5828 | |
5829 | friend bool |
5830 | operator==(const param_type& __p1, const param_type& __p2) |
5831 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
5832 | |
5833 | friend bool |
5834 | operator!=(const param_type& __p1, const param_type& __p2) |
5835 | { return !(__p1 == __p2); } |
5836 | |
5837 | private: |
5838 | void |
5839 | _M_initialize(); |
5840 | |
5841 | std::vector<_RealType> _M_int; |
5842 | std::vector<double> _M_den; |
5843 | std::vector<double> _M_cp; |
5844 | std::vector<double> _M_m; |
5845 | }; |
5846 | |
5847 | piecewise_linear_distribution() |
5848 | : _M_param() |
5849 | { } |
5850 | |
5851 | template<typename _InputIteratorB, typename _InputIteratorW> |
5852 | piecewise_linear_distribution(_InputIteratorB __bfirst, |
5853 | _InputIteratorB __bend, |
5854 | _InputIteratorW __wbegin) |
5855 | : _M_param(__bfirst, __bend, __wbegin) |
5856 | { } |
5857 | |
5858 | template<typename _Func> |
5859 | piecewise_linear_distribution(initializer_list<_RealType> __bl, |
5860 | _Func __fw) |
5861 | : _M_param(__bl, __fw) |
5862 | { } |
5863 | |
5864 | template<typename _Func> |
5865 | piecewise_linear_distribution(size_t __nw, |
5866 | _RealType __xmin, _RealType __xmax, |
5867 | _Func __fw) |
5868 | : _M_param(__nw, __xmin, __xmax, __fw) |
5869 | { } |
5870 | |
5871 | explicit |
5872 | piecewise_linear_distribution(const param_type& __p) |
5873 | : _M_param(__p) |
5874 | { } |
5875 | |
5876 | /** |
5877 | * Resets the distribution state. |
5878 | */ |
5879 | void |
5880 | reset() |
5881 | { } |
5882 | |
5883 | /** |
5884 | * @brief Return the intervals of the distribution. |
5885 | */ |
5886 | std::vector<_RealType> |
5887 | intervals() const |
5888 | { |
5889 | if (_M_param._M_int.empty()) |
5890 | { |
5891 | std::vector<_RealType> __tmp(2); |
5892 | __tmp[1] = _RealType(1); |
5893 | return __tmp; |
5894 | } |
5895 | else |
5896 | return _M_param._M_int; |
5897 | } |
5898 | |
5899 | /** |
5900 | * @brief Return a vector of the probability densities of the |
5901 | * distribution. |
5902 | */ |
5903 | std::vector<double> |
5904 | densities() const |
5905 | { |
5906 | return _M_param._M_den.empty() |
5907 | ? std::vector<double>(2, 1.0) : _M_param._M_den; |
5908 | } |
5909 | |
5910 | /** |
5911 | * @brief Returns the parameter set of the distribution. |
5912 | */ |
5913 | param_type |
5914 | param() const |
5915 | { return _M_param; } |
5916 | |
5917 | /** |
5918 | * @brief Sets the parameter set of the distribution. |
5919 | * @param __param The new parameter set of the distribution. |
5920 | */ |
5921 | void |
5922 | param(const param_type& __param) |
5923 | { _M_param = __param; } |
5924 | |
5925 | /** |
5926 | * @brief Returns the greatest lower bound value of the distribution. |
5927 | */ |
5928 | result_type |
5929 | min() const |
5930 | { |
5931 | return _M_param._M_int.empty() |
5932 | ? result_type(0) : _M_param._M_int.front(); |
5933 | } |
5934 | |
5935 | /** |
5936 | * @brief Returns the least upper bound value of the distribution. |
5937 | */ |
5938 | result_type |
5939 | max() const |
5940 | { |
5941 | return _M_param._M_int.empty() |
5942 | ? result_type(1) : _M_param._M_int.back(); |
5943 | } |
5944 | |
5945 | /** |
5946 | * @brief Generating functions. |
5947 | */ |
5948 | template<typename _UniformRandomNumberGenerator> |
5949 | result_type |
5950 | operator()(_UniformRandomNumberGenerator& __urng) |
5951 | { return this->operator()(__urng, _M_param); } |
5952 | |
5953 | template<typename _UniformRandomNumberGenerator> |
5954 | result_type |
5955 | operator()(_UniformRandomNumberGenerator& __urng, |
5956 | const param_type& __p); |
5957 | |
5958 | template<typename _ForwardIterator, |
5959 | typename _UniformRandomNumberGenerator> |
5960 | void |
5961 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5962 | _UniformRandomNumberGenerator& __urng) |
5963 | { this->__generate(__f, __t, __urng, _M_param); } |
5964 | |
5965 | template<typename _ForwardIterator, |
5966 | typename _UniformRandomNumberGenerator> |
5967 | void |
5968 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5969 | _UniformRandomNumberGenerator& __urng, |
5970 | const param_type& __p) |
5971 | { this->__generate_impl(__f, __t, __urng, __p); } |
5972 | |
5973 | template<typename _UniformRandomNumberGenerator> |
5974 | void |
5975 | __generate(result_type* __f, result_type* __t, |
5976 | _UniformRandomNumberGenerator& __urng, |
5977 | const param_type& __p) |
5978 | { this->__generate_impl(__f, __t, __urng, __p); } |
5979 | |
5980 | /** |
5981 | * @brief Return true if two piecewise linear distributions have the |
5982 | * same parameters. |
5983 | */ |
5984 | friend bool |
5985 | operator==(const piecewise_linear_distribution& __d1, |
5986 | const piecewise_linear_distribution& __d2) |
5987 | { return __d1._M_param == __d2._M_param; } |
5988 | |
5989 | /** |
5990 | * @brief Inserts a %piecewise_linear_distribution random number |
5991 | * distribution @p __x into the output stream @p __os. |
5992 | * |
5993 | * @param __os An output stream. |
5994 | * @param __x A %piecewise_linear_distribution random number |
5995 | * distribution. |
5996 | * |
5997 | * @returns The output stream with the state of @p __x inserted or in |
5998 | * an error state. |
5999 | */ |
6000 | template<typename _RealType1, typename _CharT, typename _Traits> |
6001 | friend std::basic_ostream<_CharT, _Traits>& |
6002 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
6003 | const std::piecewise_linear_distribution<_RealType1>& __x); |
6004 | |
6005 | /** |
6006 | * @brief Extracts a %piecewise_linear_distribution random number |
6007 | * distribution @p __x from the input stream @p __is. |
6008 | * |
6009 | * @param __is An input stream. |
6010 | * @param __x A %piecewise_linear_distribution random number |
6011 | * generator engine. |
6012 | * |
6013 | * @returns The input stream with @p __x extracted or in an error |
6014 | * state. |
6015 | */ |
6016 | template<typename _RealType1, typename _CharT, typename _Traits> |
6017 | friend std::basic_istream<_CharT, _Traits>& |
6018 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
6019 | std::piecewise_linear_distribution<_RealType1>& __x); |
6020 | |
6021 | private: |
6022 | template<typename _ForwardIterator, |
6023 | typename _UniformRandomNumberGenerator> |
6024 | void |
6025 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
6026 | _UniformRandomNumberGenerator& __urng, |
6027 | const param_type& __p); |
6028 | |
6029 | param_type _M_param; |
6030 | }; |
6031 | |
6032 | /** |
6033 | * @brief Return true if two piecewise linear distributions have |
6034 | * different parameters. |
6035 | */ |
6036 | template<typename _RealType> |
6037 | inline bool |
6038 | operator!=(const std::piecewise_linear_distribution<_RealType>& __d1, |
6039 | const std::piecewise_linear_distribution<_RealType>& __d2) |
6040 | { return !(__d1 == __d2); } |
6041 | |
6042 | |
6043 | /// @} group random_distributions_poisson |
6044 | |
6045 | /// @} *group random_distributions |
6046 | |
6047 | /** |
6048 | * @addtogroup random_utilities Random Number Utilities |
6049 | * @ingroup random |
6050 | * @{ |
6051 | */ |
6052 | |
6053 | /** |
6054 | * @brief The seed_seq class generates sequences of seeds for random |
6055 | * number generators. |
6056 | */ |
6057 | class seed_seq |
6058 | { |
6059 | public: |
6060 | /** The type of the seed vales. */ |
6061 | typedef uint_least32_t result_type; |
6062 | |
6063 | /** Default constructor. */ |
6064 | seed_seq() noexcept |
6065 | : _M_v() |
6066 | { } |
6067 | |
6068 | template<typename _IntType> |
6069 | seed_seq(std::initializer_list<_IntType> __il); |
6070 | |
6071 | template<typename _InputIterator> |
6072 | seed_seq(_InputIterator __begin, _InputIterator __end); |
6073 | |
6074 | // generating functions |
6075 | template<typename _RandomAccessIterator> |
6076 | void |
6077 | generate(_RandomAccessIterator __begin, _RandomAccessIterator __end); |
6078 | |
6079 | // property functions |
6080 | size_t size() const noexcept |
6081 | { return _M_v.size(); } |
6082 | |
6083 | template<typename _OutputIterator> |
6084 | void |
6085 | param(_OutputIterator __dest) const |
6086 | { std::copy(_M_v.begin(), _M_v.end(), __dest); } |
6087 | |
6088 | // no copy functions |
6089 | seed_seq(const seed_seq&) = delete; |
6090 | seed_seq& operator=(const seed_seq&) = delete; |
6091 | |
6092 | private: |
6093 | std::vector<result_type> _M_v; |
6094 | }; |
6095 | |
6096 | /// @} group random_utilities |
6097 | |
6098 | /// @} group random |
6099 | |
6100 | _GLIBCXX_END_NAMESPACE_VERSION |
6101 | } // namespace std |
6102 | |
6103 | #endif |
6104 | |