1 | /* |
2 | * Copyright (c) 1991, 1993 |
3 | * The Regents of the University of California. All rights reserved. |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * 2. Redistributions in binary form must reproduce the above copyright |
11 | * notice, this list of conditions and the following disclaimer in the |
12 | * documentation and/or other materials provided with the distribution. |
13 | * 3. Neither the name of the University nor the names of its contributors |
14 | * may be used to endorse or promote products derived from this software |
15 | * without specific prior written permission. |
16 | * |
17 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
18 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
19 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
20 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
21 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
22 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
23 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
24 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
25 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
26 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
27 | * SUCH DAMAGE. |
28 | * |
29 | * @(#)queue.h 8.5 (Berkeley) 8/20/94 |
30 | */ |
31 | |
32 | #ifndef _SYS_QUEUE_H_ |
33 | #define _SYS_QUEUE_H_ |
34 | |
35 | /* |
36 | * This file defines five types of data structures: singly-linked lists, |
37 | * lists, simple queues, tail queues, and circular queues. |
38 | * |
39 | * A singly-linked list is headed by a single forward pointer. The |
40 | * elements are singly linked for minimum space and pointer manipulation |
41 | * overhead at the expense of O(n) removal for arbitrary elements. New |
42 | * elements can be added to the list after an existing element or at the |
43 | * head of the list. Elements being removed from the head of the list |
44 | * should use the explicit macro for this purpose for optimum |
45 | * efficiency. A singly-linked list may only be traversed in the forward |
46 | * direction. Singly-linked lists are ideal for applications with large |
47 | * datasets and few or no removals or for implementing a LIFO queue. |
48 | * |
49 | * A list is headed by a single forward pointer (or an array of forward |
50 | * pointers for a hash table header). The elements are doubly linked |
51 | * so that an arbitrary element can be removed without a need to |
52 | * traverse the list. New elements can be added to the list before |
53 | * or after an existing element or at the head of the list. A list |
54 | * may only be traversed in the forward direction. |
55 | * |
56 | * A simple queue is headed by a pair of pointers, one the head of the |
57 | * list and the other to the tail of the list. The elements are singly |
58 | * linked to save space, so elements can only be removed from the |
59 | * head of the list. New elements can be added to the list after |
60 | * an existing element, at the head of the list, or at the end of the |
61 | * list. A simple queue may only be traversed in the forward direction. |
62 | * |
63 | * A tail queue is headed by a pair of pointers, one to the head of the |
64 | * list and the other to the tail of the list. The elements are doubly |
65 | * linked so that an arbitrary element can be removed without a need to |
66 | * traverse the list. New elements can be added to the list before or |
67 | * after an existing element, at the head of the list, or at the end of |
68 | * the list. A tail queue may be traversed in either direction. |
69 | * |
70 | * A circle queue is headed by a pair of pointers, one to the head of the |
71 | * list and the other to the tail of the list. The elements are doubly |
72 | * linked so that an arbitrary element can be removed without a need to |
73 | * traverse the list. New elements can be added to the list before or after |
74 | * an existing element, at the head of the list, or at the end of the list. |
75 | * A circle queue may be traversed in either direction, but has a more |
76 | * complex end of list detection. |
77 | * |
78 | * For details on the use of these macros, see the queue(3) manual page. |
79 | */ |
80 | |
81 | /* |
82 | * List definitions. |
83 | */ |
84 | #define LIST_HEAD(name, type) \ |
85 | struct name { \ |
86 | struct type *lh_first; /* first element */ \ |
87 | } |
88 | |
89 | #define LIST_HEAD_INITIALIZER(head) \ |
90 | { NULL } |
91 | |
92 | #define LIST_ENTRY(type) \ |
93 | struct { \ |
94 | struct type *le_next; /* next element */ \ |
95 | struct type **le_prev; /* address of previous next element */ \ |
96 | } |
97 | |
98 | /* |
99 | * List functions. |
100 | */ |
101 | #define LIST_INIT(head) do { \ |
102 | (head)->lh_first = NULL; \ |
103 | } while (/*CONSTCOND*/0) |
104 | |
105 | #define LIST_INSERT_AFTER(listelm, elm, field) do { \ |
106 | if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \ |
107 | (listelm)->field.le_next->field.le_prev = \ |
108 | &(elm)->field.le_next; \ |
109 | (listelm)->field.le_next = (elm); \ |
110 | (elm)->field.le_prev = &(listelm)->field.le_next; \ |
111 | } while (/*CONSTCOND*/0) |
112 | |
113 | #define LIST_INSERT_BEFORE(listelm, elm, field) do { \ |
114 | (elm)->field.le_prev = (listelm)->field.le_prev; \ |
115 | (elm)->field.le_next = (listelm); \ |
116 | *(listelm)->field.le_prev = (elm); \ |
117 | (listelm)->field.le_prev = &(elm)->field.le_next; \ |
118 | } while (/*CONSTCOND*/0) |
119 | |
120 | #define LIST_INSERT_HEAD(head, elm, field) do { \ |
121 | if (((elm)->field.le_next = (head)->lh_first) != NULL) \ |
122 | (head)->lh_first->field.le_prev = &(elm)->field.le_next;\ |
123 | (head)->lh_first = (elm); \ |
124 | (elm)->field.le_prev = &(head)->lh_first; \ |
125 | } while (/*CONSTCOND*/0) |
126 | |
127 | #define LIST_REMOVE(elm, field) do { \ |
128 | if ((elm)->field.le_next != NULL) \ |
129 | (elm)->field.le_next->field.le_prev = \ |
130 | (elm)->field.le_prev; \ |
131 | *(elm)->field.le_prev = (elm)->field.le_next; \ |
132 | } while (/*CONSTCOND*/0) |
133 | |
134 | #define LIST_FOREACH(var, head, field) \ |
135 | for ((var) = ((head)->lh_first); \ |
136 | (var); \ |
137 | (var) = ((var)->field.le_next)) |
138 | |
139 | /* |
140 | * List access methods. |
141 | */ |
142 | #define LIST_EMPTY(head) ((head)->lh_first == NULL) |
143 | #define LIST_FIRST(head) ((head)->lh_first) |
144 | #define LIST_NEXT(elm, field) ((elm)->field.le_next) |
145 | |
146 | |
147 | /* |
148 | * Singly-linked List definitions. |
149 | */ |
150 | #define SLIST_HEAD(name, type) \ |
151 | struct name { \ |
152 | struct type *slh_first; /* first element */ \ |
153 | } |
154 | |
155 | #define SLIST_HEAD_INITIALIZER(head) \ |
156 | { NULL } |
157 | |
158 | #define SLIST_ENTRY(type) \ |
159 | struct { \ |
160 | struct type *sle_next; /* next element */ \ |
161 | } |
162 | |
163 | /* |
164 | * Singly-linked List functions. |
165 | */ |
166 | #define SLIST_INIT(head) do { \ |
167 | (head)->slh_first = NULL; \ |
168 | } while (/*CONSTCOND*/0) |
169 | |
170 | #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ |
171 | (elm)->field.sle_next = (slistelm)->field.sle_next; \ |
172 | (slistelm)->field.sle_next = (elm); \ |
173 | } while (/*CONSTCOND*/0) |
174 | |
175 | #define SLIST_INSERT_HEAD(head, elm, field) do { \ |
176 | (elm)->field.sle_next = (head)->slh_first; \ |
177 | (head)->slh_first = (elm); \ |
178 | } while (/*CONSTCOND*/0) |
179 | |
180 | #define SLIST_REMOVE_HEAD(head, field) do { \ |
181 | (head)->slh_first = (head)->slh_first->field.sle_next; \ |
182 | } while (/*CONSTCOND*/0) |
183 | |
184 | #define SLIST_REMOVE(head, elm, type, field) do { \ |
185 | if ((head)->slh_first == (elm)) { \ |
186 | SLIST_REMOVE_HEAD((head), field); \ |
187 | } \ |
188 | else { \ |
189 | struct type *curelm = (head)->slh_first; \ |
190 | while(curelm->field.sle_next != (elm)) \ |
191 | curelm = curelm->field.sle_next; \ |
192 | curelm->field.sle_next = \ |
193 | curelm->field.sle_next->field.sle_next; \ |
194 | } \ |
195 | } while (/*CONSTCOND*/0) |
196 | |
197 | #define SLIST_FOREACH(var, head, field) \ |
198 | for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next) |
199 | |
200 | /* |
201 | * Singly-linked List access methods. |
202 | */ |
203 | #define SLIST_EMPTY(head) ((head)->slh_first == NULL) |
204 | #define SLIST_FIRST(head) ((head)->slh_first) |
205 | #define SLIST_NEXT(elm, field) ((elm)->field.sle_next) |
206 | |
207 | |
208 | /* |
209 | * Singly-linked Tail queue declarations. |
210 | */ |
211 | #define STAILQ_HEAD(name, type) \ |
212 | struct name { \ |
213 | struct type *stqh_first; /* first element */ \ |
214 | struct type **stqh_last; /* addr of last next element */ \ |
215 | } |
216 | |
217 | #define STAILQ_HEAD_INITIALIZER(head) \ |
218 | { NULL, &(head).stqh_first } |
219 | |
220 | #define STAILQ_ENTRY(type) \ |
221 | struct { \ |
222 | struct type *stqe_next; /* next element */ \ |
223 | } |
224 | |
225 | /* |
226 | * Singly-linked Tail queue functions. |
227 | */ |
228 | #define STAILQ_INIT(head) do { \ |
229 | (head)->stqh_first = NULL; \ |
230 | (head)->stqh_last = &(head)->stqh_first; \ |
231 | } while (/*CONSTCOND*/0) |
232 | |
233 | #define STAILQ_INSERT_HEAD(head, elm, field) do { \ |
234 | if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \ |
235 | (head)->stqh_last = &(elm)->field.stqe_next; \ |
236 | (head)->stqh_first = (elm); \ |
237 | } while (/*CONSTCOND*/0) |
238 | |
239 | #define STAILQ_INSERT_TAIL(head, elm, field) do { \ |
240 | (elm)->field.stqe_next = NULL; \ |
241 | *(head)->stqh_last = (elm); \ |
242 | (head)->stqh_last = &(elm)->field.stqe_next; \ |
243 | } while (/*CONSTCOND*/0) |
244 | |
245 | #define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
246 | if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\ |
247 | (head)->stqh_last = &(elm)->field.stqe_next; \ |
248 | (listelm)->field.stqe_next = (elm); \ |
249 | } while (/*CONSTCOND*/0) |
250 | |
251 | #define STAILQ_REMOVE_HEAD(head, field) do { \ |
252 | if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \ |
253 | (head)->stqh_last = &(head)->stqh_first; \ |
254 | } while (/*CONSTCOND*/0) |
255 | |
256 | #define STAILQ_REMOVE(head, elm, type, field) do { \ |
257 | if ((head)->stqh_first == (elm)) { \ |
258 | STAILQ_REMOVE_HEAD((head), field); \ |
259 | } else { \ |
260 | struct type *curelm = (head)->stqh_first; \ |
261 | while (curelm->field.stqe_next != (elm)) \ |
262 | curelm = curelm->field.stqe_next; \ |
263 | if ((curelm->field.stqe_next = \ |
264 | curelm->field.stqe_next->field.stqe_next) == NULL) \ |
265 | (head)->stqh_last = &(curelm)->field.stqe_next; \ |
266 | } \ |
267 | } while (/*CONSTCOND*/0) |
268 | |
269 | #define STAILQ_FOREACH(var, head, field) \ |
270 | for ((var) = ((head)->stqh_first); \ |
271 | (var); \ |
272 | (var) = ((var)->field.stqe_next)) |
273 | |
274 | #define STAILQ_CONCAT(head1, head2) do { \ |
275 | if (!STAILQ_EMPTY((head2))) { \ |
276 | *(head1)->stqh_last = (head2)->stqh_first; \ |
277 | (head1)->stqh_last = (head2)->stqh_last; \ |
278 | STAILQ_INIT((head2)); \ |
279 | } \ |
280 | } while (/*CONSTCOND*/0) |
281 | |
282 | /* |
283 | * Singly-linked Tail queue access methods. |
284 | */ |
285 | #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL) |
286 | #define STAILQ_FIRST(head) ((head)->stqh_first) |
287 | #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next) |
288 | |
289 | |
290 | /* |
291 | * Simple queue definitions. |
292 | */ |
293 | #define SIMPLEQ_HEAD(name, type) \ |
294 | struct name { \ |
295 | struct type *sqh_first; /* first element */ \ |
296 | struct type **sqh_last; /* addr of last next element */ \ |
297 | } |
298 | |
299 | #define SIMPLEQ_HEAD_INITIALIZER(head) \ |
300 | { NULL, &(head).sqh_first } |
301 | |
302 | #define SIMPLEQ_ENTRY(type) \ |
303 | struct { \ |
304 | struct type *sqe_next; /* next element */ \ |
305 | } |
306 | |
307 | /* |
308 | * Simple queue functions. |
309 | */ |
310 | #define SIMPLEQ_INIT(head) do { \ |
311 | (head)->sqh_first = NULL; \ |
312 | (head)->sqh_last = &(head)->sqh_first; \ |
313 | } while (/*CONSTCOND*/0) |
314 | |
315 | #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \ |
316 | if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \ |
317 | (head)->sqh_last = &(elm)->field.sqe_next; \ |
318 | (head)->sqh_first = (elm); \ |
319 | } while (/*CONSTCOND*/0) |
320 | |
321 | #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \ |
322 | (elm)->field.sqe_next = NULL; \ |
323 | *(head)->sqh_last = (elm); \ |
324 | (head)->sqh_last = &(elm)->field.sqe_next; \ |
325 | } while (/*CONSTCOND*/0) |
326 | |
327 | #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
328 | if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\ |
329 | (head)->sqh_last = &(elm)->field.sqe_next; \ |
330 | (listelm)->field.sqe_next = (elm); \ |
331 | } while (/*CONSTCOND*/0) |
332 | |
333 | #define SIMPLEQ_REMOVE_HEAD(head, field) do { \ |
334 | if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \ |
335 | (head)->sqh_last = &(head)->sqh_first; \ |
336 | } while (/*CONSTCOND*/0) |
337 | |
338 | #define SIMPLEQ_REMOVE(head, elm, type, field) do { \ |
339 | if ((head)->sqh_first == (elm)) { \ |
340 | SIMPLEQ_REMOVE_HEAD((head), field); \ |
341 | } else { \ |
342 | struct type *curelm = (head)->sqh_first; \ |
343 | while (curelm->field.sqe_next != (elm)) \ |
344 | curelm = curelm->field.sqe_next; \ |
345 | if ((curelm->field.sqe_next = \ |
346 | curelm->field.sqe_next->field.sqe_next) == NULL) \ |
347 | (head)->sqh_last = &(curelm)->field.sqe_next; \ |
348 | } \ |
349 | } while (/*CONSTCOND*/0) |
350 | |
351 | #define SIMPLEQ_FOREACH(var, head, field) \ |
352 | for ((var) = ((head)->sqh_first); \ |
353 | (var); \ |
354 | (var) = ((var)->field.sqe_next)) |
355 | |
356 | /* |
357 | * Simple queue access methods. |
358 | */ |
359 | #define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL) |
360 | #define SIMPLEQ_FIRST(head) ((head)->sqh_first) |
361 | #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next) |
362 | |
363 | |
364 | /* |
365 | * Tail queue definitions. |
366 | */ |
367 | #define _TAILQ_HEAD(name, type, qual) \ |
368 | struct name { \ |
369 | qual type *tqh_first; /* first element */ \ |
370 | qual type *qual *tqh_last; /* addr of last next element */ \ |
371 | } |
372 | #define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,) |
373 | |
374 | #define TAILQ_HEAD_INITIALIZER(head) \ |
375 | { NULL, &(head).tqh_first } |
376 | |
377 | #define _TAILQ_ENTRY(type, qual) \ |
378 | struct { \ |
379 | qual type *tqe_next; /* next element */ \ |
380 | qual type *qual *tqe_prev; /* address of previous next element */\ |
381 | } |
382 | #define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,) |
383 | |
384 | /* |
385 | * Tail queue functions. |
386 | */ |
387 | #define TAILQ_INIT(head) do { \ |
388 | (head)->tqh_first = NULL; \ |
389 | (head)->tqh_last = &(head)->tqh_first; \ |
390 | } while (/*CONSTCOND*/0) |
391 | |
392 | #define TAILQ_INSERT_HEAD(head, elm, field) do { \ |
393 | if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \ |
394 | (head)->tqh_first->field.tqe_prev = \ |
395 | &(elm)->field.tqe_next; \ |
396 | else \ |
397 | (head)->tqh_last = &(elm)->field.tqe_next; \ |
398 | (head)->tqh_first = (elm); \ |
399 | (elm)->field.tqe_prev = &(head)->tqh_first; \ |
400 | } while (/*CONSTCOND*/0) |
401 | |
402 | #define TAILQ_INSERT_TAIL(head, elm, field) do { \ |
403 | (elm)->field.tqe_next = NULL; \ |
404 | (elm)->field.tqe_prev = (head)->tqh_last; \ |
405 | *(head)->tqh_last = (elm); \ |
406 | (head)->tqh_last = &(elm)->field.tqe_next; \ |
407 | } while (/*CONSTCOND*/0) |
408 | |
409 | #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
410 | if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\ |
411 | (elm)->field.tqe_next->field.tqe_prev = \ |
412 | &(elm)->field.tqe_next; \ |
413 | else \ |
414 | (head)->tqh_last = &(elm)->field.tqe_next; \ |
415 | (listelm)->field.tqe_next = (elm); \ |
416 | (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \ |
417 | } while (/*CONSTCOND*/0) |
418 | |
419 | #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ |
420 | (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ |
421 | (elm)->field.tqe_next = (listelm); \ |
422 | *(listelm)->field.tqe_prev = (elm); \ |
423 | (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \ |
424 | } while (/*CONSTCOND*/0) |
425 | |
426 | #define TAILQ_REMOVE(head, elm, field) do { \ |
427 | if (((elm)->field.tqe_next) != NULL) \ |
428 | (elm)->field.tqe_next->field.tqe_prev = \ |
429 | (elm)->field.tqe_prev; \ |
430 | else \ |
431 | (head)->tqh_last = (elm)->field.tqe_prev; \ |
432 | *(elm)->field.tqe_prev = (elm)->field.tqe_next; \ |
433 | } while (/*CONSTCOND*/0) |
434 | |
435 | #define TAILQ_FOREACH(var, head, field) \ |
436 | for ((var) = ((head)->tqh_first); \ |
437 | (var); \ |
438 | (var) = ((var)->field.tqe_next)) |
439 | |
440 | #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ |
441 | for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \ |
442 | (var); \ |
443 | (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last))) |
444 | |
445 | #define TAILQ_CONCAT(head1, head2, field) do { \ |
446 | if (!TAILQ_EMPTY(head2)) { \ |
447 | *(head1)->tqh_last = (head2)->tqh_first; \ |
448 | (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \ |
449 | (head1)->tqh_last = (head2)->tqh_last; \ |
450 | TAILQ_INIT((head2)); \ |
451 | } \ |
452 | } while (/*CONSTCOND*/0) |
453 | |
454 | /* |
455 | * Tail queue access methods. |
456 | */ |
457 | #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL) |
458 | #define TAILQ_FIRST(head) ((head)->tqh_first) |
459 | #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) |
460 | |
461 | #define TAILQ_LAST(head, headname) \ |
462 | (*(((struct headname *)((head)->tqh_last))->tqh_last)) |
463 | #define TAILQ_PREV(elm, headname, field) \ |
464 | (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) |
465 | |
466 | |
467 | /* |
468 | * Circular queue definitions. |
469 | */ |
470 | #define CIRCLEQ_HEAD(name, type) \ |
471 | struct name { \ |
472 | struct type *cqh_first; /* first element */ \ |
473 | struct type *cqh_last; /* last element */ \ |
474 | } |
475 | |
476 | #define CIRCLEQ_HEAD_INITIALIZER(head) \ |
477 | { (void *)&head, (void *)&head } |
478 | |
479 | #define CIRCLEQ_ENTRY(type) \ |
480 | struct { \ |
481 | struct type *cqe_next; /* next element */ \ |
482 | struct type *cqe_prev; /* previous element */ \ |
483 | } |
484 | |
485 | /* |
486 | * Circular queue functions. |
487 | */ |
488 | #define CIRCLEQ_INIT(head) do { \ |
489 | (head)->cqh_first = (void *)(head); \ |
490 | (head)->cqh_last = (void *)(head); \ |
491 | } while (/*CONSTCOND*/0) |
492 | |
493 | #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
494 | (elm)->field.cqe_next = (listelm)->field.cqe_next; \ |
495 | (elm)->field.cqe_prev = (listelm); \ |
496 | if ((listelm)->field.cqe_next == (void *)(head)) \ |
497 | (head)->cqh_last = (elm); \ |
498 | else \ |
499 | (listelm)->field.cqe_next->field.cqe_prev = (elm); \ |
500 | (listelm)->field.cqe_next = (elm); \ |
501 | } while (/*CONSTCOND*/0) |
502 | |
503 | #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \ |
504 | (elm)->field.cqe_next = (listelm); \ |
505 | (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \ |
506 | if ((listelm)->field.cqe_prev == (void *)(head)) \ |
507 | (head)->cqh_first = (elm); \ |
508 | else \ |
509 | (listelm)->field.cqe_prev->field.cqe_next = (elm); \ |
510 | (listelm)->field.cqe_prev = (elm); \ |
511 | } while (/*CONSTCOND*/0) |
512 | |
513 | #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \ |
514 | (elm)->field.cqe_next = (head)->cqh_first; \ |
515 | (elm)->field.cqe_prev = (void *)(head); \ |
516 | if ((head)->cqh_last == (void *)(head)) \ |
517 | (head)->cqh_last = (elm); \ |
518 | else \ |
519 | (head)->cqh_first->field.cqe_prev = (elm); \ |
520 | (head)->cqh_first = (elm); \ |
521 | } while (/*CONSTCOND*/0) |
522 | |
523 | #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \ |
524 | (elm)->field.cqe_next = (void *)(head); \ |
525 | (elm)->field.cqe_prev = (head)->cqh_last; \ |
526 | if ((head)->cqh_first == (void *)(head)) \ |
527 | (head)->cqh_first = (elm); \ |
528 | else \ |
529 | (head)->cqh_last->field.cqe_next = (elm); \ |
530 | (head)->cqh_last = (elm); \ |
531 | } while (/*CONSTCOND*/0) |
532 | |
533 | #define CIRCLEQ_REMOVE(head, elm, field) do { \ |
534 | if ((elm)->field.cqe_next == (void *)(head)) \ |
535 | (head)->cqh_last = (elm)->field.cqe_prev; \ |
536 | else \ |
537 | (elm)->field.cqe_next->field.cqe_prev = \ |
538 | (elm)->field.cqe_prev; \ |
539 | if ((elm)->field.cqe_prev == (void *)(head)) \ |
540 | (head)->cqh_first = (elm)->field.cqe_next; \ |
541 | else \ |
542 | (elm)->field.cqe_prev->field.cqe_next = \ |
543 | (elm)->field.cqe_next; \ |
544 | } while (/*CONSTCOND*/0) |
545 | |
546 | #define CIRCLEQ_FOREACH(var, head, field) \ |
547 | for ((var) = ((head)->cqh_first); \ |
548 | (var) != (const void *)(head); \ |
549 | (var) = ((var)->field.cqe_next)) |
550 | |
551 | #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \ |
552 | for ((var) = ((head)->cqh_last); \ |
553 | (var) != (const void *)(head); \ |
554 | (var) = ((var)->field.cqe_prev)) |
555 | |
556 | /* |
557 | * Circular queue access methods. |
558 | */ |
559 | #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head)) |
560 | #define CIRCLEQ_FIRST(head) ((head)->cqh_first) |
561 | #define CIRCLEQ_LAST(head) ((head)->cqh_last) |
562 | #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next) |
563 | #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev) |
564 | |
565 | #define CIRCLEQ_LOOP_NEXT(head, elm, field) \ |
566 | (((elm)->field.cqe_next == (void *)(head)) \ |
567 | ? ((head)->cqh_first) \ |
568 | : (elm->field.cqe_next)) |
569 | #define CIRCLEQ_LOOP_PREV(head, elm, field) \ |
570 | (((elm)->field.cqe_prev == (void *)(head)) \ |
571 | ? ((head)->cqh_last) \ |
572 | : (elm->field.cqe_prev)) |
573 | |
574 | #endif /* sys/queue.h */ |
575 | |