1/* Copyright 2019 Google LLC. All Rights Reserved.
2
3Licensed under the Apache License, Version 2.0 (the "License");
4you may not use this file except in compliance with the License.
5You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9Unless required by applicable law or agreed to in writing, software
10distributed under the License is distributed on an "AS IS" BASIS,
11WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12See the License for the specific language governing permissions and
13limitations under the License.
14==============================================================================*/
15
16#include <cstdint>
17
18#include "ruy/asm_helpers.h"
19#include "ruy/check_macros.h"
20#include "ruy/kernel_arm.h"
21#include "ruy/opt_set.h"
22#include "ruy/platform.h"
23#include "ruy/profiler/instrumentation.h"
24
25namespace ruy {
26
27#if RUY_PLATFORM_NEON_64 && RUY_OPT(ASM)
28
29#define RUY_ASM_LABEL_STORE_UINT8 91
30#define RUY_ASM_LABEL_STORE_INT8 92
31#define RUY_ASM_LABEL_STORE_INT16 93
32#define RUY_ASM_LABEL_STORE_INT32 94
33#define RUY_ASM_LABEL_AFTER_STORE 99
34
35#define RUY_OFFSET_BIAS 0
36#define RUY_OFFSET_LHS_SUMS 8
37#define RUY_OFFSET_RHS_SUMS 16
38#define RUY_OFFSET_LHS_BASE_PTR 24
39#define RUY_OFFSET_MULTIPLIER_FIXEDPOINT 32
40#define RUY_OFFSET_MULTIPLIER_EXPONENT 40
41#define RUY_OFFSET_RHS_BASE_PTR 48
42#define RUY_OFFSET_DST_BASE_PTR 56
43#define RUY_OFFSET_LHS_ZERO_POINT 64
44#define RUY_OFFSET_RHS_ZERO_POINT 68
45#define RUY_OFFSET_DST_ZERO_POINT 72
46#define RUY_OFFSET_PROD_ZP_DEPTH 76
47#define RUY_OFFSET_START_ROW 80
48#define RUY_OFFSET_START_COL 84
49#define RUY_OFFSET_LAST_ROW 88
50#define RUY_OFFSET_LAST_COL 92
51#define RUY_OFFSET_DST_ROWS 96
52#define RUY_OFFSET_DST_COLS 100
53#define RUY_OFFSET_LHS_STRIDE 104
54#define RUY_OFFSET_RHS_STRIDE 108
55#define RUY_OFFSET_DST_STRIDE 112
56#define RUY_OFFSET_DEPTH 116
57#define RUY_OFFSET_CLAMP_MIN 120
58#define RUY_OFFSET_CLAMP_MAX 124
59#define RUY_OFFSET_FLAGS 128
60
61template <typename Params>
62void CheckOffsetsInKernelParams8bit(const Params&) {
63 static_assert(offsetof(Params, lhs_zero_point) == RUY_OFFSET_LHS_ZERO_POINT,
64 "");
65 static_assert(offsetof(Params, rhs_zero_point) == RUY_OFFSET_RHS_ZERO_POINT,
66 "");
67 static_assert(offsetof(Params, dst_zero_point) == RUY_OFFSET_DST_ZERO_POINT,
68 "");
69 static_assert(offsetof(Params, prod_zp_depth) == RUY_OFFSET_PROD_ZP_DEPTH,
70 "");
71 static_assert(offsetof(Params, multiplier_fixedpoint) ==
72 RUY_OFFSET_MULTIPLIER_FIXEDPOINT,
73 "");
74 static_assert(
75 offsetof(Params, multiplier_exponent) == RUY_OFFSET_MULTIPLIER_EXPONENT,
76 "");
77 static_assert(offsetof(Params, clamp_min) == RUY_OFFSET_CLAMP_MIN, "");
78 static_assert(offsetof(Params, clamp_max) == RUY_OFFSET_CLAMP_MAX, "");
79 static_assert(offsetof(Params, bias) == RUY_OFFSET_BIAS, "");
80 static_assert(offsetof(Params, lhs_sums) == RUY_OFFSET_LHS_SUMS, "");
81 static_assert(offsetof(Params, rhs_sums) == RUY_OFFSET_RHS_SUMS, "");
82 static_assert(offsetof(Params, flags) == RUY_OFFSET_FLAGS, "");
83 static_assert(offsetof(Params, lhs_base_ptr) == RUY_OFFSET_LHS_BASE_PTR, "");
84 static_assert(offsetof(Params, start_row) == RUY_OFFSET_START_ROW, "");
85 static_assert(offsetof(Params, last_row) == RUY_OFFSET_LAST_ROW, "");
86 static_assert(offsetof(Params, last_col) == RUY_OFFSET_LAST_COL, "");
87 static_assert(offsetof(Params, lhs_stride) == RUY_OFFSET_LHS_STRIDE, "");
88 static_assert(offsetof(Params, rhs_stride) == RUY_OFFSET_RHS_STRIDE, "");
89 static_assert(offsetof(Params, dst_stride) == RUY_OFFSET_DST_STRIDE, "");
90 static_assert(offsetof(Params, depth) == RUY_OFFSET_DEPTH, "");
91}
92
93// Fast-int8-trick kernel, similar to this production gemmlowp kernel:
94// NEON_64bit_GEMM_Int8Operands_AccumTwoWithin16Bits
95// https://github.com/google/gemmlowp/blob/36212ad3651871bc3e9a599f1a6d5324778aea25/standalone/neon-gemm-kernel-benchmark.cc#L2296
96//
97// Relevant target CPUs for this kernel include ARM Cortex-A73 and Cortex-A75,
98// since these are 64-bit, out-of-order and without dotprod support.
99void Kernel8bitNeon(const KernelParams8bit<4, 4>& params) {
100 profiler::ScopeLabel label("Kernel (kNeon)");
101 CheckOffsetsInKernelParams8bit(params);
102
103 const std::int8_t* lhs_col_ptr = params.lhs_base_ptr;
104 const std::int8_t* rhs_col_ptr =
105 static_cast<const int8_t*>(params.rhs_base_ptr);
106 const std::int8_t* lhs_ptr = lhs_col_ptr;
107 const std::int8_t* rhs_ptr = rhs_col_ptr;
108 void* dst_col_ptr = params.dst_base_ptr;
109 void* dst_ptr = dst_col_ptr;
110 int row = params.start_row;
111 int col = params.start_col;
112
113 // The asm kernel below has the following NEON register allocation:
114 //
115 // v16 -- v31 are int32 accumulators.
116 // During accumulation, v0 -- v3 are used to load int8 data from LHS and
117 // v4 -- v7 from RHS:
118 //
119 // int8 RHS 16x4 block
120 // /-----------------------------------------|
121 // |v4.b[0] ... v7.b[0] |
122 // | ... ... |
123 // |v4.b[15] ... v7.b[15] |
124 // \-----------------------------------------/
125 // int8 LHS 4x16 block
126 // /---------------------\ /-----------------------------------------|
127 // |v0.b[0] ... v0.b[15] | |v16.4s ... v28.4s |
128 // |v1.b[0] ... v1.b[15] | |v17.4s ... v29.4s |
129 // |v2.b[0] ... v2.b[15] | |v18.4s ... v30.4s |
130 // |v3.b[0] ... v3.b[15] | |v19.4s ... v31.4s |
131 // \---------------------/ \-----------------------------------------/
132 // int32 accumulators 4x4 block
133 //
134 // No attempt had been made so far at implementing the RUY_OPT_MAX_STREAMING
135 // optimization for this kernel.
136 asm volatile(
137#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
138
139 // clang-format off
140
141 // Load some parameters into registers.
142 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
143 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
144 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
145 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
146 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
147 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
148 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
149 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
150
151 // Load the first 64 bytes of LHS and RHS data.
152 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
153 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
154 "ld1 {v2.16b}, [%[lhs_ptr]], #16\n"
155 "ld1 {v3.16b}, [%[lhs_ptr]], #16\n"
156 "ld1 {v4.16b}, [%[rhs_ptr]], #16\n"
157 "ld1 {v5.16b}, [%[rhs_ptr]], #16\n"
158 "ld1 {v6.16b}, [%[rhs_ptr]], #16\n"
159 "ld1 {v7.16b}, [%[rhs_ptr]], #16\n"
160
161 // Clear accumulators.
162 RUY_MAKE_ZERO(v16)
163 RUY_MAKE_ZERO(v17)
164 RUY_MAKE_ZERO(v18)
165 RUY_MAKE_ZERO(v19)
166 RUY_MAKE_ZERO(v20)
167 RUY_MAKE_ZERO(v21)
168 RUY_MAKE_ZERO(v22)
169 RUY_MAKE_ZERO(v23)
170 RUY_MAKE_ZERO(v24)
171 RUY_MAKE_ZERO(v25)
172 RUY_MAKE_ZERO(v26)
173 RUY_MAKE_ZERO(v27)
174 RUY_MAKE_ZERO(v28)
175 RUY_MAKE_ZERO(v29)
176 RUY_MAKE_ZERO(v30)
177 RUY_MAKE_ZERO(v31)
178
179 // w1 is the number of levels of depth that we have already loaded
180 // LHS and RHS data for. Corresponding to the initial ld1 instructions
181 // above, this is currently 16.
182 "mov w1, #16\n"
183
184 // Perform the first few multiply-adds on the data that we have already
185 // loaded.
186 "smull v8.8h, v0.8b, v4.8b\n"
187 "smull v9.8h, v1.8b, v4.8b\n"
188 "smull v10.8h, v2.8b, v4.8b\n"
189 "smull v11.8h, v3.8b, v4.8b\n"
190 "smull v12.8h, v0.8b, v5.8b\n"
191 "smull v13.8h, v1.8b, v5.8b\n"
192 "smull v14.8h, v2.8b, v5.8b\n"
193 "smull v15.8h, v3.8b, v5.8b\n"
194
195 // Multiply-accumulate second-half, again into the same
196 // 16bit local accumulator registers. This is where we
197 // take advantage of having int8 instead of uint8 and therefore
198 // being able to accumulate two products into int16.
199 "smlal2 v8.8h, v0.16b, v4.16b\n"
200 "smlal2 v9.8h, v1.16b, v4.16b\n"
201 "smlal2 v10.8h, v2.16b, v4.16b\n"
202 "smlal2 v11.8h, v3.16b, v4.16b\n"
203 "smlal2 v12.8h, v0.16b, v5.16b\n"
204 "smlal2 v13.8h, v1.16b, v5.16b\n"
205 "smlal2 v14.8h, v2.16b, v5.16b\n"
206 "smlal2 v15.8h, v3.16b, v5.16b\n"
207
208
209 // Main loop of the whole GEMM, over rows and columns of the
210 // destination matrix.
211 "1:\n"
212
213 // Reminder - w1 is how many levels of depth we have already loaded
214 // data for, w12 is the total depth.
215 "cmp w1, w12\n"
216 "beq 79f\n"
217
218 "2:\n"
219
220 // Some multiplications and 16-bit accumulation were already done above,
221 // so we start right away in the middle.
222 "sadalp v16.4s, v8.8h\n"
223 "ld1 {v4.16b}, [%[rhs_ptr]], #16\n"
224 "smull v8.8h, v0.8b, v6.8b\n"
225 "sadalp v17.4s, v9.8h\n"
226 "ld1 {v5.16b}, [%[rhs_ptr]], #16\n"
227 "smull v9.8h, v1.8b, v6.8b\n"
228 "sadalp v18.4s, v10.8h\n"
229 "smull v10.8h, v2.8b, v6.8b\n"
230 "sadalp v19.4s, v11.8h\n"
231 "smull v11.8h, v3.8b, v6.8b\n"
232 "sadalp v20.4s, v12.8h\n"
233 "smull v12.8h, v0.8b, v7.8b\n"
234 "sadalp v21.4s, v13.8h\n"
235 "smull v13.8h, v1.8b, v7.8b\n"
236 "sadalp v22.4s, v14.8h\n"
237 "smull v14.8h, v2.8b, v7.8b\n"
238 "sadalp v23.4s, v15.8h\n"
239 "smull v15.8h, v3.8b, v7.8b\n"
240
241 // Multiply-accumulate second-half, again into the same
242 // 16bit local accumulator registers. This is where we
243 // take advantage of having int8 instead of uint8 and therefore
244 // being able to accumulate two products into int16.
245 "smlal2 v8.8h, v0.16b, v6.16b\n"
246 "smlal2 v9.8h, v1.16b, v6.16b\n"
247 "smlal2 v10.8h, v2.16b, v6.16b\n"
248 "smlal2 v11.8h, v3.16b, v6.16b\n"
249
250 "ld1 {v6.16b}, [%[rhs_ptr]], #16\n"
251
252 "smlal2 v12.8h, v0.16b, v7.16b\n"
253 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
254 "smlal2 v13.8h, v1.16b, v7.16b\n"
255 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
256 "smlal2 v14.8h, v2.16b, v7.16b\n"
257 "ld1 {v2.16b}, [%[lhs_ptr]], #16\n"
258 "smlal2 v15.8h, v3.16b, v7.16b\n"
259 "ld1 {v3.16b}, [%[lhs_ptr]], #16\n"
260
261 "sadalp v24.4s, v8.8h\n"
262 "smull v8.8h, v0.8b, v4.8b\n"
263 "sadalp v25.4s, v9.8h\n"
264 "ld1 {v7.16b}, [%[rhs_ptr]], #16\n"
265 "smull v9.8h, v1.8b, v4.8b\n"
266 "sadalp v26.4s, v10.8h\n"
267 "smull v10.8h, v2.8b, v4.8b\n"
268 "sadalp v27.4s, v11.8h\n"
269 "smull v11.8h, v3.8b, v4.8b\n"
270 "sadalp v28.4s, v12.8h\n"
271 "smull v12.8h, v0.8b, v5.8b\n"
272 "sadalp v29.4s, v13.8h\n"
273 "smull v13.8h, v1.8b, v5.8b\n"
274 "sadalp v30.4s, v14.8h\n"
275 "smull v14.8h, v2.8b, v5.8b\n"
276 "sadalp v31.4s, v15.8h\n"
277 "smull v15.8h, v3.8b, v5.8b\n"
278
279 // Multiply-accumulate second-half, again into the same
280 // 16bit local accumulator registers. This is where we
281 // take advantage of having int8 instead of uint8 and therefore
282 // being able to accumulate two products into int16.
283 "smlal2 v8.8h, v0.16b, v4.16b\n"
284 "smlal2 v9.8h, v1.16b, v4.16b\n"
285 "smlal2 v10.8h, v2.16b, v4.16b\n"
286 "smlal2 v11.8h, v3.16b, v4.16b\n"
287
288 "smlal2 v12.8h, v0.16b, v5.16b\n"
289 "smlal2 v13.8h, v1.16b, v5.16b\n"
290 "smlal2 v14.8h, v2.16b, v5.16b\n"
291 "smlal2 v15.8h, v3.16b, v5.16b\n"
292
293
294
295 // Each iteration of this loop advances by 16 levels of depth.
296 "add w1, w1, #16\n"
297
298 // Loop termination condition
299 "cmp w1, w12\n"
300
301 "blt 2b\n"
302
303 "79:\n"
304
305 "sadalp v16.4s, v8.8h\n"
306 "smull v8.8h, v0.8b, v6.8b\n"
307 "sadalp v17.4s, v9.8h\n"
308 "smull v9.8h, v1.8b, v6.8b\n"
309 "sadalp v18.4s, v10.8h\n"
310 "smull v10.8h, v2.8b, v6.8b\n"
311 "sadalp v19.4s, v11.8h\n"
312 "smull v11.8h, v3.8b, v6.8b\n"
313 "sadalp v20.4s, v12.8h\n"
314 "smull v12.8h, v0.8b, v7.8b\n"
315 "sadalp v21.4s, v13.8h\n"
316 "smull v13.8h, v1.8b, v7.8b\n"
317 "sadalp v22.4s, v14.8h\n"
318 "smull v14.8h, v2.8b, v7.8b\n"
319 "sadalp v23.4s, v15.8h\n"
320 "smull v15.8h, v3.8b, v7.8b\n"
321
322 // Multiply-accumulate second-half, again into the same
323 // 16bit local accumulator registers. This is where we
324 // take advantage of having int8 instead of uint8 and therefore
325 // being able to accumulate two products into int16.
326 "smlal2 v8.8h, v0.16b, v6.16b\n"
327 "smlal2 v9.8h, v1.16b, v6.16b\n"
328 "smlal2 v10.8h, v2.16b, v6.16b\n"
329 "smlal2 v11.8h, v3.16b, v6.16b\n"
330
331 "smlal2 v12.8h, v0.16b, v7.16b\n"
332 "smlal2 v13.8h, v1.16b, v7.16b\n"
333 "smlal2 v14.8h, v2.16b, v7.16b\n"
334 "smlal2 v15.8h, v3.16b, v7.16b\n"
335
336 "sadalp v24.4s, v8.8h\n"
337 "sadalp v25.4s, v9.8h\n"
338 "sadalp v26.4s, v10.8h\n"
339 "sadalp v27.4s, v11.8h\n"
340 "sadalp v28.4s, v12.8h\n"
341 "sadalp v29.4s, v13.8h\n"
342 "sadalp v30.4s, v14.8h\n"
343 "sadalp v31.4s, v15.8h\n"
344
345 // End of accumulation. The registers v16 -- v31 contain the final
346 // int32 accumulator values of the current 4x4 destination block.
347 // We now have to compute the final 8-bit values from these int32
348 // accumulators, and advance to the next 4x4 block. We intertwine
349 // these two aspects whenever possible for optimal pipelining, both
350 // at the data flow level (prefetch data for next block as early as
351 // possible) and instruction pipelining level (some of the next-block
352 // work can dual-issue with some of the final work on the current
353 // block).
354
355 // Reduce 32bit accumulators horizontally.
356 "addp v16.4s, v16.4s, v17.4s\n"
357 "addp v18.4s, v18.4s, v19.4s\n"
358 "addp v20.4s, v20.4s, v21.4s\n"
359 "addp v22.4s, v22.4s, v23.4s\n"
360 "addp v24.4s, v24.4s, v25.4s\n"
361 "addp v26.4s, v26.4s, v27.4s\n"
362 "addp v28.4s, v28.4s, v29.4s\n"
363 "addp v30.4s, v30.4s, v31.4s\n"
364
365 // Reduce 32bit accumulators horizontally, second pass
366 // (each pass adds pairwise. we need to add 4-wise).
367 "addp v16.4s, v16.4s, v18.4s\n"
368 "addp v17.4s, v20.4s, v22.4s\n"
369 "addp v18.4s, v24.4s, v26.4s\n"
370 "addp v19.4s, v28.4s, v30.4s\n"
371
372 // Logic to advance to the next block in preparation for the next
373 // iteration of the main loop. For now, we only want to compute
374 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
375 // not yet ready to update the values of row and col, as we still need
376 // the current values for the rest of the work on the current block.
377
378 "cmp %w[row], w7\n" // Have we finished the last row?
379 "bge 4f\n" // If finished last row, go to 4
380 // Not finished last row: then advance to next row.
381 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #2\n"
382 "b 5f\n"
383 "4:\n" // Finished last row...
384 "mov %[lhs_col_ptr], x5\n" // Go back to first row
385 // Now we need to advance to the next column. If we already
386 // finished the last column, then in principle we are done, however
387 // we can't just return here, as we need to allow the end work of the
388 // current block to complete. The good news is that at this point it
389 // doesn't matter what data we load for the next column, since
390 // we will exit from the main loop below before actually storing
391 // anything computed from that data.
392 "cmp %w[col], w8\n" // Have we finished the last column?
393 "bge 5f\n" // If yes, just carry on without updating the column pointer.
394 // Not finished last column: then advance to next column.
395 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #2\n"
396 "5:\n"
397
398 // Set the LHS and RHS data pointers to the start of the columns just
399 // computed.
400 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
401 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
402
403 // Load some parameters needed for the end work on current block.
404 "mvni v8.4s, #0\n"
405 "ldr w4, [%[params], #" RUY_STR(RUY_OFFSET_DST_ZERO_POINT) "]\n"
406 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_PROD_ZP_DEPTH) "]\n"
407 "ins v13.h[4], w4\n" // dst_zero_point
408 "ldr x4, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_FIXEDPOINT) "]\n"
409 "ldrb w6, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
410 "dup v9.4s, w3\n" // create prod_zp_depth_vec
411
412 // Now we load: bias data, LHS sums data, RHS sums data.
413
414 // First, load the base pointers from the params.
415 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
416
417 // Determine the channel index.
418 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
419 "csel w3, %w[row], %w[col], eq\n"
420
421 // Offset the bias pointer as needed given the current row, col.
422 "add x5, x1, x3, lsl #2\n"
423
424 // If there is no bias, use no offset, just address the passed zero
425 // data.
426 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
427 "csel x1, x1, x5, eq\n"
428
429 // Load 4 bias values.
430 "ld1 {v14.4s}, [x1]\n"
431
432 // Load the multiplier_fixedpoint values.
433 "add x5, x4, x3, lsl #2\n"
434 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
435 "csel x4, x4, x5, eq\n"
436 "ld1 {v15.4s}, [x4]\n" // multiplier_fixedpoint
437
438 // Now that we know what LHS and RHS data the next iteration of the
439 // main loop will need to load, we start loading the first 32 bytes of
440 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
441 // in the rest of the work on the current block.
442 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
443 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
444 "ld1 {v2.16b}, [%[lhs_ptr]], #16\n"
445 "ld1 {v3.16b}, [%[lhs_ptr]], #16\n"
446 "ld1 {v4.16b}, [%[rhs_ptr]], #16\n"
447 "ld1 {v5.16b}, [%[rhs_ptr]], #16\n"
448 "ld1 {v6.16b}, [%[rhs_ptr]], #16\n"
449 "ld1 {v7.16b}, [%[rhs_ptr]], #16\n"
450
451 // Add to the bias values the product (depth * lhs_zero_point * rhs_zero_point),
452 // See the term NZ1Z2 in equation (7) in https://arxiv.org/pdf/1712.05877.pdf
453 "add v14.4s, v14.4s, v9.4s\n"
454
455 // Perform the bias-addition (per the above, we have just folded into
456 // the bias the (depth * lhs_zero_point * rhs_zero_point) term.)
457 // Jump based on channel dimension.
458 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
459 "bne 6f\n"
460 // Case where channels are rows
461 "add v16.4s, v16.4s, v14.4s\n"
462 "add v17.4s, v17.4s, v14.4s\n"
463 "add v18.4s, v18.4s, v14.4s\n"
464 "add v19.4s, v19.4s, v14.4s\n"
465 "b 7f\n"
466
467 "6:\n"
468 // Case where channels are columns
469 "dup v20.4s, v14.s[0]\n"
470 "dup v21.4s, v14.s[1]\n"
471 "dup v22.4s, v14.s[2]\n"
472 "dup v23.4s, v14.s[3]\n"
473 "add v16.4s, v16.4s, v20.4s\n"
474 "add v17.4s, v17.4s, v21.4s\n"
475 "add v18.4s, v18.4s, v22.4s\n"
476 "add v19.4s, v19.4s, v23.4s\n"
477 "7:\n"
478
479 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_RHS_SUMS) "\n"
480 "beq 401f\n"
481 "ldr x3, [%[params], #" RUY_STR(RUY_OFFSET_RHS_SUMS) "]\n"
482 "add x3, x3, %x[col], lsl #2\n"
483 "ld1 {v14.4s}, [x3]\n"
484 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_ZERO_POINT) "]\n"
485 "dup v10.4s, w5\n" // create lhs_zero_point_vec
486 // Subtract rhs_sums * lhs_zero_point, per
487 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
488 "mls v16.4s, v10.4s, v14.s[0]\n"
489 "mls v17.4s, v10.4s, v14.s[1]\n"
490 "mls v18.4s, v10.4s, v14.s[2]\n"
491 "mls v19.4s, v10.4s, v14.s[3]\n"
492 "401:\n"
493
494 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_LHS_SUMS) "\n"
495 "beq 402f\n"
496 "ldr x2, [%[params], #" RUY_STR(RUY_OFFSET_LHS_SUMS) "]\n"
497 "add x2, x2, %x[row], lsl #2\n"
498 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_RHS_ZERO_POINT) "]\n"
499 // Load 4 lhs_sums values.
500 "ld1 {v11.4s}, [x2]\n"
501 "ins v13.s[1], w5\n" // rhs_zero_point
502 // Compute lhs_sums * rhs_zero_point.
503 "mul v11.4s, v11.4s, v13.s[1]\n"
504 // Subtract lhs_sums * rhs_zero_point, per
505 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
506 "sub v16.4s, v16.4s, v11.4s\n"
507 "sub v17.4s, v17.4s, v11.4s\n"
508 "sub v18.4s, v18.4s, v11.4s\n"
509 "sub v19.4s, v19.4s, v11.4s\n"
510
511 // If the destination is int32, it means the user asks for the raw
512 // accumulators, no need for us to downquantize the value.
513 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT32) "\n"
514 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT32) "f\n"
515
516 "402:\n"
517
518 // At this point we have computed the final int32 values. Now we
519 // start down-quantizing them to obtain the final 8bit values from them.
520
521 // As part of this down-quantization, our int32 values will be
522 // multiplied by a multiplier that has a fixed-point component and an
523 // exponent component.
524
525 //Load the exponent part of the multiplier.
526 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_EXPONENT) "]\n"
527 // Determine the channel index.
528 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
529 "csel w3, %w[row], %w[col], eq\n"
530
531 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
532 "add x5, x1, x3, lsl #2\n"
533 "csel x1, x1, x5, eq\n"
534
535 "ld1 {v14.4s}, [x1]\n"
536
537 "smin v11.4s, v8.4s, v14.4s\n"
538 "sub v12.4s, v14.4s, v11.4s\n"
539
540 // Jump based on channel dimension.
541 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
542 "bne 8f\n"
543 // Case where channels are rows
544
545 // Apply the positive exponent part of the multiplier.
546 "sshl v16.4s, v16.4s, v12.4s\n"
547 "sshl v17.4s, v17.4s, v12.4s\n"
548 "sshl v18.4s, v18.4s, v12.4s\n"
549 "sshl v19.4s, v19.4s, v12.4s\n"
550
551 // Apply the fixed-point part of the multiplier.
552 "sqdmulh v16.4s, v16.4s, v15.4s\n"
553 "sqdmulh v17.4s, v17.4s, v15.4s\n"
554 "sqdmulh v18.4s, v18.4s, v15.4s\n"
555 "sqdmulh v19.4s, v19.4s, v15.4s\n"
556
557 // Apply the negative exponent part of the multiplier.
558 "srshl v16.4s, v16.4s, v11.4s\n"
559 "srshl v17.4s, v17.4s, v11.4s\n"
560 "srshl v18.4s, v18.4s, v11.4s\n"
561 "srshl v19.4s, v19.4s, v11.4s\n"
562 "b 9f\n"
563
564 "8:\n"
565 // Case where channels are columns
566
567 // Apply the positive exponent part of the multiplier.
568 "dup v20.4s, v12.s[0]\n"
569 "dup v21.4s, v12.s[1]\n"
570 "dup v22.4s, v12.s[2]\n"
571 "dup v23.4s, v12.s[3]\n"
572 "sshl v16.4s, v16.4s, v20.4s\n"
573 "sshl v17.4s, v17.4s, v21.4s\n"
574 "sshl v18.4s, v18.4s, v22.4s\n"
575 "sshl v19.4s, v19.4s, v23.4s\n"
576
577 // Apply the fixed-point part of the multiplier.
578 "sqdmulh v16.4s, v16.4s, v15.s[0]\n"
579 "sqdmulh v17.4s, v17.4s, v15.s[1]\n"
580 "sqdmulh v18.4s, v18.4s, v15.s[2]\n"
581 "sqdmulh v19.4s, v19.4s, v15.s[3]\n"
582
583 // Apply the negative exponent part of the multiplier.
584 "dup v20.4s, v11.s[0]\n"
585 "dup v21.4s, v11.s[1]\n"
586 "dup v22.4s, v11.s[2]\n"
587 "dup v23.4s, v11.s[3]\n"
588 "srshl v16.4s, v16.4s, v20.4s\n"
589 "srshl v17.4s, v17.4s, v21.4s\n"
590 "srshl v18.4s, v18.4s, v22.4s\n"
591 "srshl v19.4s, v19.4s, v23.4s\n"
592 "9:\n"
593
594 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT16) "\n"
595 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT16) "f\n"
596 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT8) "\n"
597 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT8) "f\n"
598
599 RUY_STR(RUY_ASM_LABEL_STORE_UINT8) ":\n"
600
601 // Cast-and-saturate from int32 to int16
602 "sqxtn v16.4h, v16.4s\n"
603 "sqxtn2 v16.8h, v17.4s\n"
604 "sqxtn v17.4h, v18.4s\n"
605 "sqxtn2 v17.8h, v19.4s\n"
606
607 // At this point, v18 -- v31 aren't used anymore for the current block,
608 // so we can start clearing these accumulators for the next block
609 // (next iteration of the main loop).
610 RUY_MAKE_ZERO(v18)
611 RUY_MAKE_ZERO(v19)
612 RUY_MAKE_ZERO(v20)
613 RUY_MAKE_ZERO(v21)
614 RUY_MAKE_ZERO(v22)
615 RUY_MAKE_ZERO(v23)
616 RUY_MAKE_ZERO(v24)
617 RUY_MAKE_ZERO(v25)
618 RUY_MAKE_ZERO(v26)
619 RUY_MAKE_ZERO(v27)
620 RUY_MAKE_ZERO(v28)
621 RUY_MAKE_ZERO(v29)
622 RUY_MAKE_ZERO(v30)
623 RUY_MAKE_ZERO(v31)
624
625 // Add the destination zero point
626 "dup v14.8h, v13.h[4]\n"
627 "sqadd v16.8h, v16.8h, v14.8h\n"
628 "sqadd v17.8h, v17.8h, v14.8h\n"
629
630 // Cast-and-saturate from int16 to uint8
631 "sqxtun v16.8b, v16.8h\n"
632 "sqxtun2 v16.16b, v17.8h\n"
633
634 // Load the clamp_min, clamp_max bounds
635 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
636 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
637 "dup v14.16b, w2\n" // clamp_min
638 "dup v15.16b, w3\n" // clamp_max
639
640 // Apply the clamp_min bound
641 "umax v16.16b, v16.16b, v14.16b\n"
642 // Apply the clamp_max bound
643 "umin v16.16b, v16.16b, v15.16b\n"
644
645 // Compute how much of the 4x4 block of destination 8bit values that
646 // we have computed, fit in the destination matrix. Typically, all of
647 // it fits, but when the destination matrix shape is not a multiple
648 // of 4x4, there are some 4x4 blocks along the boundaries that do
649 // not fit entirely.
650 "sub w1, %w[dst_rows], %w[row]\n"
651 "sub w2, %w[dst_cols], %w[col]\n"
652 "mov w3, #4\n"
653 "cmp w1, #4\n"
654 // Compute w1 = how many rows of the 4x4 block fit
655 "csel w1, w1, w3, le\n"
656 "cmp w2, #4\n"
657 // Compute w2 = how many cols of the 4x4 block fit
658 "csel w2, w2, w3, le\n"
659
660 // Test if w1==4 && w2 == 4, i.e. if all of the 4x4 block fits.
661 "cmp w1, w3\n"
662 "ccmp w2, w3, 0, eq\n"
663 "mov x4, %[dst_ptr]\n"
664 // Yes, all of the 4x4 block fits, go to fast path.
665 "beq 30f\n"
666 // Not all of the 4x4 block fits.
667 // Store to dst_tmp_buf
668 "st1 {v16.16b}, [%[dst_tmp_buf]]\n"
669 // Slow loop copying from dst_tmp_buf to dst.
670 "mov x3, %[dst_tmp_buf]\n"
671 "mov w6, #0\n"
672 "50:\n"
673 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
674 "mov w5, #0\n"
675 "51:\n"
676 "ldrb w7, [x3, w5, uxtw]\n"
677 "strb w7, [x4, w5, uxtw]\n"
678 "add w5, w5, #1\n"
679 "cmp w5, w1\n"
680 "blt 51b\n"
681 "add w6, w6, #1\n"
682 "add x3, x3, #4\n"
683 "add x4, x4, x11\n"
684 "cmp w6, w2\n"
685 "blt 50b\n"
686 "b 31f\n"
687 "30:\n"
688 // Yes, all of the 4x4 block fits.
689 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
690 "mov x3, x4\n"
691 "st1 {v16.b}[0], [x3], #1\n"
692 "add x4, x4, x11\n"
693 "st1 {v16.b}[1], [x3], #1\n"
694 "st1 {v16.b}[2], [x3], #1\n"
695 "st1 {v16.b}[3], [x3], #1\n"
696 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
697 "mov x3, x4\n"
698 "st1 {v16.b}[4], [x3], #1\n"
699 "add x4, x4, x11\n"
700 "st1 {v16.b}[5], [x3], #1\n"
701 "st1 {v16.b}[6], [x3], #1\n"
702 "st1 {v16.b}[7], [x3], #1\n"
703 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
704 "mov x3, x4\n"
705 "st1 {v16.b}[8], [x3], #1\n"
706 "add x4, x4, x11\n"
707 "st1 {v16.b}[9], [x3], #1\n"
708 "st1 {v16.b}[10], [x3], #1\n"
709 "st1 {v16.b}[11], [x3], #1\n"
710 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
711 "mov x3, x4\n"
712 "st1 {v16.b}[12], [x3], #1\n"
713 "add x4, x4, x11\n"
714 "st1 {v16.b}[13], [x3], #1\n"
715 "st1 {v16.b}[14], [x3], #1\n"
716 "st1 {v16.b}[15], [x3], #1\n"
717 "31:\n"
718
719 "add %[dst_ptr], %[dst_ptr], #4\n"
720
721 RUY_MAKE_ZERO(v16)
722 RUY_MAKE_ZERO(v17)
723
724 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
725
726 RUY_STR(RUY_ASM_LABEL_STORE_INT8) ":\n"
727
728 // Cast-and-saturate from int32 to int16
729 "sqxtn v16.4h, v16.4s\n"
730 "sqxtn2 v16.8h, v17.4s\n"
731 "sqxtn v17.4h, v18.4s\n"
732 "sqxtn2 v17.8h, v19.4s\n"
733
734 // At this point, v18 -- v31 aren't used anymore for the current block,
735 // so we can start clearing these accumulators for the next block
736 // (next iteration of the main loop).
737 RUY_MAKE_ZERO(v18)
738 RUY_MAKE_ZERO(v19)
739 RUY_MAKE_ZERO(v20)
740 RUY_MAKE_ZERO(v21)
741 RUY_MAKE_ZERO(v22)
742 RUY_MAKE_ZERO(v23)
743 RUY_MAKE_ZERO(v24)
744 RUY_MAKE_ZERO(v25)
745 RUY_MAKE_ZERO(v26)
746 RUY_MAKE_ZERO(v27)
747 RUY_MAKE_ZERO(v28)
748 RUY_MAKE_ZERO(v29)
749 RUY_MAKE_ZERO(v30)
750 RUY_MAKE_ZERO(v31)
751
752 // Add the destination zero point
753 "dup v14.8h, v13.h[4]\n"
754 "sqadd v16.8h, v16.8h, v14.8h\n"
755 "sqadd v17.8h, v17.8h, v14.8h\n"
756
757 // Cast-and-saturate from int16 to int8
758 "sqxtn v16.8b, v16.8h\n"
759 "sqxtn2 v16.16b, v17.8h\n"
760
761 // Load the clamp_min, clamp_max bounds
762 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
763 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
764 "dup v14.16b, w2\n" // clamp_min
765 "dup v15.16b, w3\n" // clamp_max
766
767 // Apply the clamp_min bound
768 "smax v16.16b, v16.16b, v14.16b\n"
769 // Apply the clamp_max bound
770 "smin v16.16b, v16.16b, v15.16b\n"
771
772 // Compute how much of the 4x4 block of destination 8bit values that
773 // we have computed, fit in the destination matrix. Typically, all of
774 // it fits, but when the destination matrix shape is not a multiple
775 // of 4x4, there are some 4x4 blocks along the boundaries that do
776 // not fit entirely.
777 "sub w1, %w[dst_rows], %w[row]\n"
778 "sub w2, %w[dst_cols], %w[col]\n"
779 "mov w3, #4\n"
780 "cmp w1, #4\n"
781 // Compute w1 = how many rows of the 4x4 block fit
782 "csel w1, w1, w3, le\n"
783 "cmp w2, #4\n"
784 // Compute w2 = how many cols of the 4x4 block fit
785 "csel w2, w2, w3, le\n"
786
787 // Test if w1==4 && w2 == 4, i.e. if all of the 4x4 block fits.
788 "cmp w1, w3\n"
789 "ccmp w2, w3, 0, eq\n"
790 "mov x4, %[dst_ptr]\n"
791 // Yes, all of the 4x4 block fits, go to fast path.
792 "beq 30f\n"
793 // Not all of the 4x4 block fits.
794 // Store to dst_tmp_buf
795 "st1 {v16.16b}, [%[dst_tmp_buf]]\n"
796 // Slow loop copying from dst_tmp_buf to dst.
797 "mov x3, %[dst_tmp_buf]\n"
798 "mov w6, #0\n"
799 "50:\n"
800 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
801 "mov w5, #0\n"
802 "51:\n"
803 "ldrb w7, [x3, w5, uxtw]\n"
804 "strb w7, [x4, w5, uxtw]\n"
805 "add w5, w5, #1\n"
806 "cmp w5, w1\n"
807 "blt 51b\n"
808 "add w6, w6, #1\n"
809 "add x3, x3, #4\n"
810 "add x4, x4, x11\n"
811 "cmp w6, w2\n"
812 "blt 50b\n"
813 "b 31f\n"
814 "30:\n"
815 // Yes, all of the 4x4 block fits.
816 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
817 "mov x3, x4\n"
818 "st1 {v16.b}[0], [x3], #1\n"
819 "add x4, x4, x11\n"
820 "st1 {v16.b}[1], [x3], #1\n"
821 "st1 {v16.b}[2], [x3], #1\n"
822 "st1 {v16.b}[3], [x3], #1\n"
823 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
824 "mov x3, x4\n"
825 "st1 {v16.b}[4], [x3], #1\n"
826 "add x4, x4, x11\n"
827 "st1 {v16.b}[5], [x3], #1\n"
828 "st1 {v16.b}[6], [x3], #1\n"
829 "st1 {v16.b}[7], [x3], #1\n"
830 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
831 "mov x3, x4\n"
832 "st1 {v16.b}[8], [x3], #1\n"
833 "add x4, x4, x11\n"
834 "st1 {v16.b}[9], [x3], #1\n"
835 "st1 {v16.b}[10], [x3], #1\n"
836 "st1 {v16.b}[11], [x3], #1\n"
837 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
838 "mov x3, x4\n"
839 "st1 {v16.b}[12], [x3], #1\n"
840 "add x4, x4, x11\n"
841 "st1 {v16.b}[13], [x3], #1\n"
842 "st1 {v16.b}[14], [x3], #1\n"
843 "st1 {v16.b}[15], [x3], #1\n"
844 "31:\n"
845
846 "add %[dst_ptr], %[dst_ptr], #4\n"
847
848 RUY_MAKE_ZERO(v16)
849 RUY_MAKE_ZERO(v17)
850
851 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
852
853 RUY_STR(RUY_ASM_LABEL_STORE_INT16) ":\n"
854
855 // Add the destination zero point
856 "dup v14.4h, v13.h[4]\n"
857 "saddw v16.4s, v16.4s, v14.4h\n"
858 "saddw v17.4s, v17.4s, v14.4h\n"
859 "saddw v18.4s, v18.4s, v14.4h\n"
860 "saddw v19.4s, v19.4s, v14.4h\n"
861
862 // Cast-and-saturate from int32 to int16
863 "sqxtn v16.4h, v16.4s\n"
864 "sqxtn2 v16.8h, v17.4s\n"
865 "sqxtn v17.4h, v18.4s\n"
866 "sqxtn2 v17.8h, v19.4s\n"
867
868 // At this point, v18 -- v31 aren't used anymore for the current block,
869 // so we can start clearing these accumulators for the next block
870 // (next iteration of the main loop).
871 RUY_MAKE_ZERO(v18)
872 RUY_MAKE_ZERO(v19)
873 RUY_MAKE_ZERO(v20)
874 RUY_MAKE_ZERO(v21)
875 RUY_MAKE_ZERO(v22)
876 RUY_MAKE_ZERO(v23)
877 RUY_MAKE_ZERO(v24)
878 RUY_MAKE_ZERO(v25)
879 RUY_MAKE_ZERO(v26)
880 RUY_MAKE_ZERO(v27)
881 RUY_MAKE_ZERO(v28)
882 RUY_MAKE_ZERO(v29)
883 RUY_MAKE_ZERO(v30)
884 RUY_MAKE_ZERO(v31)
885
886 // Load the clamp_min, clamp_max bounds
887 "ldrh w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
888 "ldrh w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
889 "dup v14.8h, w2\n" // clamp_min
890 "dup v15.8h, w3\n" // clamp_max
891
892 // Apply the clamp_min bound
893 "smax v16.8h, v16.8h, v14.8h\n"
894 "smax v17.8h, v17.8h, v14.8h\n"
895 // Apply the clamp_max bound
896 "smin v16.8h, v16.8h, v15.8h\n"
897 "smin v17.8h, v17.8h, v15.8h\n"
898
899 // Compute how much of the 4x4 block of destination 8bit values that
900 // we have computed, fit in the destination matrix. Typically, all of
901 // it fits, but when the destination matrix shape is not a multiple
902 // of 4x4, there are some 4x4 blocks along the boundaries that do
903 // not fit entirely.
904 "sub w1, %w[dst_rows], %w[row]\n"
905 "sub w2, %w[dst_cols], %w[col]\n"
906 "mov w3, #4\n"
907 "cmp w1, #4\n"
908 // Compute w1 = how many rows of the 4x4 block fit
909 "csel w1, w1, w3, le\n"
910 "cmp w2, #4\n"
911 // Compute w2 = how many cols of the 4x4 block fit
912 "csel w2, w2, w3, le\n"
913
914 // Test if w1==4 && w2 == 4, i.e. if all of the 8x8 block fits.
915 "cmp w1, w3\n"
916 "ccmp w2, w3, 0, eq\n"
917 "mov x4, %[dst_ptr]\n"
918 // Yes, all of the 4x4 block fits, go to fast path.
919 "beq 30f\n"
920 // Not all of the 4x4 block fits.
921 // Store to dst_tmp_buf
922 "str q16, [%[dst_tmp_buf], #0]\n"
923 "str q17, [%[dst_tmp_buf], #16]\n"
924 // Slow loop copying from dst_tmp_buf to dst.
925 "mov x3, %[dst_tmp_buf]\n"
926 "mov w6, #0\n"
927 "50:\n"
928 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
929 "mov w5, #0\n"
930 "51:\n"
931 "ldrh w7, [x3, x5, lsl #1]\n"
932 "strh w7, [x4, x5, lsl #1]\n"
933 "add w5, w5, #1\n"
934 "cmp w5, w1\n"
935 "blt 51b\n"
936 "add w6, w6, #1\n"
937 "add x3, x3, #8\n"
938 "add x4, x4, x11\n"
939 "cmp w6, w2\n"
940 "blt 50b\n"
941 "b 31f\n"
942 "30:\n"
943 // Yes, all of the 4x4 block fits.
944 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
945 "mov x3, x4\n"
946 "st1 {v16.h}[0], [x3], #2\n"
947 "add x4, x4, x11\n"
948 "st1 {v16.h}[1], [x3], #2\n"
949 "st1 {v16.h}[2], [x3], #2\n"
950 "st1 {v16.h}[3], [x3], #2\n"
951 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
952 "mov x3, x4\n"
953 "st1 {v16.h}[4], [x3], #2\n"
954 "add x4, x4, x11\n"
955 "st1 {v16.h}[5], [x3], #2\n"
956 "st1 {v16.h}[6], [x3], #2\n"
957 "st1 {v16.h}[7], [x3], #2\n"
958 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
959 "mov x3, x4\n"
960 "st1 {v17.h}[0], [x3], #2\n"
961 "add x4, x4, x11\n"
962 "st1 {v17.h}[1], [x3], #2\n"
963 "st1 {v17.h}[2], [x3], #2\n"
964 "st1 {v17.h}[3], [x3], #2\n"
965 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
966 "mov x3, x4\n"
967 "st1 {v17.h}[4], [x3], #2\n"
968 "add x4, x4, x11\n"
969 "st1 {v17.h}[5], [x3], #2\n"
970 "st1 {v17.h}[6], [x3], #2\n"
971 "st1 {v17.h}[7], [x3], #2\n"
972 "31:\n"
973
974 "add %[dst_ptr], %[dst_ptr], #8\n"
975
976 RUY_MAKE_ZERO(v16)
977 RUY_MAKE_ZERO(v17)
978
979 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
980
981 RUY_STR(RUY_ASM_LABEL_STORE_INT32) ":\n"
982
983 // Since the store type is the same as the accum type, no need for
984 // downcast. There's also no need for clamp by min/max.
985
986 // At this point, v20 -- v31 aren't used anymore for the current block,
987 // so we can start clearing these accumulators for the next block
988 // (next iteration of the main loop).
989 RUY_MAKE_ZERO(v20)
990 RUY_MAKE_ZERO(v21)
991 RUY_MAKE_ZERO(v22)
992 RUY_MAKE_ZERO(v23)
993 RUY_MAKE_ZERO(v24)
994 RUY_MAKE_ZERO(v25)
995 RUY_MAKE_ZERO(v26)
996 RUY_MAKE_ZERO(v27)
997 RUY_MAKE_ZERO(v28)
998 RUY_MAKE_ZERO(v29)
999 RUY_MAKE_ZERO(v30)
1000 RUY_MAKE_ZERO(v31)
1001
1002 // Compute how much of the 4x4 block of destination 8bit values that
1003 // we have computed, fit in the destination matrix. Typically, all of
1004 // it fits, but when the destination matrix shape is not a multiple
1005 // of 4x4, there are some 4x4 blocks along the boundaries that do
1006 // not fit entirely.
1007 "sub w1, %w[dst_rows], %w[row]\n"
1008 "sub w2, %w[dst_cols], %w[col]\n"
1009 "mov w3, #4\n"
1010 "cmp w1, #4\n"
1011 // Compute w1 = how many rows of the 4x4 block fit
1012 "csel w1, w1, w3, le\n"
1013 "cmp w2, #4\n"
1014 // Compute w2 = how many cols of the 4x4 block fit
1015 "csel w2, w2, w3, le\n"
1016
1017 // Test if w1==4 && w2 == 4, i.e. if all of the 8x8 block fits.
1018 "cmp w1, w3\n"
1019 "ccmp w2, w3, 0, eq\n"
1020 "mov x4, %[dst_ptr]\n"
1021 // Yes, all of the 4x4 block fits, go to fast path.
1022 "beq 30f\n"
1023 // Not all of the 4x4 block fits.
1024 // Store to dst_tmp_buf
1025 "str q16, [%[dst_tmp_buf], #0]\n"
1026 "str q17, [%[dst_tmp_buf], #16]\n"
1027 "str q18, [%[dst_tmp_buf], #32]\n"
1028 "str q19, [%[dst_tmp_buf], #48]\n"
1029 // Slow loop copying from dst_tmp_buf to dst.
1030 "mov x3, %[dst_tmp_buf]\n"
1031 "mov w6, #0\n"
1032 "50:\n"
1033 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1034 "mov w5, #0\n"
1035 "51:\n"
1036 "ldr w7, [x3, x5, lsl #2]\n"
1037 "str w7, [x4, x5, lsl #2]\n"
1038 "add w5, w5, #1\n"
1039 "cmp w5, w1\n"
1040 "blt 51b\n"
1041 "add w6, w6, #1\n"
1042 "add x3, x3, #16\n"
1043 "add x4, x4, x11\n"
1044 "cmp w6, w2\n"
1045 "blt 50b\n"
1046 "b 31f\n"
1047 "30:\n"
1048 // Yes, all of the 4x4 block fits.
1049 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1050 "mov x3, x4\n"
1051 "st1 {v16.s}[0], [x3], #4\n"
1052 "add x4, x4, x11\n"
1053 "st1 {v16.s}[1], [x3], #4\n"
1054 "st1 {v16.s}[2], [x3], #4\n"
1055 "st1 {v16.s}[3], [x3], #4\n"
1056 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1057 "mov x3, x4\n"
1058 "st1 {v17.s}[0], [x3], #4\n"
1059 "add x4, x4, x11\n"
1060 "st1 {v17.s}[1], [x3], #4\n"
1061 "st1 {v17.s}[2], [x3], #4\n"
1062 "st1 {v17.s}[3], [x3], #4\n"
1063 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1064 "mov x3, x4\n"
1065 "st1 {v18.s}[0], [x3], #4\n"
1066 "add x4, x4, x11\n"
1067 "st1 {v18.s}[1], [x3], #4\n"
1068 "st1 {v18.s}[2], [x3], #4\n"
1069 "st1 {v18.s}[3], [x3], #4\n"
1070 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1071 "mov x3, x4\n"
1072 "st1 {v19.s}[0], [x3], #4\n"
1073 "add x4, x4, x11\n"
1074 "st1 {v19.s}[1], [x3], #4\n"
1075 "st1 {v19.s}[2], [x3], #4\n"
1076 "st1 {v19.s}[3], [x3], #4\n"
1077 "31:\n"
1078
1079 "add %[dst_ptr], %[dst_ptr], #16\n"
1080
1081 RUY_MAKE_ZERO(v16)
1082 RUY_MAKE_ZERO(v17)
1083 RUY_MAKE_ZERO(v18)
1084 RUY_MAKE_ZERO(v19)
1085
1086 RUY_STR(RUY_ASM_LABEL_AFTER_STORE) ":\n"
1087
1088 // For the next block: perform the first few multiply-adds on the data
1089 // that we have already loaded.
1090 "smull v8.8h, v0.8b, v4.8b\n"
1091 "smull v9.8h, v1.8b, v4.8b\n"
1092 "smull v10.8h, v2.8b, v4.8b\n"
1093 "smull v11.8h, v3.8b, v4.8b\n"
1094 "smull v12.8h, v0.8b, v5.8b\n"
1095 "smull v13.8h, v1.8b, v5.8b\n"
1096 "smull v14.8h, v2.8b, v5.8b\n"
1097 "smull v15.8h, v3.8b, v5.8b\n"
1098 "smlal2 v8.8h, v0.16b, v4.16b\n"
1099 "smlal2 v9.8h, v1.16b, v4.16b\n"
1100 "smlal2 v10.8h, v2.16b, v4.16b\n"
1101 "smlal2 v11.8h, v3.16b, v4.16b\n"
1102 "smlal2 v12.8h, v0.16b, v5.16b\n"
1103 "smlal2 v13.8h, v1.16b, v5.16b\n"
1104 "smlal2 v14.8h, v2.16b, v5.16b\n"
1105 "smlal2 v15.8h, v3.16b, v5.16b\n"
1106
1107 // Reload some params --- we had used x5 -- x7 for a few other things
1108 // since the last time we had loaded them.
1109 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
1110 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
1111 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
1112
1113 // Move to the next block of the destination matrix, for the next iter
1114 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
1115 // been updated earlier.
1116 // Have we reached the end row?
1117 "cmp %w[row], w7\n"
1118 "beq 20f\n" // yes, end row.
1119 // Not end row. Move to the next row.
1120 "add %w[row], %w[row], #4\n"
1121 "b 21f\n"
1122 "20:\n"
1123 // Was already at end row.
1124 "mov %w[row], w6\n" // Move back to first row.
1125 "add %w[col], %w[col], #4\n" // Move to the next column.
1126 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #2\n"
1127 "mov %[dst_ptr], %[dst_col_ptr]\n"
1128 "21:\n"
1129
1130 // Main loop exit condition: have we hit the end column?
1131 "cmp %w[col], w8\n"
1132
1133 // w1 is the number of levels of depth that we have already loaded
1134 // LHS and RHS data for. Corresponding to the initial ld1 instructions
1135 // above, this is currently 4.
1136 "mov w1, #16\n"
1137
1138 "ble 1b\n"
1139
1140 // clang-format on
1141
1142 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
1143 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
1144 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
1145 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
1146 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf),
1147 [dst_type_id] "r"(params.dst_type_id)
1148 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
1149 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
1150 "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25",
1151 "v26", "v27", "v28", "v29", "v30", "v31");
1152}
1153
1154// Similar to existing Kernel8bitNeon but specialized for the case of
1155// RHS cols == 1.
1156// Relevant target CPUs for this kernel include ARM Cortex-A73 and Cortex-A75,
1157// since these are 64-bit, out-of-order and without dotprod support.
1158void Kernel8bitNeon1Col(const KernelParams8bit<4, 4>& params) {
1159 profiler::ScopeLabel label("Kernel (kNeon)");
1160
1161 CheckOffsetsInKernelParams8bit(params);
1162
1163 const std::int8_t* lhs_col_ptr = params.lhs_base_ptr;
1164 const std::int8_t* rhs_col_ptr =
1165 static_cast<const int8_t*>(params.rhs_base_ptr);
1166 const std::int8_t* lhs_ptr = lhs_col_ptr;
1167 const std::int8_t* rhs_ptr = rhs_col_ptr;
1168 void* dst_col_ptr = params.dst_base_ptr;
1169 void* dst_ptr = dst_col_ptr;
1170 int row = params.start_row;
1171 int col = params.start_col;
1172
1173 RUY_DCHECK(!(params.flags & RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL));
1174
1175 // The asm kernel below has the following NEON register allocation:
1176 //
1177 // v16 -- v19 are int32 accumulators.
1178 // During accumulation, v0 -- v3 are used to load int8 data from LHS and
1179 // v4 from RHS:
1180 //
1181 // int8 RHS 16x1 block
1182 // /-----------|
1183 // |v4.b[0] |
1184 // | ... |
1185 // |v4.b[15] |
1186 // \-----------/
1187 // int8 LHS 4x16 block
1188 // /---------------------\ /-----------|
1189 // |v0.b[0] ... v0.b[15] | |v16.4s |
1190 // |v1.b[0] ... v1.b[15] | |v17.4s |
1191 // |v2.b[0] ... v2.b[15] | |v18.4s |
1192 // |v3.b[0] ... v3.b[15] | |v19.4s |
1193 // \---------------------/ \-----------/
1194 // int32 accumulators 4x1 block
1195 //
1196 // No attempt had been made so far at implementing the RUY_OPT_MAX_STREAMING
1197 // optimization for this kernel.
1198 asm volatile(
1199#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
1200
1201 // clang-format off
1202
1203 // Load some parameters into registers.
1204 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
1205 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
1206 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
1207 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
1208 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
1209 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
1210 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
1211 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
1212
1213 // Load the first 64 bytes of LHS and RHS data.
1214 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
1215 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
1216 "ld1 {v2.16b}, [%[lhs_ptr]], #16\n"
1217 "ld1 {v3.16b}, [%[lhs_ptr]], #16\n"
1218 "ld1 {v4.16b}, [%[rhs_ptr]], #16\n"
1219 "add %[rhs_ptr], %[rhs_ptr], #48\n"
1220
1221 // Clear accumulators.
1222 RUY_MAKE_ZERO(v16)
1223 RUY_MAKE_ZERO(v17)
1224 RUY_MAKE_ZERO(v18)
1225 RUY_MAKE_ZERO(v19)
1226
1227 // w1 is the number of levels of depth that we have already loaded
1228 // LHS and RHS data for. Corresponding to the initial ld1 instructions
1229 // above, this is currently 16.
1230 "mov w1, #16\n"
1231
1232 // Perform the first few multiply-adds on the data that we have already
1233 // loaded.
1234 "smull v8.8h, v0.8b, v4.8b\n"
1235 "smull v9.8h, v1.8b, v4.8b\n"
1236 "smull v10.8h, v2.8b, v4.8b\n"
1237 "smull v11.8h, v3.8b, v4.8b\n"
1238
1239 // Multiply-accumulate second-half, again into the same
1240 // 16bit local accumulator registers. This is where we
1241 // take advantage of having int8 instead of uint8 and therefore
1242 // being able to accumulate two products into int16.
1243 "smlal2 v8.8h, v0.16b, v4.16b\n"
1244 "smlal2 v9.8h, v1.16b, v4.16b\n"
1245 "smlal2 v10.8h, v2.16b, v4.16b\n"
1246 "smlal2 v11.8h, v3.16b, v4.16b\n"
1247
1248 // Main loop of the whole GEMM, over rows and columns of the
1249 // destination matrix.
1250 "1:\n"
1251
1252 // Reminder - w1 is how many levels of depth we have already loaded
1253 // data for, w12 is the total depth.
1254 "cmp w1, w12\n"
1255 "beq 79f\n"
1256
1257 "2:\n"
1258
1259 // Some multiplications and 16-bit accumulation were already done above,
1260 // so we start right away in the middle.
1261 "sadalp v16.4s, v8.8h\n"
1262 "ld1 {v4.16b}, [%[rhs_ptr]], #16\n"
1263 "add %[rhs_ptr], %[rhs_ptr], #48\n"
1264 "sadalp v17.4s, v9.8h\n"
1265 "sadalp v18.4s, v10.8h\n"
1266 "sadalp v19.4s, v11.8h\n"
1267
1268 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
1269 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
1270 "ld1 {v2.16b}, [%[lhs_ptr]], #16\n"
1271 "ld1 {v3.16b}, [%[lhs_ptr]], #16\n"
1272
1273 "smull v8.8h, v0.8b, v4.8b\n"
1274 "smull v9.8h, v1.8b, v4.8b\n"
1275 "smull v10.8h, v2.8b, v4.8b\n"
1276 "smull v11.8h, v3.8b, v4.8b\n"
1277
1278 // Multiply-accumulate second-half, again into the same
1279 // 16bit local accumulator registers. This is where we
1280 // take advantage of having int8 instead of uint8 and therefore
1281 // being able to accumulate two products into int16.
1282 "smlal2 v8.8h, v0.16b, v4.16b\n"
1283 "smlal2 v9.8h, v1.16b, v4.16b\n"
1284 "smlal2 v10.8h, v2.16b, v4.16b\n"
1285 "smlal2 v11.8h, v3.16b, v4.16b\n"
1286
1287 // Each iteration of this loop advances by 16 levels of depth.
1288 "add w1, w1, #16\n"
1289
1290 // Loop termination condition
1291 "cmp w1, w12\n"
1292
1293 "blt 2b\n"
1294
1295 "79:\n"
1296
1297 "sadalp v16.4s, v8.8h\n"
1298 "sadalp v17.4s, v9.8h\n"
1299 "sadalp v18.4s, v10.8h\n"
1300 "sadalp v19.4s, v11.8h\n"
1301
1302 // End of accumulation. The registers v16 -- v19 contain the final
1303 // int32 accumulator values of the current 4x1 destination block.
1304 // We now have to compute the final 8-bit values from these int32
1305 // accumulators, and advance to the next 4x1 block. We intertwine
1306 // these two aspects whenever possible for optimal pipelining, both
1307 // at the data flow level (prefetch data for next block as early as
1308 // possible) and instruction pipelining level (some of the next-block
1309 // work can dual-issue with some of the final work on the current
1310 // block).
1311
1312 // Reduce 32bit accumulators horizontally.
1313 "addp v16.4s, v16.4s, v17.4s\n"
1314 "addp v18.4s, v18.4s, v19.4s\n"
1315
1316 // Reduce 32bit accumulators horizontally, second pass
1317 // (each pass adds pairwise. we need to add 4-wise).
1318 "addp v16.4s, v16.4s, v18.4s\n"
1319
1320 // Logic to advance to the next block in preparation for the next
1321 // iteration of the main loop. For now, we only want to compute
1322 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
1323 // not yet ready to update the values of row and col, as we still need
1324 // the current values for the rest of the work on the current block.
1325
1326 "cmp %w[row], w7\n" // Have we finished the last row?
1327 "bge 4f\n" // If finished last row, go to 4
1328 // Not finished last row: then advance to next row.
1329 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #2\n"
1330 "b 5f\n"
1331 "4:\n" // Finished last row...
1332 "mov %[lhs_col_ptr], x5\n" // Go back to first row
1333 // Now we need to advance to the next column. If we already
1334 // finished the last column, then in principle we are done, however
1335 // we can't just return here, as we need to allow the end work of the
1336 // current block to complete. The good news is that at this point it
1337 // doesn't matter what data we load for the next column, since
1338 // we will exit from the main loop below before actually storing
1339 // anything computed from that data.
1340 "cmp %w[col], w8\n" // Have we finished the last column?
1341 "bge 5f\n" // If yes, just carry on without updating the column pointer.
1342 // Not finished last column: then advance to next column.
1343 // (still multiply column stride by 4 due to packing)
1344 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #2\n"
1345 "5:\n"
1346
1347 // Set the LHS and RHS data pointers to the start of the columns just
1348 // computed.
1349 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
1350 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
1351
1352 // Load some parameters needed for the end work on current block.
1353 "mvni v8.4s, #0\n"
1354 "ldr w4, [%[params], #" RUY_STR(RUY_OFFSET_DST_ZERO_POINT) "]\n"
1355 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_PROD_ZP_DEPTH) "]\n"
1356 "ins v13.h[4], w4\n" // dst_zero_point
1357 "ldr x4, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_FIXEDPOINT) "]\n"
1358 "ldrb w6, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
1359 "dup v9.4s, w3\n" // create prod_zp_depth_vec
1360 "add x5, x4, %x[row], lsl #2\n"
1361 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
1362 "csel x4, x4, x5, eq\n"
1363
1364 "ld1 {v15.4s}, [x4]\n" // multiplier_fixedpoint
1365
1366 // Now we load: bias data, LHS sums data, RHS sums data.
1367
1368 // First, load the base pointers from the params.
1369 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
1370
1371 "add x5, x1, %x[row], lsl #2\n"
1372 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
1373 "csel x1, x1, x5, eq\n"
1374
1375 // Load 4 bias values.
1376 "ld1 {v14.4s}, [x1]\n"
1377
1378 // Now that we know what LHS and RHS data the next iteration of the
1379 // main loop will need to load, we start loading the first 32 bytes of
1380 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
1381 // in the rest of the work on the current block.
1382 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
1383 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
1384 "ld1 {v2.16b}, [%[lhs_ptr]], #16\n"
1385 "ld1 {v3.16b}, [%[lhs_ptr]], #16\n"
1386 "ld1 {v4.16b}, [%[rhs_ptr]], #16\n"
1387 "add %[rhs_ptr], %[rhs_ptr], #48\n"
1388
1389 // Add to the bias values the product (depth * lhs_zero_point * rhs_zero_point),
1390 // See the term NZ1Z2 in equation (7) in https://arxiv.org/pdf/1712.05877.pdf
1391 "add v14.4s, v14.4s, v9.4s\n"
1392
1393 // Perform the bias-addition (per the above, we have just folded into
1394 // the bias the (depth * lhs_zero_point * rhs_zero_point) term.)
1395 // (all four 32-bit accumulators are in v16 at this point)
1396 "add v16.4s, v16.4s, v14.4s\n"
1397
1398 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_RHS_SUMS) "\n"
1399 "beq 401f\n"
1400 "ldr x3, [%[params], #" RUY_STR(RUY_OFFSET_RHS_SUMS) "]\n"
1401 "add x3, x3, %x[col], lsl #2\n"
1402 "ld1 {v14.4s}, [x3]\n"
1403 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_ZERO_POINT) "]\n"
1404 "dup v10.4s, w5\n" // create lhs_zero_point_vec
1405 // Subtract rhs_sums * lhs_zero_point, per
1406 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
1407 "mls v16.4s, v10.4s, v14.s[0]\n"
1408 "401:\n"
1409
1410 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_LHS_SUMS) "\n"
1411 "beq 402f\n"
1412 "ldr x2, [%[params], #" RUY_STR(RUY_OFFSET_LHS_SUMS) "]\n"
1413 "add x2, x2, %x[row], lsl #2\n"
1414 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_RHS_ZERO_POINT) "]\n"
1415 // Load 4 lhs_sums values.
1416 "ld1 {v11.4s}, [x2]\n"
1417 "ins v13.s[1], w5\n" // rhs_zero_point
1418 // Compute lhs_sums * rhs_zero_point.
1419 "mul v11.4s, v11.4s, v13.s[1]\n"
1420 // Subtract lhs_sums * rhs_zero_point, per
1421 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
1422 "sub v16.4s, v16.4s, v11.4s\n"
1423
1424 // If the destination is int32, it means the user asks for the raw
1425 // accumulators, no need for us to downquantize the value.
1426 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT32) "\n"
1427 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT32) "f\n"
1428
1429 "402:\n"
1430
1431 // At this point we have computed the final int32 values. Now we
1432 // start down-quantizing them to obtain the final 8bit values from them.
1433
1434 // As part of this down-quantization, our int32 values will be
1435 // multiplied by a multiplier that has a fixed-point component and an
1436 // exponent component.
1437
1438 //Load the exponent part of the multiplier.
1439 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_EXPONENT) "]\n"
1440 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
1441 "add x5, x1, %x[row], lsl #2\n"
1442 "csel x1, x1, x5, eq\n"
1443
1444 "ld1 {v14.4s}, [x1]\n"
1445
1446 "smin v11.4s, v8.4s, v14.4s\n"
1447 "sub v12.4s, v14.4s, v11.4s\n"
1448
1449 // Apply the positive exponent part of the multiplier.
1450 "sshl v16.4s, v16.4s, v12.4s\n"
1451
1452 // Apply the fixed-point part of the multiplier.
1453 "sqdmulh v16.4s, v16.4s, v15.4s\n"
1454
1455 // Apply the negative exponent part of the multiplier.
1456 "srshl v16.4s, v16.4s, v11.4s\n"
1457
1458 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT16) "\n"
1459 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT16) "f\n"
1460 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT8) "\n"
1461 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT8) "f\n"
1462
1463 RUY_STR(RUY_ASM_LABEL_STORE_UINT8) ":\n"
1464
1465 // Cast-and-saturate from int32 to int16
1466 // After this instruction, all data is in lower half (64-bits) of v16
1467 "sqxtn v16.4h, v16.4s\n"
1468
1469 // At this point, v18 -- v31 aren't used anymore for the current block,
1470 // so we can start clearing these accumulators for the next block
1471 // (next iteration of the main loop).
1472 RUY_MAKE_ZERO(v18)
1473 RUY_MAKE_ZERO(v19)
1474
1475 // Add the destination zero point
1476 "dup v14.8h, v13.h[4]\n"
1477 "sqadd v16.8h, v16.8h, v14.8h\n"
1478
1479 // Cast-and-saturate from int16 to uint8
1480 // Now all data is in the first 32-bits of v16
1481 "sqxtun v16.8b, v16.8h\n"
1482
1483 // Load the clamp_min, clamp_max bounds
1484 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
1485 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
1486 "dup v14.16b, w2\n" // clamp_min
1487 "dup v15.16b, w3\n" // clamp_max
1488
1489 // Apply the clamp_min bound
1490 "umax v16.16b, v16.16b, v14.16b\n"
1491 // Apply the clamp_max bound
1492 "umin v16.16b, v16.16b, v15.16b\n"
1493
1494 // Compute how much of the 4x1 block of destination 8bit values that
1495 // we have computed, fit in the destination matrix. Typically, all of
1496 // it fits, but when the destination matrix shape is not a multiple
1497 // of 4x1, there are some 4x1 blocks along the boundaries that do
1498 // not fit entirely.
1499 "sub w1, %w[dst_rows], %w[row]\n"
1500 "mov w3, #4\n"
1501 "cmp w1, #4\n"
1502 // Compute w1 = how many rows of the 4x1 block fit
1503 "csel w1, w1, w3, le\n"
1504
1505 // Test if w1==4, i.e. if all of the 4x1 block fits.
1506 "cmp w1, w3\n"
1507
1508 "mov x4, %[dst_ptr]\n"
1509 // Yes, all of the 4x1 block fits, go to fast path.
1510 "beq 30f\n"
1511 // Not all of the 4x1 block fits.
1512 // Store to dst_tmp_buf
1513 "st1 {v16.16b}, [%[dst_tmp_buf]]\n"
1514 // Slow loop copying from dst_tmp_buf to dst.
1515 "mov x3, %[dst_tmp_buf]\n"
1516 "mov w6, #0\n"
1517 "50:\n"
1518 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1519 "mov w5, #0\n"
1520 "51:\n"
1521 "ldrb w7, [x3, w5, uxtw]\n"
1522 "strb w7, [x4, w5, uxtw]\n"
1523 "add w5, w5, #1\n"
1524 "cmp w5, w1\n"
1525 "blt 51b\n"
1526 "b 31f\n"
1527 "30:\n"
1528 // Yes, all of the 4x1 block fits.
1529 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1530 "mov x3, x4\n"
1531 "st1 {v16.b}[0], [x3], #1\n"
1532 "st1 {v16.b}[1], [x3], #1\n"
1533 "st1 {v16.b}[2], [x3], #1\n"
1534 "st1 {v16.b}[3], [x3], #1\n"
1535 "31:\n"
1536
1537 "add %[dst_ptr], %[dst_ptr], #4\n"
1538
1539 RUY_MAKE_ZERO(v16)
1540 RUY_MAKE_ZERO(v17)
1541
1542 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
1543
1544 RUY_STR(RUY_ASM_LABEL_STORE_INT8) ":\n"
1545
1546 // Cast-and-saturate from int32 to int16
1547 // After this, all values for output are in the lower half (64 bits) of v16.
1548 "sqxtn v16.4h, v16.4s\n"
1549
1550 // At this point, v18 -- v31 aren't used anymore for the current block,
1551 // so we can start clearing these accumulators for the next block
1552 // (next iteration of the main loop).
1553 RUY_MAKE_ZERO(v18)
1554 RUY_MAKE_ZERO(v19)
1555
1556 // Add the destination zero point
1557 "dup v14.8h, v13.h[4]\n"
1558 "sqadd v16.8h, v16.8h, v14.8h\n"
1559
1560 // Cast-and-saturate from int16 to int8
1561 "sqxtn v16.8b, v16.8h\n"
1562 // At this point, we only need 4 lowest 8-bit values in v16.
1563
1564 // Load the clamp_min, clamp_max bounds
1565 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
1566 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
1567 "dup v14.16b, w2\n" // clamp_min
1568 "dup v15.16b, w3\n" // clamp_max
1569
1570 // Apply the clamp_min bound
1571 "smax v16.16b, v16.16b, v14.16b\n"
1572 // Apply the clamp_max bound
1573 "smin v16.16b, v16.16b, v15.16b\n"
1574
1575 // Compute how much of the 4x4 block of destination 8bit values that
1576 // we have computed, fit in the destination matrix. Typically, all of
1577 // it fits, but when the destination matrix shape is not a multiple
1578 // of 4x4, there are some 4x4 blocks along the boundaries that do
1579 // not fit entirely.
1580 "sub w1, %w[dst_rows], %w[row]\n"
1581 "sub w2, %w[dst_cols], %w[col]\n"
1582 "mov w3, #4\n"
1583 "cmp w1, #4\n"
1584 // Compute w1 = how many rows of the 4x1 block fit
1585 "csel w1, w1, w3, le\n"
1586 "cmp w2, #4\n"
1587
1588 // Test if w1==4, i.e. if all of the 4x1 block fits.
1589 "cmp w1, w3\n"
1590 "ccmp w2, w3, 0, eq\n"
1591 "mov x4, %[dst_ptr]\n"
1592 // Yes, all of the 4x1 block fits, go to fast path.
1593 "beq 30f\n"
1594 // Not all of the 4x4 block fits.
1595 // Store to dst_tmp_buf
1596 "st1 {v16.16b}, [%[dst_tmp_buf]]\n"
1597 // Slow loop copying from dst_tmp_buf to dst.
1598 "mov x3, %[dst_tmp_buf]\n"
1599 "mov w6, #0\n"
1600 "50:\n"
1601 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1602 "mov w5, #0\n"
1603 "51:\n"
1604 "ldrb w7, [x3, w5, uxtw]\n"
1605 "strb w7, [x4, w5, uxtw]\n"
1606 "add w5, w5, #1\n"
1607 "cmp w5, w1\n"
1608 "blt 51b\n"
1609 "b 31f\n"
1610 "30:\n"
1611 // Yes, all of the 4x4 block fits.
1612 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1613 "mov x3, x4\n"
1614 "st1 {v16.b}[0], [x3], #1\n"
1615 "st1 {v16.b}[1], [x3], #1\n"
1616 "st1 {v16.b}[2], [x3], #1\n"
1617 "st1 {v16.b}[3], [x3], #1\n"
1618 "31:\n"
1619
1620 "add %[dst_ptr], %[dst_ptr], #4\n"
1621
1622 RUY_MAKE_ZERO(v16)
1623 RUY_MAKE_ZERO(v17)
1624
1625 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
1626
1627 RUY_STR(RUY_ASM_LABEL_STORE_INT16) ":\n"
1628
1629 // Add the destination zero point
1630 "dup v14.4h, v13.h[4]\n"
1631 "saddw v16.4s, v16.4s, v14.4h\n"
1632
1633 // Cast-and-saturate from int32 to int16
1634 // After this instruction, all data is in lower half of v16.
1635 "sqxtn v16.4h, v16.4s\n"
1636
1637 // At this point, v18 -- v31 aren't used anymore for the current block,
1638 // so we can start clearing these accumulators for the next block
1639 // (next iteration of the main loop).
1640 RUY_MAKE_ZERO(v18)
1641 RUY_MAKE_ZERO(v19)
1642
1643 // Load the clamp_min, clamp_max bounds
1644 "ldrh w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
1645 "ldrh w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
1646 "dup v14.8h, w2\n" // clamp_min
1647 "dup v15.8h, w3\n" // clamp_max
1648
1649 // Apply the clamp_min bound
1650 "smax v16.8h, v16.8h, v14.8h\n"
1651 // Apply the clamp_max bound
1652 "smin v16.8h, v16.8h, v15.8h\n"
1653
1654 // Compute how much of the 4x4 block of destination 8bit values that
1655 // we have computed, fit in the destination matrix. Typically, all of
1656 // it fits, but when the destination matrix shape is not a multiple
1657 // of 4x4, there are some 4x4 blocks along the boundaries that do
1658 // not fit entirely.
1659 "sub w1, %w[dst_rows], %w[row]\n"
1660 "sub w2, %w[dst_cols], %w[col]\n"
1661 "mov w3, #4\n"
1662 "cmp w1, #4\n"
1663 // Compute w1 = how many rows of the 4x4 block fit
1664 "csel w1, w1, w3, le\n"
1665 "cmp w2, #4\n"
1666
1667 // Test if w1==4 && w2 == 4, i.e. if all of the 8x8 block fits.
1668 "cmp w1, w3\n"
1669 "mov x4, %[dst_ptr]\n"
1670 // Yes, all of the 4x4 block fits, go to fast path.
1671 "beq 30f\n"
1672 // Not all of the 4x4 block fits.
1673 // Store to dst_tmp_buf
1674 "str q16, [%[dst_tmp_buf], #0]\n"
1675 // Slow loop copying from dst_tmp_buf to dst.
1676 "mov x3, %[dst_tmp_buf]\n"
1677 "mov w6, #0\n"
1678 "50:\n"
1679 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1680 "mov w5, #0\n"
1681 "51:\n"
1682 "ldrh w7, [x3, x5, lsl #1]\n"
1683 "strh w7, [x4, x5, lsl #1]\n"
1684 "add w5, w5, #1\n"
1685 "cmp w5, w1\n"
1686 "blt 51b\n"
1687 "blt 50b\n"
1688 "b 31f\n"
1689 "30:\n"
1690 // Yes, all of the 4x4 block fits.
1691 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1692 "mov x3, x4\n"
1693 "st1 {v16.h}[0], [x3], #2\n"
1694 "st1 {v16.h}[1], [x3], #2\n"
1695 "st1 {v16.h}[2], [x3], #2\n"
1696 "st1 {v16.h}[3], [x3], #2\n"
1697 "31:\n"
1698
1699 "add %[dst_ptr], %[dst_ptr], #8\n"
1700
1701 RUY_MAKE_ZERO(v16)
1702 RUY_MAKE_ZERO(v17)
1703
1704 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
1705
1706 RUY_STR(RUY_ASM_LABEL_STORE_INT32) ":\n"
1707
1708 // Since the store type is the same as the accum type, no need for
1709 // downcast. There's also no need for clamp by min/max.
1710
1711 // Compute how much of the 4x4 block of destination 8bit values that
1712 // we have computed, fit in the destination matrix. Typically, all of
1713 // it fits, but when the destination matrix shape is not a multiple
1714 // of 4x4, there are some 4x4 blocks along the boundaries that do
1715 // not fit entirely.
1716 "sub w1, %w[dst_rows], %w[row]\n"
1717 "sub w2, %w[dst_cols], %w[col]\n"
1718 "mov w3, #4\n"
1719 "cmp w1, #4\n"
1720 // Compute w1 = how many rows of the 4x4 block fit
1721 "csel w1, w1, w3, le\n"
1722 "cmp w2, #4\n"
1723
1724 // Test if w1==4 i.e. if all of the 4x1 block fits.
1725 "cmp w1, w3\n"
1726 "ccmp w2, w3, 0, eq\n"
1727 "mov x4, %[dst_ptr]\n"
1728 // Yes, all of the 4x1 block fits, go to fast path.
1729 "beq 30f\n"
1730 // Not all of the 4x4 block fits.
1731 // Store to dst_tmp_buf
1732 "str q16, [%[dst_tmp_buf], #0]\n"
1733 // Slow loop copying from dst_tmp_buf to dst.
1734 "mov x3, %[dst_tmp_buf]\n"
1735 "mov w6, #0\n"
1736 "50:\n"
1737 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1738 "mov w5, #0\n"
1739 "51:\n"
1740 "ldr w7, [x3, x5, lsl #2]\n"
1741 "str w7, [x4, x5, lsl #2]\n"
1742 "add w5, w5, #1\n"
1743 "cmp w5, w1\n"
1744 "blt 51b\n"
1745 "b 31f\n"
1746 "30:\n"
1747 // Yes, all of the 4x4 block fits.
1748 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
1749 "mov x3, x4\n"
1750 "st1 {v16.s}[0], [x3], #4\n"
1751 "st1 {v16.s}[1], [x3], #4\n"
1752 "st1 {v16.s}[2], [x3], #4\n"
1753 "st1 {v16.s}[3], [x3], #4\n"
1754 "31:\n"
1755
1756 "add %[dst_ptr], %[dst_ptr], #16\n"
1757
1758 RUY_MAKE_ZERO(v16)
1759 RUY_MAKE_ZERO(v17)
1760 RUY_MAKE_ZERO(v18)
1761 RUY_MAKE_ZERO(v19)
1762
1763 RUY_STR(RUY_ASM_LABEL_AFTER_STORE) ":\n"
1764
1765 // For the next block: perform the first few multiply-adds on the data
1766 // that we have already loaded.
1767 "smull v8.8h, v0.8b, v4.8b\n"
1768 "smull v9.8h, v1.8b, v4.8b\n"
1769 "smull v10.8h, v2.8b, v4.8b\n"
1770 "smull v11.8h, v3.8b, v4.8b\n"
1771 "smlal2 v8.8h, v0.16b, v4.16b\n"
1772 "smlal2 v9.8h, v1.16b, v4.16b\n"
1773 "smlal2 v10.8h, v2.16b, v4.16b\n"
1774 "smlal2 v11.8h, v3.16b, v4.16b\n"
1775
1776 // Reload some params --- we had used x5 -- x7 for a few other things
1777 // since the last time we had loaded them.
1778 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
1779 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
1780 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
1781
1782 // Move to the next block of the destination matrix, for the next iter
1783 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
1784 // been updated earlier.
1785 // Have we reached the end row?
1786 "cmp %w[row], w7\n"
1787 "beq 20f\n" // yes, end row.
1788 // Not end row. Move to the next row.
1789 "add %w[row], %w[row], #4\n"
1790 "b 21f\n"
1791 "20:\n"
1792 // Was already at end row.
1793 "mov %w[row], w6\n" // Move back to first row.
1794 "add %w[col], %w[col], #4\n" // Move to the next column.
1795 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #2\n"
1796 "mov %[dst_ptr], %[dst_col_ptr]\n"
1797 "21:\n"
1798
1799 // Main loop exit condition: have we hit the end column?
1800 "cmp %w[col], w8\n"
1801
1802 // w1 is the number of levels of depth that we have already loaded
1803 // LHS and RHS data for. Corresponding to the initial ld1 instructions
1804 // above, this is currently 16.
1805 "mov w1, #16\n"
1806
1807 "ble 1b\n"
1808
1809 // clang-format on
1810
1811 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
1812 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
1813 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
1814 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
1815 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf),
1816 [dst_type_id] "r"(params.dst_type_id)
1817 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
1818 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
1819 "v13", "v14", "v15", "v16", "v17", "v18", "v19");
1820}
1821
1822// Variant of the above Kernel8bitNeon, tuned for A55-ish CPUs.
1823// Specifically here, the relevant in-order CPUs are ARM Cortex-A53 and
1824// the original Cortex-A55, since these are 64-bit and do not support dotprod.
1825//
1826// While this kernel does not have a direct equivalent in gemmlowp, it was
1827// developed based on insights that David Mansell at ARM shared with their
1828// contribution of gemmlowp kernels tuned for Cortex-A53, with very helpful
1829// comments. Specifically, see this comment about tuning for Cortex-A53:
1830// https://github.com/google/gemmlowp/blob/36212ad3651871bc3e9a599f1a6d5324778aea25/standalone/neon-gemm-kernel-benchmark.cc#L4215
1831void Kernel8bitNeonA55ish(const KernelParams8bit<4, 4>& params) {
1832 profiler::ScopeLabel label("Kernel (kNeon, optimized for in-order cores)");
1833
1834 CheckOffsetsInKernelParams8bit(params);
1835
1836 const std::int8_t* lhs_col_ptr = params.lhs_base_ptr;
1837 const std::int8_t* rhs_col_ptr =
1838 static_cast<const int8_t*>(params.rhs_base_ptr);
1839 const std::int8_t* lhs_ptr = lhs_col_ptr;
1840 const std::int8_t* rhs_ptr = rhs_col_ptr;
1841 void* dst_col_ptr = params.dst_base_ptr;
1842 void* dst_ptr = dst_col_ptr;
1843 int row = params.start_row;
1844 int col = params.start_col;
1845
1846 // The asm kernel below has the following NEON register allocation:
1847 //
1848 // v16 -- v31 are int32 accumulators.
1849 // During accumulation, v0 -- v3 are used to load int8 data from LHS and
1850 // v4 -- v7 from RHS:
1851 //
1852 // int8 RHS 16x4 block
1853 // /-----------------------------------------|
1854 // |v4.b[0] ... v7.b[0] |
1855 // | ... ... |
1856 // |v4.b[15] ... v7.b[15] |
1857 // \-----------------------------------------/
1858 // int8 LHS 4x16 block
1859 // /---------------------\ /-----------------------------------------|
1860 // |v0.b[0] ... v0.b[15] | |v16.4s ... v28.4s |
1861 // |v1.b[0] ... v1.b[15] | |v17.4s ... v29.4s |
1862 // |v2.b[0] ... v2.b[15] | |v18.4s ... v30.4s |
1863 // |v3.b[0] ... v3.b[15] | |v19.4s ... v31.4s |
1864 // \---------------------/ \-----------------------------------------/
1865 // int32 accumulators 4x4 block
1866 asm volatile(
1867#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
1868
1869 // clang-format off
1870
1871 // Load some parameters into registers.
1872 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
1873 RUY_MAKE_ZERO(v16)
1874 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
1875 RUY_MAKE_ZERO(v17)
1876 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
1877 RUY_MAKE_ZERO(v18)
1878 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
1879 RUY_MAKE_ZERO(v19)
1880 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
1881 RUY_MAKE_ZERO(v20)
1882 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
1883 RUY_MAKE_ZERO(v21)
1884 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
1885 RUY_MAKE_ZERO(v22)
1886 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
1887 RUY_MAKE_ZERO(v23)
1888
1889 // Load the first 64 bytes of LHS and RHS data.
1890 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
1891 RUY_MAKE_ZERO(v24)
1892 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
1893 RUY_MAKE_ZERO(v25)
1894 "ld1 {v2.16b}, [%[lhs_ptr]], #16\n"
1895 RUY_MAKE_ZERO(v26)
1896 "ld1 {v3.16b}, [%[lhs_ptr]], #16\n"
1897 RUY_MAKE_ZERO(v27)
1898 "ld1 {v4.16b}, [%[rhs_ptr]], #16\n"
1899 RUY_MAKE_ZERO(v28)
1900 "ld1 {v5.16b}, [%[rhs_ptr]], #16\n"
1901 RUY_MAKE_ZERO(v29)
1902 "ld1 {v6.16b}, [%[rhs_ptr]], #16\n"
1903 RUY_MAKE_ZERO(v30)
1904 "ld1 {v7.16b}, [%[rhs_ptr]], #16\n"
1905 RUY_MAKE_ZERO(v31)
1906
1907
1908 // w1 is the number of levels of depth that we have already loaded
1909 // LHS and RHS data for. Corresponding to the initial ld1 instructions
1910 // above, this is currently 16.
1911 "mov w1, #16\n"
1912
1913 // Perform the first few multiply-adds on the data that we have already
1914 // loaded.
1915 "smull v8.8h, v0.8b, v4.8b\n"
1916 "smull v9.8h, v1.8b, v4.8b\n"
1917 "smull v10.8h, v2.8b, v4.8b\n"
1918 "smull v11.8h, v3.8b, v4.8b\n"
1919 "smull v12.8h, v0.8b, v5.8b\n"
1920 "smull v13.8h, v1.8b, v5.8b\n"
1921 "smull v14.8h, v2.8b, v5.8b\n"
1922 "smull v15.8h, v3.8b, v5.8b\n"
1923
1924 // Multiply-accumulate second-half, again into the same
1925 // 16bit local accumulator registers. This is where we
1926 // take advantage of having int8 instead of uint8 and therefore
1927 // being able to accumulate two products into int16.
1928 "smlal2 v8.8h, v0.16b, v4.16b\n"
1929 "smlal2 v9.8h, v1.16b, v4.16b\n"
1930 "smlal2 v10.8h, v2.16b, v4.16b\n"
1931 "smlal2 v11.8h, v3.16b, v4.16b\n"
1932 "smlal2 v12.8h, v0.16b, v5.16b\n"
1933 "smlal2 v13.8h, v1.16b, v5.16b\n"
1934 "smlal2 v14.8h, v2.16b, v5.16b\n"
1935 "smlal2 v15.8h, v3.16b, v5.16b\n"
1936
1937
1938 // Main loop of the whole GEMM, over rows and columns of the
1939 // destination matrix.
1940 "1:\n"
1941
1942 // Reminder - w1 is how many levels of depth we have already loaded
1943 // data for, w12 is the total depth.
1944 "cmp w1, w12\n"
1945 "beq 79f\n"
1946
1947 "2:\n"
1948
1949 // Some multiplications and 16-bit accumulation were already done above,
1950 // so we start right away in the middle.
1951 "sadalp v16.4s, v8.8h\n"
1952 "ldr d4, [%[rhs_ptr], #0]\n"
1953 "smull v8.8h, v0.8b, v6.8b\n"
1954 "ldr x7, [%[rhs_ptr], #8]\n"
1955 "sadalp v17.4s, v9.8h\n"
1956 "ldr d5, [%[rhs_ptr], #16]\n"
1957 "smull v9.8h, v1.8b, v6.8b\n"
1958 "ldr x8, [%[rhs_ptr], #24]\n"
1959 "sadalp v18.4s, v10.8h\n"
1960 "smull v10.8h, v2.8b, v6.8b\n"
1961 "sadalp v19.4s, v11.8h\n"
1962 "add %[lhs_ptr], %[lhs_ptr], #64\n"
1963 "smull v11.8h, v3.8b, v6.8b\n"
1964 "add %[rhs_ptr], %[rhs_ptr], #64\n"
1965 "sadalp v20.4s, v12.8h\n"
1966 // Each iteration of this loop advances by 16 levels of depth.
1967 "add w1, w1, #16\n"
1968 "smull v12.8h, v0.8b, v7.8b\n"
1969 // Loop termination condition
1970 "cmp w1, w12\n"
1971 "sadalp v21.4s, v13.8h\n"
1972 "ldr x3, [%[lhs_ptr], #-56]\n"
1973 "smull v13.8h, v1.8b, v7.8b\n"
1974 "ldr x4, [%[lhs_ptr], #-40]\n"
1975 "sadalp v22.4s, v14.8h\n"
1976 "ldr x5, [%[lhs_ptr], #-24]\n"
1977 "smull v14.8h, v2.8b, v7.8b\n"
1978 "ldr x6, [%[lhs_ptr], #-8]\n"
1979 "sadalp v23.4s, v15.8h\n"
1980 "smull v15.8h, v3.8b, v7.8b\n"
1981
1982 // Multiply-accumulate second-half, again into the same
1983 // 16bit local accumulator registers. This is where we
1984 // take advantage of having int8 instead of uint8 and therefore
1985 // being able to accumulate two products into int16.
1986 "smlal2 v8.8h, v0.16b, v6.16b\n"
1987 "smlal2 v9.8h, v1.16b, v6.16b\n"
1988 "smlal2 v10.8h, v2.16b, v6.16b\n"
1989 "ldr x9, [%[rhs_ptr], #-24]\n"
1990 "smlal2 v11.8h, v3.16b, v6.16b\n"
1991 "ldr d6, [%[rhs_ptr], #-32]\n"
1992 "smlal2 v12.8h, v0.16b, v7.16b\n"
1993 "ldr d0, [%[lhs_ptr], #-64]\n"
1994 "smlal2 v13.8h, v1.16b, v7.16b\n"
1995 "ldr d1, [%[lhs_ptr], #-48]\n"
1996 "smlal2 v14.8h, v2.16b, v7.16b\n"
1997 "ins v4.d[1], x7\n"
1998 "smlal2 v15.8h, v3.16b, v7.16b\n"
1999 "ins v5.d[1], x8\n"
2000
2001 "ldr d2, [%[lhs_ptr], #-32]\n"
2002 "ins v0.d[1], x3\n"
2003 "sadalp v24.4s, v8.8h\n"
2004 "ldr d3, [%[lhs_ptr], #-16]\n"
2005 "ins v1.d[1], x4\n"
2006 "smull v8.8h, v0.8b, v4.8b\n"
2007 "ins v2.d[1], x5\n"
2008 "sadalp v25.4s, v9.8h\n"
2009 "ins v3.d[1], x6\n"
2010 "smull v9.8h, v1.8b, v4.8b\n"
2011 "ldr d7, [%[rhs_ptr], #-16]\n"
2012 "sadalp v26.4s, v10.8h\n"
2013 "ldr x10, [%[rhs_ptr], #-8]\n"
2014 "smull v10.8h, v2.8b, v4.8b\n"
2015 "sadalp v27.4s, v11.8h\n"
2016 "smull v11.8h, v3.8b, v4.8b\n"
2017 "sadalp v28.4s, v12.8h\n"
2018 "smull v12.8h, v0.8b, v5.8b\n"
2019 "sadalp v29.4s, v13.8h\n"
2020 "smull v13.8h, v1.8b, v5.8b\n"
2021 "sadalp v30.4s, v14.8h\n"
2022 "smull v14.8h, v2.8b, v5.8b\n"
2023 "sadalp v31.4s, v15.8h\n"
2024 "smull v15.8h, v3.8b, v5.8b\n"
2025
2026 // Multiply-accumulate second-half, again into the same
2027 // 16bit local accumulator registers. This is where we
2028 // take advantage of having int8 instead of uint8 and therefore
2029 // being able to accumulate two products into int16.
2030 "smlal2 v8.8h, v0.16b, v4.16b\n"
2031 "smlal2 v9.8h, v1.16b, v4.16b\n"
2032 "smlal2 v10.8h, v2.16b, v4.16b\n"
2033 "smlal2 v11.8h, v3.16b, v4.16b\n"
2034
2035 "smlal2 v12.8h, v0.16b, v5.16b\n"
2036 "smlal2 v13.8h, v1.16b, v5.16b\n"
2037 "ins v6.d[1], x9\n"
2038 "smlal2 v14.8h, v2.16b, v5.16b\n"
2039 "ins v7.d[1], x10\n"
2040 "smlal2 v15.8h, v3.16b, v5.16b\n"
2041
2042 "blt 2b\n"
2043
2044 "79:\n"
2045
2046 "sadalp v16.4s, v8.8h\n"
2047 "smull v8.8h, v0.8b, v6.8b\n"
2048 "sadalp v17.4s, v9.8h\n"
2049 "smull v9.8h, v1.8b, v6.8b\n"
2050 "sadalp v18.4s, v10.8h\n"
2051 "smull v10.8h, v2.8b, v6.8b\n"
2052 "sadalp v19.4s, v11.8h\n"
2053 "smull v11.8h, v3.8b, v6.8b\n"
2054 "sadalp v20.4s, v12.8h\n"
2055 "smull v12.8h, v0.8b, v7.8b\n"
2056 "sadalp v21.4s, v13.8h\n"
2057 "smull v13.8h, v1.8b, v7.8b\n"
2058 "sadalp v22.4s, v14.8h\n"
2059 "smull v14.8h, v2.8b, v7.8b\n"
2060 "sadalp v23.4s, v15.8h\n"
2061 "smull v15.8h, v3.8b, v7.8b\n"
2062
2063 // Multiply-accumulate second-half, again into the same
2064 // 16bit local accumulator registers. This is where we
2065 // take advantage of having int8 instead of uint8 and therefore
2066 // being able to accumulate two products into int16.
2067 "smlal2 v8.8h, v0.16b, v6.16b\n"
2068 "smlal2 v9.8h, v1.16b, v6.16b\n"
2069 "smlal2 v10.8h, v2.16b, v6.16b\n"
2070 "smlal2 v11.8h, v3.16b, v6.16b\n"
2071
2072 "smlal2 v12.8h, v0.16b, v7.16b\n"
2073 "smlal2 v13.8h, v1.16b, v7.16b\n"
2074 "smlal2 v14.8h, v2.16b, v7.16b\n"
2075 "smlal2 v15.8h, v3.16b, v7.16b\n"
2076
2077 "sadalp v24.4s, v8.8h\n"
2078 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
2079 "sadalp v25.4s, v9.8h\n"
2080 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
2081 "sadalp v26.4s, v10.8h\n"
2082 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
2083 "sadalp v27.4s, v11.8h\n"
2084 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
2085 "sadalp v28.4s, v12.8h\n"
2086 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
2087 "sadalp v29.4s, v13.8h\n"
2088 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
2089 "sadalp v30.4s, v14.8h\n"
2090 "sadalp v31.4s, v15.8h\n"
2091
2092 // End of accumulation. The registers v16 -- v31 contain the final
2093 // int32 accumulator values of the current 4x4 destination block.
2094 // We now have to compute the final 8-bit values from these int32
2095 // accumulators, and advance to the next 4x4 block. We intertwine
2096 // these two aspects whenever possible for optimal pipelining, both
2097 // at the data flow level (prefetch data for next block as early as
2098 // possible) and instruction pipelining level (some of the next-block
2099 // work can dual-issue with some of the final work on the current
2100 // block).
2101
2102 // Reduce 32bit accumulators horizontally.
2103 "addp v16.4s, v16.4s, v17.4s\n"
2104 "addp v18.4s, v18.4s, v19.4s\n"
2105 "addp v20.4s, v20.4s, v21.4s\n"
2106 "addp v22.4s, v22.4s, v23.4s\n"
2107 "addp v24.4s, v24.4s, v25.4s\n"
2108 "addp v26.4s, v26.4s, v27.4s\n"
2109 "addp v28.4s, v28.4s, v29.4s\n"
2110 "addp v30.4s, v30.4s, v31.4s\n"
2111
2112 // Reduce 32bit accumulators horizontally, second pass
2113 // (each pass adds pairwise. we need to add 4-wise).
2114 "addp v16.4s, v16.4s, v18.4s\n"
2115 "addp v17.4s, v20.4s, v22.4s\n"
2116 "addp v18.4s, v24.4s, v26.4s\n"
2117 "addp v19.4s, v28.4s, v30.4s\n"
2118
2119 // Logic to advance to the next block in preparation for the next
2120 // iteration of the main loop. For now, we only want to compute
2121 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
2122 // not yet ready to update the values of row and col, as we still need
2123 // the current values for the rest of the work on the current block.
2124
2125 "cmp %w[row], w7\n" // Have we finished the last row?
2126 "bge 4f\n" // If finished last row, go to 4
2127 // Not finished last row: then advance to next row.
2128 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #2\n"
2129 "b 5f\n"
2130 "4:\n" // Finished last row...
2131 "mov %[lhs_col_ptr], x5\n" // Go back to first row
2132 // Now we need to advance to the next column. If we already
2133 // finished the last column, then in principle we are done, however
2134 // we can't just return here, as we need to allow the end work of the
2135 // current block to complete. The good news is that at this point it
2136 // doesn't matter what data we load for the next column, since
2137 // we will exit from the main loop below before actually storing
2138 // anything computed from that data.
2139 "cmp %w[col], w8\n" // Have we finished the last column?
2140 "bge 5f\n" // If yes, just carry on without updating the column pointer.
2141 // Not finished last column: then advance to next column.
2142 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #2\n"
2143 "5:\n"
2144
2145 // Set the LHS and RHS data pointers to the start of the columns just
2146 // computed.
2147 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
2148 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
2149
2150 // Load some parameters needed for the end work on current block.
2151 "mvni v8.4s, #0\n"
2152 "ldr w4, [%[params], #" RUY_STR(RUY_OFFSET_DST_ZERO_POINT) "]\n"
2153 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_PROD_ZP_DEPTH) "]\n"
2154 "ins v13.h[4], w4\n" // dst_zero_point
2155 "ldr x4, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_FIXEDPOINT) "]\n"
2156 "ldrb w6, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
2157 "dup v9.4s, w3\n" // create prod_zp_depth_vec
2158
2159 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
2160
2161 // Determine the channel index.
2162 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
2163 "csel w3, %w[row], %w[col], eq\n"
2164
2165 // Offset the bias pointer as needed given the current row, col.
2166 "add x5, x1, x3, lsl #2\n"
2167
2168 // If there is no bias, use no offset, just address the passed zero
2169 // data.
2170 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
2171 "csel x1, x1, x5, eq\n"
2172
2173 // Load 4 bias values.
2174 "ld1 {v14.4s}, [x1]\n"
2175
2176 // Load the multiplier_fixedpoint values.
2177 "add x5, x4, x3, lsl #2\n"
2178 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
2179 "csel x4, x4, x5, eq\n"
2180 "ld1 {v15.4s}, [x4]\n" // multiplier_fixedpoint
2181
2182 // Now that we know what LHS and RHS data the next iteration of the
2183 // main loop will need to load, we start loading the first 32 bytes of
2184 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
2185 // in the rest of the work on the current block.
2186
2187 // Add to the bias values the product (depth * lhs_zero_point * rhs_zero_point),
2188 // See the term NZ1Z2 in equation (7) in https://arxiv.org/pdf/1712.05877.pdf
2189 "add v14.4s, v14.4s, v9.4s\n"
2190 "ldr d0, [%[lhs_ptr], #0]\n"
2191
2192 // Perform the bias-addition (per the above, we have just folded into
2193 // the bias the (depth * lhs_zero_point * rhs_zero_point) term.)
2194 // Jump based on channel dimension.
2195 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
2196 "bne 6f\n"
2197 // Case where channels are rows
2198
2199 "add v16.4s, v16.4s, v14.4s\n"
2200 "ldr d1, [%[lhs_ptr], #16]\n"
2201 "add v17.4s, v17.4s, v14.4s\n"
2202 "ldr d2, [%[lhs_ptr], #32]\n"
2203 "add v18.4s, v18.4s, v14.4s\n"
2204 "ldr d3, [%[lhs_ptr], #48]\n"
2205 "add v19.4s, v19.4s, v14.4s\n"
2206 "ldr d4, [%[rhs_ptr], #0]\n"
2207 "ldr d5, [%[rhs_ptr], #16]\n"
2208 "ldr d6, [%[rhs_ptr], #32]\n"
2209 "ldr d7, [%[rhs_ptr], #48]\n"
2210
2211 "b 7f\n"
2212
2213 "6:\n"
2214 // Case where channels are columns
2215 "dup v20.4s, v14.s[0]\n"
2216 "ldr d1, [%[lhs_ptr], #16]\n"
2217 "dup v21.4s, v14.s[1]\n"
2218 "ldr d2, [%[lhs_ptr], #32]\n"
2219 "dup v22.4s, v14.s[2]\n"
2220 "ldr d3, [%[lhs_ptr], #48]\n"
2221 "dup v23.4s, v14.s[3]\n"
2222 "ldr d4, [%[rhs_ptr], #0]\n"
2223 "add v16.4s, v16.4s, v20.4s\n"
2224 "ldr d5, [%[rhs_ptr], #16]\n"
2225 "add v17.4s, v17.4s, v21.4s\n"
2226 "ldr d6, [%[rhs_ptr], #32]\n"
2227 "add v18.4s, v18.4s, v22.4s\n"
2228 "ldr d7, [%[rhs_ptr], #48]\n"
2229 "add v19.4s, v19.4s, v23.4s\n"
2230 "7:\n"
2231
2232 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_RHS_SUMS) "\n"
2233 "beq 401f\n"
2234 "ldr x3, [%[params], #" RUY_STR(RUY_OFFSET_RHS_SUMS) "]\n"
2235 "add x3, x3, %x[col], lsl #2\n"
2236 "ld1 {v14.4s}, [x3]\n"
2237 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_ZERO_POINT) "]\n"
2238 "dup v10.4s, w5\n" // create lhs_zero_point_vec
2239 // Subtract rhs_sums * lhs_zero_point, per
2240 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
2241 "mls v16.4s, v10.4s, v14.s[0]\n"
2242 "mls v17.4s, v10.4s, v14.s[1]\n"
2243 "mls v18.4s, v10.4s, v14.s[2]\n"
2244 "mls v19.4s, v10.4s, v14.s[3]\n"
2245 "401:\n"
2246
2247 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_LHS_SUMS) "\n"
2248 "beq 402f\n"
2249 "ldr x2, [%[params], #" RUY_STR(RUY_OFFSET_LHS_SUMS) "]\n"
2250 "add x2, x2, %x[row], lsl #2\n"
2251 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_RHS_ZERO_POINT) "]\n"
2252 // Load 4 lhs_sums values.
2253 "ld1 {v11.4s}, [x2]\n"
2254 "ins v13.s[1], w5\n" // rhs_zero_point
2255 // Compute lhs_sums * rhs_zero_point.
2256 "mul v11.4s, v11.4s, v13.s[1]\n"
2257 // Subtract lhs_sums * rhs_zero_point, per
2258 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
2259 "sub v16.4s, v16.4s, v11.4s\n"
2260 "sub v17.4s, v17.4s, v11.4s\n"
2261 "sub v18.4s, v18.4s, v11.4s\n"
2262 "sub v19.4s, v19.4s, v11.4s\n"
2263
2264 // If the destination is int32, it means the user asks for the raw
2265 // accumulators, no need for us to downquantize the value.
2266 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT32) "\n"
2267 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT32) "f\n"
2268
2269 "402:\n"
2270
2271 // At this point we have computed the final int32 values. Now we
2272 // start down-quantizing them to obtain the final 8bit values from them.
2273
2274 // As part of this down-quantization, our int32 values will be
2275 // multiplied by a multiplier that has a fixed-point component and an
2276 // exponent component.
2277
2278 // Determine the channel index.
2279 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
2280 "csel w3, %w[row], %w[col], eq\n"
2281
2282 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_EXPONENT) "]\n"
2283 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
2284 "add x5, x1, x3, lsl #2\n"
2285 "csel x1, x1, x5, eq\n"
2286
2287 "ld1 {v14.4s}, [x1]\n"
2288
2289 "smin v11.4s, v8.4s, v14.4s\n"
2290 "ldr x1, [%[lhs_ptr], #8]\n"
2291 "sub v12.4s, v14.4s, v11.4s\n"
2292
2293 // Jump based on channel dimension.
2294 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
2295 "bne 8f\n"
2296 // Case where channels are rows
2297
2298
2299 // Apply the positive exponent part of the multiplier.
2300 "sshl v16.4s, v16.4s, v12.4s\n"
2301 "ldr x2, [%[lhs_ptr], #24]\n"
2302 "sshl v17.4s, v17.4s, v12.4s\n"
2303 "ldr x3, [%[lhs_ptr], #40]\n"
2304 "sshl v18.4s, v18.4s, v12.4s\n"
2305 "ldr x4, [%[lhs_ptr], #56]\n"
2306 "sshl v19.4s, v19.4s, v12.4s\n"
2307
2308
2309 // Apply the fixed-point part of the multiplier.
2310 "ins v0.d[1], x1\n"
2311 "ldr x1, [%[rhs_ptr], #8]\n"
2312 "sqdmulh v16.4s, v16.4s, v15.4s\n"
2313 "ins v1.d[1], x2\n"
2314 "ldr x2, [%[rhs_ptr], #24]\n"
2315 "sqdmulh v17.4s, v17.4s, v15.4s\n"
2316 "ins v2.d[1], x3\n"
2317 "ldr x3, [%[rhs_ptr], #40]\n"
2318 "sqdmulh v18.4s, v18.4s, v15.4s\n"
2319 "ins v3.d[1], x4\n"
2320 "ldr x4, [%[rhs_ptr], #56]\n"
2321 "sqdmulh v19.4s, v19.4s, v15.4s\n"
2322
2323 // Apply the negative exponent part of the multiplier.
2324 "srshl v16.4s, v16.4s, v11.4s\n"
2325 "srshl v17.4s, v17.4s, v11.4s\n"
2326 "srshl v18.4s, v18.4s, v11.4s\n"
2327 "srshl v19.4s, v19.4s, v11.4s\n"
2328
2329 "b 9f\n"
2330
2331 "8:\n"
2332 // Case where channels are columns
2333
2334 // Apply the positive exponent part of the multiplier.
2335 "dup v20.4s, v12.s[0]\n"
2336 "ldr x2, [%[lhs_ptr], #24]\n"
2337 "ldr x3, [%[lhs_ptr], #40]\n"
2338 "dup v21.4s, v12.s[1]\n"
2339 "ldr x4, [%[lhs_ptr], #56]\n"
2340 "dup v22.4s, v12.s[2]\n"
2341 "ins v0.d[1], x1\n"
2342 "dup v23.4s, v12.s[3]\n"
2343 "ldr x1, [%[rhs_ptr], #8]\n"
2344 "sshl v16.4s, v16.4s, v20.4s\n"
2345 "ins v1.d[1], x2\n"
2346 "sshl v17.4s, v17.4s, v21.4s\n"
2347 "ldr x2, [%[rhs_ptr], #24]\n"
2348 "sshl v18.4s, v18.4s, v22.4s\n"
2349 "ins v2.d[1], x3\n"
2350 "sshl v19.4s, v19.4s, v23.4s\n"
2351 "ldr x3, [%[rhs_ptr], #40]\n"
2352
2353 // Apply the fixed-point part of the multiplier.
2354 "sqdmulh v16.4s, v16.4s, v15.s[0]\n"
2355 "ins v3.d[1], x4\n"
2356 "sqdmulh v17.4s, v17.4s, v15.s[1]\n"
2357 "ldr x4, [%[rhs_ptr], #56]\n"
2358 "sqdmulh v18.4s, v18.4s, v15.s[2]\n"
2359 "dup v20.4s, v11.s[0]\n"
2360 "sqdmulh v19.4s, v19.4s, v15.s[3]\n"
2361
2362 // Apply the negative exponent part of the multiplier.
2363 "dup v21.4s, v11.s[1]\n"
2364 "srshl v16.4s, v16.4s, v20.4s\n"
2365 "dup v22.4s, v11.s[2]\n"
2366 "srshl v17.4s, v17.4s, v21.4s\n"
2367 "dup v23.4s, v11.s[3]\n"
2368 "srshl v18.4s, v18.4s, v22.4s\n"
2369 "srshl v19.4s, v19.4s, v23.4s\n"
2370
2371 "9:\n"
2372
2373 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT16) "\n"
2374 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT16) "f\n"
2375 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT8) "\n"
2376 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT8) "f\n"
2377
2378 RUY_STR(RUY_ASM_LABEL_STORE_UINT8) ":\n"
2379
2380 "ins v4.d[1], x1\n"
2381 "sqxtn v16.4h, v16.4s\n"
2382 "ins v5.d[1], x2\n"
2383 "sqxtn2 v16.8h, v17.4s\n"
2384 "ins v6.d[1], x3\n"
2385 "sqxtn v17.4h, v18.4s\n"
2386 "ins v7.d[1], x4\n"
2387 RUY_MAKE_ZERO(v18)
2388 "sqxtn2 v17.8h, v19.4s\n"
2389
2390 // At this point, v18 -- v31 aren't used anymore for the current block,
2391 // so we can start clearing these accumulators for the next block
2392 // (next iteration of the main loop).
2393 RUY_MAKE_ZERO(v19)
2394
2395 // Add the destination zero point
2396 "add %[lhs_ptr], %[lhs_ptr], #64\n"
2397 "dup v14.8h, v13.h[4]\n"
2398 RUY_MAKE_ZERO(v20)
2399 "add %[rhs_ptr], %[rhs_ptr], #64\n"
2400 "sqadd v16.8h, v16.8h, v14.8h\n"
2401 RUY_MAKE_ZERO(v21)
2402 "sqadd v17.8h, v17.8h, v14.8h\n"
2403 RUY_MAKE_ZERO(v22)
2404
2405 // Cast-and-saturate from int16 to uint8
2406 "sqxtun v16.8b, v16.8h\n"
2407 RUY_MAKE_ZERO(v23)
2408 "sqxtun2 v16.16b, v17.8h\n"
2409 RUY_MAKE_ZERO(v24)
2410
2411 // Load the clamp_min, clamp_max bounds
2412 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
2413 RUY_MAKE_ZERO(v25)
2414 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
2415 RUY_MAKE_ZERO(v26)
2416 "dup v14.16b, w2\n" // clamp_min
2417 RUY_MAKE_ZERO(v27)
2418 "dup v15.16b, w3\n" // clamp_max
2419 RUY_MAKE_ZERO(v28)
2420
2421 // Apply the clamp_min bound
2422 "umax v16.16b, v16.16b, v14.16b\n"
2423 RUY_MAKE_ZERO(v29)
2424 // Apply the clamp_max bound
2425 "umin v16.16b, v16.16b, v15.16b\n"
2426 RUY_MAKE_ZERO(v30)
2427
2428 // Compute how much of the 4x4 block of destination 8bit values that
2429 // we have computed, fit in the destination matrix. Typically, all of
2430 // it fits, but when the destination matrix shape is not a multiple
2431 // of 4x4, there are some 4x4 blocks along the boundaries that do
2432 // not fit entirely.
2433 "sub w1, %w[dst_rows], %w[row]\n"
2434 RUY_MAKE_ZERO(v31)
2435 "sub w2, %w[dst_cols], %w[col]\n"
2436 "mov w3, #4\n"
2437 "cmp w1, #4\n"
2438 // Compute w1 = how many rows of the 4x4 block fit
2439 "csel w1, w1, w3, le\n"
2440 "cmp w2, #4\n"
2441 // Compute w2 = how many cols of the 4x4 block fit
2442 "csel w2, w2, w3, le\n"
2443
2444 // Test if w1==4 && w2 == 4, i.e. if all of the 8x8 block fits.
2445 "cmp w1, w3\n"
2446 "ccmp w2, w3, 0, eq\n"
2447 "mov x4, %[dst_ptr]\n"
2448 // Yes, all of the 4x4 block fits, go to fast path.
2449 "beq 30f\n"
2450 // Not all of the 4x4 block fits.
2451 // Store to dst_tmp_buf
2452 "st1 {v16.16b}, [%[dst_tmp_buf]]\n"
2453 // Slow loop copying from dst_tmp_buf to dst.
2454 "mov x3, %[dst_tmp_buf]\n"
2455 "mov w6, #0\n"
2456 "50:\n"
2457 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2458 "mov w5, #0\n"
2459 "51:\n"
2460 "ldrb w7, [x3, w5, uxtw]\n"
2461 "strb w7, [x4, w5, uxtw]\n"
2462 "add w5, w5, #1\n"
2463 "cmp w5, w1\n"
2464 "blt 51b\n"
2465 "add w6, w6, #1\n"
2466 "add x3, x3, #4\n"
2467 "add x4, x4, x11\n"
2468 "cmp w6, w2\n"
2469 "blt 50b\n"
2470 "b 31f\n"
2471 "30:\n"
2472 // Yes, all of the 4x4 block fits.
2473 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2474 "mov x3, x4\n"
2475 "st1 {v16.b}[0], [x3], #1\n"
2476 "add x4, x4, x11\n"
2477 "st1 {v16.b}[1], [x3], #1\n"
2478 "st1 {v16.b}[2], [x3], #1\n"
2479 "st1 {v16.b}[3], [x3], #1\n"
2480 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2481 "mov x3, x4\n"
2482 "st1 {v16.b}[4], [x3], #1\n"
2483 "add x4, x4, x11\n"
2484 "st1 {v16.b}[5], [x3], #1\n"
2485 "st1 {v16.b}[6], [x3], #1\n"
2486 "st1 {v16.b}[7], [x3], #1\n"
2487 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2488 "mov x3, x4\n"
2489 "st1 {v16.b}[8], [x3], #1\n"
2490 "add x4, x4, x11\n"
2491 "st1 {v16.b}[9], [x3], #1\n"
2492 "st1 {v16.b}[10], [x3], #1\n"
2493 "st1 {v16.b}[11], [x3], #1\n"
2494 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2495 "mov x3, x4\n"
2496 "st1 {v16.b}[12], [x3], #1\n"
2497 "add x4, x4, x11\n"
2498 "st1 {v16.b}[13], [x3], #1\n"
2499 "st1 {v16.b}[14], [x3], #1\n"
2500 "st1 {v16.b}[15], [x3], #1\n"
2501 "31:\n"
2502
2503 "add %[dst_ptr], %[dst_ptr], #4\n"
2504
2505 RUY_MAKE_ZERO(v16)
2506 RUY_MAKE_ZERO(v17)
2507
2508 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
2509
2510 RUY_STR(RUY_ASM_LABEL_STORE_INT8) ":\n"
2511
2512 "ins v4.d[1], x1\n"
2513 "sqxtn v16.4h, v16.4s\n"
2514 "ins v5.d[1], x2\n"
2515 "sqxtn2 v16.8h, v17.4s\n"
2516 "ins v6.d[1], x3\n"
2517 "sqxtn v17.4h, v18.4s\n"
2518 "ins v7.d[1], x4\n"
2519 RUY_MAKE_ZERO(v18)
2520 "sqxtn2 v17.8h, v19.4s\n"
2521
2522 // At this point, v18 -- v31 aren't used anymore for the current block,
2523 // so we can start clearing these accumulators for the next block
2524 // (next iteration of the main loop).
2525 RUY_MAKE_ZERO(v19)
2526
2527 // Add the destination zero point
2528 "add %[lhs_ptr], %[lhs_ptr], #64\n"
2529 "dup v14.8h, v13.h[4]\n"
2530 RUY_MAKE_ZERO(v20)
2531 "add %[rhs_ptr], %[rhs_ptr], #64\n"
2532 "sqadd v16.8h, v16.8h, v14.8h\n"
2533 RUY_MAKE_ZERO(v21)
2534 "sqadd v17.8h, v17.8h, v14.8h\n"
2535 RUY_MAKE_ZERO(v22)
2536
2537 // Cast-and-saturate from int16 to uint8
2538 "sqxtn v16.8b, v16.8h\n"
2539 RUY_MAKE_ZERO(v23)
2540 "sqxtn2 v16.16b, v17.8h\n"
2541 RUY_MAKE_ZERO(v24)
2542
2543 // Load the clamp_min, clamp_max bounds
2544 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
2545 RUY_MAKE_ZERO(v25)
2546 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
2547 RUY_MAKE_ZERO(v26)
2548 "dup v14.16b, w2\n" // clamp_min
2549 RUY_MAKE_ZERO(v27)
2550 "dup v15.16b, w3\n" // clamp_max
2551 RUY_MAKE_ZERO(v28)
2552
2553 // Apply the clamp_min bound
2554 "smax v16.16b, v16.16b, v14.16b\n"
2555 RUY_MAKE_ZERO(v29)
2556 // Apply the clamp_max bound
2557 "smin v16.16b, v16.16b, v15.16b\n"
2558 RUY_MAKE_ZERO(v30)
2559
2560 // Compute how much of the 4x4 block of destination 8bit values that
2561 // we have computed, fit in the destination matrix. Typically, all of
2562 // it fits, but when the destination matrix shape is not a multiple
2563 // of 4x4, there are some 4x4 blocks along the boundaries that do
2564 // not fit entirely.
2565 "sub w1, %w[dst_rows], %w[row]\n"
2566 RUY_MAKE_ZERO(v31)
2567 "sub w2, %w[dst_cols], %w[col]\n"
2568 "mov w3, #4\n"
2569 "cmp w1, #4\n"
2570 // Compute w1 = how many rows of the 4x4 block fit
2571 "csel w1, w1, w3, le\n"
2572 "cmp w2, #4\n"
2573 // Compute w2 = how many cols of the 4x4 block fit
2574 "csel w2, w2, w3, le\n"
2575
2576 // Test if w1==4 && w2 == 4, i.e. if all of the 8x8 block fits.
2577 "cmp w1, w3\n"
2578 "ccmp w2, w3, 0, eq\n"
2579 "mov x4, %[dst_ptr]\n"
2580 // Yes, all of the 4x4 block fits, go to fast path.
2581 "beq 30f\n"
2582 // Not all of the 4x4 block fits.
2583 // Store to dst_tmp_buf
2584 "st1 {v16.16b}, [%[dst_tmp_buf]]\n"
2585 // Slow loop copying from dst_tmp_buf to dst.
2586 "mov x3, %[dst_tmp_buf]\n"
2587 "mov w6, #0\n"
2588 "50:\n"
2589 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2590 "mov w5, #0\n"
2591 "51:\n"
2592 "ldrb w7, [x3, w5, uxtw]\n"
2593 "strb w7, [x4, w5, uxtw]\n"
2594 "add w5, w5, #1\n"
2595 "cmp w5, w1\n"
2596 "blt 51b\n"
2597 "add w6, w6, #1\n"
2598 "add x3, x3, #4\n"
2599 "add x4, x4, x11\n"
2600 "cmp w6, w2\n"
2601 "blt 50b\n"
2602 "b 31f\n"
2603 "30:\n"
2604 // Yes, all of the 4x4 block fits.
2605 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2606 "mov x3, x4\n"
2607 "st1 {v16.b}[0], [x3], #1\n"
2608 "add x4, x4, x11\n"
2609 "st1 {v16.b}[1], [x3], #1\n"
2610 "st1 {v16.b}[2], [x3], #1\n"
2611 "st1 {v16.b}[3], [x3], #1\n"
2612 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2613 "mov x3, x4\n"
2614 "st1 {v16.b}[4], [x3], #1\n"
2615 "add x4, x4, x11\n"
2616 "st1 {v16.b}[5], [x3], #1\n"
2617 "st1 {v16.b}[6], [x3], #1\n"
2618 "st1 {v16.b}[7], [x3], #1\n"
2619 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2620 "mov x3, x4\n"
2621 "st1 {v16.b}[8], [x3], #1\n"
2622 "add x4, x4, x11\n"
2623 "st1 {v16.b}[9], [x3], #1\n"
2624 "st1 {v16.b}[10], [x3], #1\n"
2625 "st1 {v16.b}[11], [x3], #1\n"
2626 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2627 "mov x3, x4\n"
2628 "st1 {v16.b}[12], [x3], #1\n"
2629 "add x4, x4, x11\n"
2630 "st1 {v16.b}[13], [x3], #1\n"
2631 "st1 {v16.b}[14], [x3], #1\n"
2632 "st1 {v16.b}[15], [x3], #1\n"
2633 "31:\n"
2634
2635 "add %[dst_ptr], %[dst_ptr], #4\n"
2636
2637 RUY_MAKE_ZERO(v16)
2638 RUY_MAKE_ZERO(v17)
2639
2640 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
2641
2642 RUY_STR(RUY_ASM_LABEL_STORE_INT16) ":\n"
2643
2644 // Add the destination zero point
2645 "dup v14.4h, v13.h[4]\n"
2646 "saddw v16.4s, v16.4s, v14.4h\n"
2647 "saddw v17.4s, v17.4s, v14.4h\n"
2648 "saddw v18.4s, v18.4s, v14.4h\n"
2649 "saddw v19.4s, v19.4s, v14.4h\n"
2650
2651 // Cast-and-saturate from int32 to int16
2652 "ins v4.d[1], x1\n"
2653 "sqxtn v16.4h, v16.4s\n"
2654 "ins v5.d[1], x2\n"
2655 "sqxtn2 v16.8h, v17.4s\n"
2656 "ins v6.d[1], x3\n"
2657 "sqxtn v17.4h, v18.4s\n"
2658 "ins v7.d[1], x4\n"
2659 RUY_MAKE_ZERO(v18)
2660 "sqxtn2 v17.8h, v19.4s\n"
2661
2662 // At this point, v18 -- v31 aren't used anymore for the current block,
2663 // so we can start clearing these accumulators for the next block
2664 // (next iteration of the main loop).
2665 RUY_MAKE_ZERO(v19)
2666
2667 "add %[lhs_ptr], %[lhs_ptr], #64\n"
2668 RUY_MAKE_ZERO(v20)
2669 "add %[rhs_ptr], %[rhs_ptr], #64\n"
2670 RUY_MAKE_ZERO(v21)
2671 RUY_MAKE_ZERO(v22)
2672
2673 RUY_MAKE_ZERO(v23)
2674 RUY_MAKE_ZERO(v24)
2675
2676 // Load the clamp_min, clamp_max bounds
2677 "ldrh w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
2678 RUY_MAKE_ZERO(v25)
2679 "ldrh w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
2680 RUY_MAKE_ZERO(v26)
2681 "dup v14.8h, w2\n" // clamp_min
2682 RUY_MAKE_ZERO(v27)
2683 "dup v15.8h, w3\n" // clamp_max
2684 RUY_MAKE_ZERO(v28)
2685
2686 // Apply the clamp_min bound
2687 "smax v16.8h, v16.8h, v14.8h\n"
2688 "smax v17.8h, v17.8h, v14.8h\n"
2689 RUY_MAKE_ZERO(v29)
2690 // Apply the clamp_max bound
2691 "smin v16.8h, v16.8h, v15.8h\n"
2692 "smin v17.8h, v17.8h, v15.8h\n"
2693 RUY_MAKE_ZERO(v30)
2694
2695 // Compute how much of the 4x4 block of destination 8bit values that
2696 // we have computed, fit in the destination matrix. Typically, all of
2697 // it fits, but when the destination matrix shape is not a multiple
2698 // of 4x4, there are some 4x4 blocks along the boundaries that do
2699 // not fit entirely.
2700 "sub w1, %w[dst_rows], %w[row]\n"
2701 RUY_MAKE_ZERO(v31)
2702 "sub w2, %w[dst_cols], %w[col]\n"
2703 "mov w3, #4\n"
2704 "cmp w1, #4\n"
2705 // Compute w1 = how many rows of the 4x4 block fit
2706 "csel w1, w1, w3, le\n"
2707 "cmp w2, #4\n"
2708 // Compute w2 = how many cols of the 4x4 block fit
2709 "csel w2, w2, w3, le\n"
2710
2711 // Test if w1==4 && w2 == 4, i.e. if all of the 4x4 block fits.
2712 "cmp w1, w3\n"
2713 "ccmp w2, w3, 0, eq\n"
2714 "mov x4, %[dst_ptr]\n"
2715 // Yes, all of the 4x4 block fits, go to fast path.
2716 "beq 30f\n"
2717 // Not all of the 4x4 block fits.
2718 // Store to dst_tmp_buf
2719 "str q16, [%[dst_tmp_buf], #0]\n"
2720 "str q17, [%[dst_tmp_buf], #16]\n"
2721 // Slow loop copying from dst_tmp_buf to dst.
2722 "mov x3, %[dst_tmp_buf]\n"
2723 "mov w6, #0\n"
2724 "50:\n"
2725 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2726 "mov w5, #0\n"
2727 "51:\n"
2728 "ldrh w7, [x3, x5, lsl #1]\n"
2729 "strh w7, [x4, x5, lsl #1]\n"
2730 "add w5, w5, #1\n"
2731 "cmp w5, w1\n"
2732 "blt 51b\n"
2733 "add w6, w6, #1\n"
2734 "add x3, x3, #8\n"
2735 "add x4, x4, x11\n"
2736 "cmp w6, w2\n"
2737 "blt 50b\n"
2738 "b 31f\n"
2739 "30:\n"
2740 // Yes, all of the 4x4 block fits.
2741 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2742 "mov x3, x4\n"
2743 "st1 {v16.h}[0], [x3], #2\n"
2744 "add x4, x4, x11\n"
2745 "st1 {v16.h}[1], [x3], #2\n"
2746 "st1 {v16.h}[2], [x3], #2\n"
2747 "st1 {v16.h}[3], [x3], #2\n"
2748 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2749 "mov x3, x4\n"
2750 "st1 {v16.h}[4], [x3], #2\n"
2751 "add x4, x4, x11\n"
2752 "st1 {v16.h}[5], [x3], #2\n"
2753 "st1 {v16.h}[6], [x3], #2\n"
2754 "st1 {v16.h}[7], [x3], #2\n"
2755 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2756 "mov x3, x4\n"
2757 "st1 {v17.h}[0], [x3], #2\n"
2758 "add x4, x4, x11\n"
2759 "st1 {v17.h}[1], [x3], #2\n"
2760 "st1 {v17.h}[2], [x3], #2\n"
2761 "st1 {v17.h}[3], [x3], #2\n"
2762 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2763 "mov x3, x4\n"
2764 "st1 {v17.h}[4], [x3], #2\n"
2765 "add x4, x4, x11\n"
2766 "st1 {v17.h}[5], [x3], #2\n"
2767 "st1 {v17.h}[6], [x3], #2\n"
2768 "st1 {v17.h}[7], [x3], #2\n"
2769 "31:\n"
2770
2771 "add %[dst_ptr], %[dst_ptr], #8\n"
2772
2773 RUY_MAKE_ZERO(v16)
2774 RUY_MAKE_ZERO(v17)
2775
2776 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
2777
2778 RUY_STR(RUY_ASM_LABEL_STORE_INT32) ":\n"
2779
2780 "ldr x1, [%[lhs_ptr], #8]\n"
2781 "ldr x2, [%[lhs_ptr], #24]\n"
2782 "ldr x3, [%[lhs_ptr], #40]\n"
2783 "ldr x4, [%[lhs_ptr], #56]\n"
2784
2785 "ins v0.d[1], x1\n"
2786 "ldr x1, [%[rhs_ptr], #8]\n"
2787 "ins v1.d[1], x2\n"
2788 "ldr x2, [%[rhs_ptr], #24]\n"
2789 "ins v2.d[1], x3\n"
2790 "ldr x3, [%[rhs_ptr], #40]\n"
2791 "ins v3.d[1], x4\n"
2792 "ldr x4, [%[rhs_ptr], #56]\n"
2793 "ins v4.d[1], x1\n"
2794 "ins v5.d[1], x2\n"
2795 "ins v6.d[1], x3\n"
2796 "ins v7.d[1], x4\n"
2797
2798 // Since the store type is the same as the accum type, no need for
2799 // downcast. There's also no need for clamp by min/max.
2800
2801 // At this point, v20 -- v31 aren't used anymore for the current block,
2802 // so we can start clearing these accumulators for the next block
2803 // (next iteration of the main loop).
2804
2805 RUY_MAKE_ZERO(v20)
2806 "add %[lhs_ptr], %[lhs_ptr], #64\n"
2807 RUY_MAKE_ZERO(v21)
2808 "add %[rhs_ptr], %[rhs_ptr], #64\n"
2809 RUY_MAKE_ZERO(v22)
2810
2811 RUY_MAKE_ZERO(v23)
2812 RUY_MAKE_ZERO(v24)
2813 RUY_MAKE_ZERO(v25)
2814 RUY_MAKE_ZERO(v26)
2815 RUY_MAKE_ZERO(v27)
2816 RUY_MAKE_ZERO(v28)
2817 RUY_MAKE_ZERO(v29)
2818 RUY_MAKE_ZERO(v30)
2819
2820 // Compute how much of the 4x4 block of destination 8bit values that
2821 // we have computed, fit in the destination matrix. Typically, all of
2822 // it fits, but when the destination matrix shape is not a multiple
2823 // of 4x4, there are some 4x4 blocks along the boundaries that do
2824 // not fit entirely.
2825 "sub w1, %w[dst_rows], %w[row]\n"
2826 RUY_MAKE_ZERO(v31)
2827 "sub w2, %w[dst_cols], %w[col]\n"
2828 "mov w3, #4\n"
2829 "cmp w1, #4\n"
2830 // Compute w1 = how many rows of the 4x4 block fit
2831 "csel w1, w1, w3, le\n"
2832 "cmp w2, #4\n"
2833 // Compute w2 = how many cols of the 4x4 block fit
2834 "csel w2, w2, w3, le\n"
2835
2836 // Test if w1==4 && w2 == 4, i.e. if all of the 8x8 block fits.
2837 "cmp w1, w3\n"
2838 "ccmp w2, w3, 0, eq\n"
2839 "mov x4, %[dst_ptr]\n"
2840 // Yes, all of the 4x4 block fits, go to fast path.
2841 "beq 30f\n"
2842 // Not all of the 4x4 block fits.
2843 // Store to dst_tmp_buf
2844 "str q16, [%[dst_tmp_buf], #0]\n"
2845 "str q17, [%[dst_tmp_buf], #16]\n"
2846 "str q18, [%[dst_tmp_buf], #32]\n"
2847 "str q19, [%[dst_tmp_buf], #48]\n"
2848 // Slow loop copying from dst_tmp_buf to dst.
2849 "mov x3, %[dst_tmp_buf]\n"
2850 "mov w6, #0\n"
2851 "50:\n"
2852 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2853 "mov w5, #0\n"
2854 "51:\n"
2855 "ldr w7, [x3, x5, lsl #2]\n"
2856 "str w7, [x4, x5, lsl #2]\n"
2857 "add w5, w5, #1\n"
2858 "cmp w5, w1\n"
2859 "blt 51b\n"
2860 "add w6, w6, #1\n"
2861 "add x3, x3, #16\n"
2862 "add x4, x4, x11\n"
2863 "cmp w6, w2\n"
2864 "blt 50b\n"
2865 "b 31f\n"
2866 "30:\n"
2867 // Yes, all of the 4x4 block fits.
2868 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2869 "mov x3, x4\n"
2870 "st1 {v16.s}[0], [x3], #4\n"
2871 "add x4, x4, x11\n"
2872 "st1 {v16.s}[1], [x3], #4\n"
2873 "st1 {v16.s}[2], [x3], #4\n"
2874 "st1 {v16.s}[3], [x3], #4\n"
2875 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2876 "mov x3, x4\n"
2877 "st1 {v17.s}[0], [x3], #4\n"
2878 "add x4, x4, x11\n"
2879 "st1 {v17.s}[1], [x3], #4\n"
2880 "st1 {v17.s}[2], [x3], #4\n"
2881 "st1 {v17.s}[3], [x3], #4\n"
2882 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2883 "mov x3, x4\n"
2884 "st1 {v18.s}[0], [x3], #4\n"
2885 "add x4, x4, x11\n"
2886 "st1 {v18.s}[1], [x3], #4\n"
2887 "st1 {v18.s}[2], [x3], #4\n"
2888 "st1 {v18.s}[3], [x3], #4\n"
2889 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
2890 "mov x3, x4\n"
2891 "st1 {v19.s}[0], [x3], #4\n"
2892 "add x4, x4, x11\n"
2893 "st1 {v19.s}[1], [x3], #4\n"
2894 "st1 {v19.s}[2], [x3], #4\n"
2895 "st1 {v19.s}[3], [x3], #4\n"
2896 "31:\n"
2897
2898 "add %[dst_ptr], %[dst_ptr], #16\n"
2899
2900 RUY_MAKE_ZERO(v16)
2901 RUY_MAKE_ZERO(v17)
2902 RUY_MAKE_ZERO(v18)
2903 RUY_MAKE_ZERO(v19)
2904
2905 RUY_STR(RUY_ASM_LABEL_AFTER_STORE) ":\n"
2906
2907 // For the next block: perform the first few multiply-adds on the data
2908 // that we have already loaded.
2909 "smull v8.8h, v0.8b, v4.8b\n"
2910 "smull v9.8h, v1.8b, v4.8b\n"
2911 "smull v10.8h, v2.8b, v4.8b\n"
2912 // Reload some params --- we had used x5 -- x7 for a few other things
2913 // since the last time we had loaded them.
2914 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
2915 "smull v11.8h, v3.8b, v4.8b\n"
2916 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
2917 "smull v12.8h, v0.8b, v5.8b\n"
2918 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
2919 "smull v13.8h, v1.8b, v5.8b\n"
2920 "smull v14.8h, v2.8b, v5.8b\n"
2921 "smull v15.8h, v3.8b, v5.8b\n"
2922 // Move to the next block of the destination matrix, for the next iter
2923 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
2924 // been updated earlier.
2925 // Have we reached the end row?
2926 "cmp %w[row], w7\n"
2927 "smlal2 v8.8h, v0.16b, v4.16b\n"
2928 "smlal2 v9.8h, v1.16b, v4.16b\n"
2929 "smlal2 v10.8h, v2.16b, v4.16b\n"
2930 "smlal2 v11.8h, v3.16b, v4.16b\n"
2931 "smlal2 v12.8h, v0.16b, v5.16b\n"
2932 "smlal2 v13.8h, v1.16b, v5.16b\n"
2933 "smlal2 v14.8h, v2.16b, v5.16b\n"
2934 "smlal2 v15.8h, v3.16b, v5.16b\n"
2935
2936
2937 "beq 20f\n" // yes, end row.
2938 // Not end row. Move to the next row.
2939 "add %w[row], %w[row], #4\n"
2940 "b 21f\n"
2941 "20:\n"
2942 // Was already at end row.
2943 "mov %w[row], w6\n" // Move back to first row.
2944 "add %w[col], %w[col], #4\n" // Move to the next column.
2945 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #2\n"
2946 "mov %[dst_ptr], %[dst_col_ptr]\n"
2947 "21:\n"
2948
2949 // Main loop exit condition: have we hit the end column?
2950 "cmp %w[col], w8\n"
2951
2952 // w1 is the number of levels of depth that we have already loaded
2953 // LHS and RHS data for. Corresponding to the initial ld1 instructions
2954 // above, this is currently 4.
2955 "mov w1, #16\n"
2956
2957 "ble 1b\n"
2958
2959 // clang-format on
2960
2961 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
2962 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
2963 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
2964 : [ params ] "r"(&params),[dst_rows] "r"(params.dst_rows),
2965 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf),
2966 [dst_type_id] "r"(params.dst_type_id)
2967 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
2968 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
2969 "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25",
2970 "v26", "v27", "v28", "v29", "v30", "v31");
2971}
2972
2973// Kernel taking advantage of the optional dotprod instruction.
2974// This is very similar to (and directly inspired by) this gemmlowp kernel
2975// which was contributed by David Mansell at ARM:
2976// NEON_64bit_GEMM_Uint8Operands_Uint32Accumulators_dotproduct
2977// https://github.com/google/gemmlowp/blob/36212ad3651871bc3e9a599f1a6d5324778aea25/standalone/neon-gemm-kernel-benchmark.cc#L3391
2978//
2979// Besides the ruy-ification, the main difference here is that we use a 8x8
2980// instead of 12x8 width, so as to stick to power-of-two widths. This slightly
2981// narrower kernel layout is still wide enough to achieve high performance
2982// although we haven't actually performed a real comparison to know exactly
2983// how this compares to ARM's aforementioned kernel.
2984//
2985// Relevant target CPUs for this kernel include ARM Cortex-A76,
2986// since these are 64-bit, out-of-order and with dotprod support.
2987void Kernel8bitNeonDotprod(const KernelParams8bit<8, 8>& params) {
2988 profiler::ScopeLabel label("Kernel (kNeonDotprod)");
2989
2990 CheckOffsetsInKernelParams8bit(params);
2991
2992 const std::int8_t* lhs_col_ptr = params.lhs_base_ptr;
2993 const std::int8_t* rhs_col_ptr =
2994 static_cast<const int8_t*>(params.rhs_base_ptr);
2995 const std::int8_t* lhs_ptr = lhs_col_ptr;
2996 const std::int8_t* rhs_ptr = rhs_col_ptr;
2997 void* dst_col_ptr = params.dst_base_ptr;
2998 void* dst_ptr = dst_col_ptr;
2999 int row = params.start_row;
3000 int col = params.start_col;
3001
3002 // The asm kernel below has the following NEON register allocation:
3003 //
3004 // v16 -- v31 are int32 accumulators.
3005 // During accumulation, v0 -- v15 are used to load int8 data from LHS and
3006 // RHS. At least v0 and v1 are used to load a 8x4 block of LHS, and v2 and
3007 // v3 are used to load a 4x8 block of RHS, like this:
3008 //
3009 // int8 RHS 4x8 block
3010 // /-----------------------------------------|
3011 // |v2.b[0] ... v2.b[12] v3.b[0] ... v3.b[12]|
3012 // | ... ... |
3013 // |v2.b[3] ... v2.b[15] v3.b[3] ... v3.b[15]|
3014 // \-----------------------------------------/
3015 // int8 LHS 8x4 block
3016 // /---------------------\ /-----------------------------------------|
3017 // |v0.b[0] ... v0.b[3] | |v16.s[0] ... v30.s[0]|
3018 // | ... ... | | ... ... |
3019 // |v0.b[12] ... v0.b[15]| |v16.s[3] ... v30.s[3]|
3020 // |v1.b[0] ... v1.b[3] | |v17.s[0] ... v31.s[0]|
3021 // | ... ... | | ... ... |
3022 // |v1.b[12] ... v1.b[15]| |v17.s[3] ... v31.s[3]|
3023 // \---------------------/ \-----------------------------------------/
3024 // int32 accumulators 8x8 block
3025 //
3026 // In the RUY_OPT_MAX_STREAMING part of the kernel, this elementary step
3027 // is repeated 4 times, using 4x more registers for LHS and RHS, so that
3028 // is where instead of using v0 -- v3 for LHS and RHS, we use v0 -- v15.
3029 //
3030 // Outside of the RUY_OPT_MAX_STREAMING part of the kernel, v4 -- v7 are
3031 // unused, and v8 -- v15 are used for loading parameters used for the
3032 // post-accumulation part of the kernel.
3033 asm volatile(
3034#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
3035
3036 // clang-format off
3037
3038 // Load some parameters into registers.
3039 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
3040 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
3041 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
3042 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
3043 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
3044 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
3045 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
3046 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
3047
3048 // Load the first 32 bytes of LHS and RHS data.
3049 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
3050 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
3051 "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
3052 "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
3053
3054 // Clear accumulators.
3055 RUY_MAKE_ZERO(v16)
3056 RUY_MAKE_ZERO(v17)
3057 RUY_MAKE_ZERO(v18)
3058 RUY_MAKE_ZERO(v19)
3059 RUY_MAKE_ZERO(v20)
3060 RUY_MAKE_ZERO(v21)
3061 RUY_MAKE_ZERO(v22)
3062 RUY_MAKE_ZERO(v23)
3063 RUY_MAKE_ZERO(v24)
3064 RUY_MAKE_ZERO(v25)
3065 RUY_MAKE_ZERO(v26)
3066 RUY_MAKE_ZERO(v27)
3067 RUY_MAKE_ZERO(v28)
3068 RUY_MAKE_ZERO(v29)
3069 RUY_MAKE_ZERO(v30)
3070 RUY_MAKE_ZERO(v31)
3071
3072 // w1 is the number of levels of depth that we have already loaded
3073 // LHS and RHS data for. Corresponding to the initial ld1 instructions
3074 // above, this is currently 4.
3075 "mov w1, #4\n"
3076
3077 // Perform the first few multiply-adds on the data that we have already
3078 // loaded.
3079 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
3080 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
3081 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
3082 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
3083
3084 // Main loop of the whole GEMM, over rows and columns of the
3085 // destination matrix.
3086 "1:\n"
3087
3088 // Optional, maximally-streaming, partial-unrolling (4x unrolled)
3089 // optimization of the kernel inner loop (over depth). For more
3090 // comments, see the non-unrolled loop below after the #endif.
3091#if RUY_OPT(MAX_STREAMING)
3092 "cmp w12, #32\n"
3093 "blt 78f\n"
3094
3095 "ld1 {v4.16b}, [%[lhs_ptr]], #16\n"
3096 "ld1 {v5.16b}, [%[lhs_ptr]], #16\n"
3097 "ld1 {v6.16b}, [%[rhs_ptr]], #16\n"
3098 "ld1 {v7.16b}, [%[rhs_ptr]], #16\n"
3099 "ld1 {v8.16b}, [%[lhs_ptr]], #16\n"
3100 "ld1 {v9.16b}, [%[lhs_ptr]], #16\n"
3101 "ld1 {v10.16b}, [%[rhs_ptr]], #16\n"
3102 "ld1 {v11.16b}, [%[rhs_ptr]], #16\n"
3103 "ld1 {v12.16b}, [%[lhs_ptr]], #16\n"
3104 "ld1 {v13.16b}, [%[lhs_ptr]], #16\n"
3105 "ld1 {v14.16b}, [%[rhs_ptr]], #16\n"
3106 "ld1 {v15.16b}, [%[rhs_ptr]], #16\n"
3107 "mov w1, #16\n"
3108
3109 "and w3, w12, #-16\n"
3110 "81:\n"
3111 "add w1, w1, #16\n"
3112
3113 ".word 0x4f83e018 // sdot v24.4s, v0.16b, v3.4b[0]\n"
3114 ".word 0x4fa3e01a // sdot v26.4s, v0.16b, v3.4b[1]\n"
3115 ".word 0x4f83e81c // sdot v28.4s, v0.16b, v3.4b[2]\n"
3116 ".word 0x4fa3e81e // sdot v30.4s, v0.16b, v3.4b[3]\n"
3117 "ldr q0, [%[lhs_ptr], #0]\n"
3118 ".word 0x4f82e031 // sdot v17.4s, v1.16b, v2.4b[0]\n"
3119 ".word 0x4fa2e033 // sdot v19.4s, v1.16b, v2.4b[1]\n"
3120 ".word 0x4f82e835 // sdot v21.4s, v1.16b, v2.4b[2]\n"
3121 ".word 0x4fa2e837 // sdot v23.4s, v1.16b, v2.4b[3]\n"
3122 "ldr q2, [%[rhs_ptr], #0]\n"
3123 ".word 0x4f83e039 // sdot v25.4s, v1.16b, v3.4b[0]\n"
3124 ".word 0x4fa3e03b // sdot v27.4s, v1.16b, v3.4b[1]\n"
3125 ".word 0x4f83e83d // sdot v29.4s, v1.16b, v3.4b[2]\n"
3126 ".word 0x4fa3e83f // sdot v31.4s, v1.16b, v3.4b[3]\n"
3127 "ldr q1, [%[lhs_ptr], #16]\n"
3128
3129 ".word 0x4f87e098 // sdot v24.4s, v4.16b, v7.4b[0]\n"
3130 ".word 0x4fa7e09a // sdot v26.4s, v4.16b, v7.4b[1]\n"
3131 "ldr q3, [%[rhs_ptr], #16]\n"
3132 ".word 0x4f87e89c // sdot v28.4s, v4.16b, v7.4b[2]\n"
3133 ".word 0x4fa7e89e // sdot v30.4s, v4.16b, v7.4b[3]\n"
3134 ".word 0x4f86e0b1 // sdot v17.4s, v5.16b, v6.4b[0]\n"
3135 ".word 0x4fa6e0b3 // sdot v19.4s, v5.16b, v6.4b[1]\n"
3136 ".word 0x4f86e8b5 // sdot v21.4s, v5.16b, v6.4b[2]\n"
3137 ".word 0x4fa6e8b7 // sdot v23.4s, v5.16b, v6.4b[3]\n"
3138 ".word 0x4f87e0b9 // sdot v25.4s, v5.16b, v7.4b[0]\n"
3139 ".word 0x4fa7e0bb // sdot v27.4s, v5.16b, v7.4b[1]\n"
3140 ".word 0x4f87e8bd // sdot v29.4s, v5.16b, v7.4b[2]\n"
3141 ".word 0x4fa7e8bf // sdot v31.4s, v5.16b, v7.4b[3]\n"
3142 "ldr q5, [%[lhs_ptr], #48]\n"
3143 ".word 0x4f86e090 // sdot v16.4s, v4.16b, v6.4b[0]\n"
3144 ".word 0x4fa6e092 // sdot v18.4s, v4.16b, v6.4b[1]\n"
3145 "ldr q7, [%[rhs_ptr], #48]\n"
3146 ".word 0x4f86e894 // sdot v20.4s, v4.16b, v6.4b[2]\n"
3147 ".word 0x4fa6e896 // sdot v22.4s, v4.16b, v6.4b[3]\n"
3148 "ldr q4, [%[lhs_ptr], #32]\n"
3149
3150 ".word 0x4f8be118 // sdot v24.4s, v8.16b, v11.4b[0]\n"
3151 ".word 0x4fabe11a // sdot v26.4s, v8.16b, v11.4b[1]\n"
3152 "ldr q6, [%[rhs_ptr], #32]\n"
3153 ".word 0x4f8be91c // sdot v28.4s, v8.16b, v11.4b[2]\n"
3154 ".word 0x4fabe91e // sdot v30.4s, v8.16b, v11.4b[3]\n"
3155 ".word 0x4f8ae131 // sdot v17.4s, v9.16b, v10.4b[0]\n"
3156 ".word 0x4faae133 // sdot v19.4s, v9.16b, v10.4b[1]\n"
3157 ".word 0x4f8ae935 // sdot v21.4s, v9.16b, v10.4b[2]\n"
3158 ".word 0x4faae937 // sdot v23.4s, v9.16b, v10.4b[3]\n"
3159 ".word 0x4f8be139 // sdot v25.4s, v9.16b, v11.4b[0]\n"
3160 ".word 0x4fabe13b // sdot v27.4s, v9.16b, v11.4b[1]\n"
3161 ".word 0x4f8be93d // sdot v29.4s, v9.16b, v11.4b[2]\n"
3162 ".word 0x4fabe93f // sdot v31.4s, v9.16b, v11.4b[3]\n"
3163 "ldr q9, [%[lhs_ptr], #80]\n"
3164 ".word 0x4f8ae110 // sdot v16.4s, v8.16b, v10.4b[0]\n"
3165 ".word 0x4faae112 // sdot v18.4s, v8.16b, v10.4b[1]\n"
3166 "ldr q11, [%[rhs_ptr], #80]\n"
3167 ".word 0x4f8ae914 // sdot v20.4s, v8.16b, v10.4b[2]\n"
3168 ".word 0x4faae916 // sdot v22.4s, v8.16b, v10.4b[3]\n"
3169 "ldr q8, [%[lhs_ptr], #64]\n"
3170
3171 ".word 0x4f8fe198 // sdot v24.4s, v12.16b, v15.4b[0]\n"
3172 ".word 0x4fafe19a // sdot v26.4s, v12.16b, v15.4b[1]\n"
3173 "ldr q10, [%[rhs_ptr], #64]\n"
3174 ".word 0x4f8fe99c // sdot v28.4s, v12.16b, v15.4b[2]\n"
3175 ".word 0x4fafe99e // sdot v30.4s, v12.16b, v15.4b[3]\n"
3176 "add %[lhs_ptr], %[lhs_ptr], #128\n"
3177 ".word 0x4f8ee1b1 // sdot v17.4s, v13.16b, v14.4b[0]\n"
3178 ".word 0x4faee1b3 // sdot v19.4s, v13.16b, v14.4b[1]\n"
3179 "add %[rhs_ptr], %[rhs_ptr], #128\n"
3180 ".word 0x4f8ee9b5 // sdot v21.4s, v13.16b, v14.4b[2]\n"
3181 ".word 0x4faee9b7 // sdot v23.4s, v13.16b, v14.4b[3]\n"
3182 ".word 0x4f8fe1b9 // sdot v25.4s, v13.16b, v15.4b[0]\n"
3183 ".word 0x4fafe1bb // sdot v27.4s, v13.16b, v15.4b[1]\n"
3184 "cmp w1, w3\n"
3185 ".word 0x4f8fe9bd // sdot v29.4s, v13.16b, v15.4b[2]\n"
3186 ".word 0x4fafe9bf // sdot v31.4s, v13.16b, v15.4b[3]\n"
3187 "ldr q13, [%[lhs_ptr], #-16]\n"
3188 ".word 0x4f8ee190 // sdot v16.4s, v12.16b, v14.4b[0]\n"
3189 ".word 0x4faee192 // sdot v18.4s, v12.16b, v14.4b[1]\n"
3190 "ldr q15, [%[rhs_ptr], #-16]\n"
3191 ".word 0x4f8ee994 // sdot v20.4s, v12.16b, v14.4b[2]\n"
3192 ".word 0x4faee996 // sdot v22.4s, v12.16b, v14.4b[3]\n"
3193 "ldr q12, [%[lhs_ptr], #-32]\n"
3194
3195 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
3196 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
3197 "ldr q14, [%[rhs_ptr], #-32]\n"
3198 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
3199 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
3200
3201 "blt 81b\n"
3202
3203 ".word 0x4f87e098 // sdot v24.4s, v4.16b, v7.4b[0]\n"
3204 ".word 0x4fa7e09a // sdot v26.4s, v4.16b, v7.4b[1]\n"
3205 ".word 0x4f87e89c // sdot v28.4s, v4.16b, v7.4b[2]\n"
3206 ".word 0x4fa7e89e // sdot v30.4s, v4.16b, v7.4b[3]\n"
3207 ".word 0x4f86e0b1 // sdot v17.4s, v5.16b, v6.4b[0]\n"
3208 ".word 0x4fa6e0b3 // sdot v19.4s, v5.16b, v6.4b[1]\n"
3209 ".word 0x4f86e8b5 // sdot v21.4s, v5.16b, v6.4b[2]\n"
3210 ".word 0x4fa6e8b7 // sdot v23.4s, v5.16b, v6.4b[3]\n"
3211 ".word 0x4f87e0b9 // sdot v25.4s, v5.16b, v7.4b[0]\n"
3212 ".word 0x4fa7e0bb // sdot v27.4s, v5.16b, v7.4b[1]\n"
3213 ".word 0x4f87e8bd // sdot v29.4s, v5.16b, v7.4b[2]\n"
3214 ".word 0x4fa7e8bf // sdot v31.4s, v5.16b, v7.4b[3]\n"
3215 ".word 0x4f86e090 // sdot v16.4s, v4.16b, v6.4b[0]\n"
3216 ".word 0x4fa6e092 // sdot v18.4s, v4.16b, v6.4b[1]\n"
3217 ".word 0x4f86e894 // sdot v20.4s, v4.16b, v6.4b[2]\n"
3218 ".word 0x4fa6e896 // sdot v22.4s, v4.16b, v6.4b[3]\n"
3219
3220 ".word 0x4f8be118 // sdot v24.4s, v8.16b, v11.4b[0]\n"
3221 ".word 0x4fabe11a // sdot v26.4s, v8.16b, v11.4b[1]\n"
3222 ".word 0x4f8be91c // sdot v28.4s, v8.16b, v11.4b[2]\n"
3223 ".word 0x4fabe91e // sdot v30.4s, v8.16b, v11.4b[3]\n"
3224 ".word 0x4f8ae131 // sdot v17.4s, v9.16b, v10.4b[0]\n"
3225 ".word 0x4faae133 // sdot v19.4s, v9.16b, v10.4b[1]\n"
3226 ".word 0x4f8ae935 // sdot v21.4s, v9.16b, v10.4b[2]\n"
3227 ".word 0x4faae937 // sdot v23.4s, v9.16b, v10.4b[3]\n"
3228 ".word 0x4f8be139 // sdot v25.4s, v9.16b, v11.4b[0]\n"
3229 ".word 0x4fabe13b // sdot v27.4s, v9.16b, v11.4b[1]\n"
3230 ".word 0x4f8be93d // sdot v29.4s, v9.16b, v11.4b[2]\n"
3231 ".word 0x4fabe93f // sdot v31.4s, v9.16b, v11.4b[3]\n"
3232 ".word 0x4f8ae110 // sdot v16.4s, v8.16b, v10.4b[0]\n"
3233 ".word 0x4faae112 // sdot v18.4s, v8.16b, v10.4b[1]\n"
3234 ".word 0x4f8ae914 // sdot v20.4s, v8.16b, v10.4b[2]\n"
3235 ".word 0x4faae916 // sdot v22.4s, v8.16b, v10.4b[3]\n"
3236
3237 ".word 0x4f8fe198 // sdot v24.4s, v12.16b, v15.4b[0]\n"
3238 ".word 0x4fafe19a // sdot v26.4s, v12.16b, v15.4b[1]\n"
3239 ".word 0x4f8fe99c // sdot v28.4s, v12.16b, v15.4b[2]\n"
3240 ".word 0x4fafe99e // sdot v30.4s, v12.16b, v15.4b[3]\n"
3241 ".word 0x4f8ee1b1 // sdot v17.4s, v13.16b, v14.4b[0]\n"
3242 ".word 0x4faee1b3 // sdot v19.4s, v13.16b, v14.4b[1]\n"
3243 ".word 0x4f8ee9b5 // sdot v21.4s, v13.16b, v14.4b[2]\n"
3244 ".word 0x4faee9b7 // sdot v23.4s, v13.16b, v14.4b[3]\n"
3245 ".word 0x4f8fe1b9 // sdot v25.4s, v13.16b, v15.4b[0]\n"
3246 ".word 0x4fafe1bb // sdot v27.4s, v13.16b, v15.4b[1]\n"
3247 ".word 0x4f8fe9bd // sdot v29.4s, v13.16b, v15.4b[2]\n"
3248 ".word 0x4fafe9bf // sdot v31.4s, v13.16b, v15.4b[3]\n"
3249 ".word 0x4f8ee190 // sdot v16.4s, v12.16b, v14.4b[0]\n"
3250 ".word 0x4faee192 // sdot v18.4s, v12.16b, v14.4b[1]\n"
3251 ".word 0x4f8ee994 // sdot v20.4s, v12.16b, v14.4b[2]\n"
3252 ".word 0x4faee996 // sdot v22.4s, v12.16b, v14.4b[3]\n"
3253
3254 "78:\n"
3255
3256#endif // #if RUY_OPT(MAX_STREAMING)
3257
3258 // Ordinary kernel inner loop (over depth), the simpler loop that the
3259 // above was an equivalent 4x-partially-unrolled version of.
3260
3261 // Reminder - w1 is how many levels of depth we have already loaded
3262 // data for, w12 is the total depth.
3263 "cmp w1, w12\n"
3264 "beq 79f\n"
3265
3266 "2:\n"
3267
3268 // Because of the data that we have already loaded, we can start the
3269 // loop body right away with some multiply-adds.
3270 ".word 0x4f83e018 // sdot v24.4s, v0.16b, v3.4b[0]\n"
3271 ".word 0x4fa3e01a // sdot v26.4s, v0.16b, v3.4b[1]\n"
3272 // Each iteration of this loop advances by 4 levels of depth.
3273 "add w1, w1, #4\n"
3274 ".word 0x4f83e81c // sdot v28.4s, v0.16b, v3.4b[2]\n"
3275 ".word 0x4fa3e81e // sdot v30.4s, v0.16b, v3.4b[3]\n"
3276 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
3277 ".word 0x4f82e031 // sdot v17.4s, v1.16b, v2.4b[0]\n"
3278 ".word 0x4fa2e033 // sdot v19.4s, v1.16b, v2.4b[1]\n"
3279 // Loop termination condition.
3280 "cmp w1, w12\n"
3281 ".word 0x4f82e835 // sdot v21.4s, v1.16b, v2.4b[2]\n"
3282 ".word 0x4fa2e837 // sdot v23.4s, v1.16b, v2.4b[3]\n"
3283 "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
3284 ".word 0x4f83e039 // sdot v25.4s, v1.16b, v3.4b[0]\n"
3285 ".word 0x4fa3e03b // sdot v27.4s, v1.16b, v3.4b[1]\n"
3286 ".word 0x4f83e83d // sdot v29.4s, v1.16b, v3.4b[2]\n"
3287 ".word 0x4fa3e83f // sdot v31.4s, v1.16b, v3.4b[3]\n"
3288 "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
3289 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
3290 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
3291 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
3292 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
3293 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
3294
3295 "blt 2b\n"
3296
3297 "79:\n"
3298 // End of the inner loop on depth. Now perform the remaining
3299 // multiply-adds of the last 4 levels of depth, for which the LHS
3300 // and RHS data is already loaded.
3301
3302 ".word 0x4f83e018 // sdot v24.4s, v0.16b, v3.4b[0]\n"
3303 ".word 0x4fa3e01a // sdot v26.4s, v0.16b, v3.4b[1]\n"
3304 ".word 0x4f83e81c // sdot v28.4s, v0.16b, v3.4b[2]\n"
3305 ".word 0x4fa3e81e // sdot v30.4s, v0.16b, v3.4b[3]\n"
3306 ".word 0x4f82e031 // sdot v17.4s, v1.16b, v2.4b[0]\n"
3307 ".word 0x4fa2e033 // sdot v19.4s, v1.16b, v2.4b[1]\n"
3308 ".word 0x4f82e835 // sdot v21.4s, v1.16b, v2.4b[2]\n"
3309 ".word 0x4fa2e837 // sdot v23.4s, v1.16b, v2.4b[3]\n"
3310 ".word 0x4f83e039 // sdot v25.4s, v1.16b, v3.4b[0]\n"
3311 ".word 0x4fa3e03b // sdot v27.4s, v1.16b, v3.4b[1]\n"
3312 ".word 0x4f83e83d // sdot v29.4s, v1.16b, v3.4b[2]\n"
3313 ".word 0x4fa3e83f // sdot v31.4s, v1.16b, v3.4b[3]\n"
3314
3315 // End of accumulation. The registers v16 -- v31 contain the final
3316 // int32 accumulator values of the current 8x8 destination block.
3317 // We now have to compute the final 8-bit values from these int32
3318 // accumulators, and advance to the next 8x8 block. We intertwine
3319 // these two aspects whenever possible for optimal pipelining, both
3320 // at the data flow level (prefetch data for next block as early as
3321 // possible) and instruction pipelining level (some of the next-block
3322 // work can dual-issue with some of the final work on the current
3323 // block).
3324
3325 // Logic to advance to the next block in preparation for the next
3326 // iteration of the main loop. For now, we only want to compute
3327 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
3328 // not yet ready to update the values of row and col, as we still need
3329 // the current values for the rest of the work on the current block.
3330
3331 "cmp %w[row], w7\n" // Have we finished the last row?
3332 "bge 4f\n" // If finished last row, go to 4
3333 // Not finished last row: then advance to next row.
3334 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #3\n"
3335 "b 5f\n"
3336 "4:\n" // Finished last row...
3337 "mov %[lhs_col_ptr], x5\n" // Go back to first row
3338 // Now we need to advance to the next column. If we already
3339 // finished the last column, then in principle we are done, however
3340 // we can't just return here, as we need to allow the end work of the
3341 // current block to complete. The good news is that at this point it
3342 // doesn't matter what data we load for the next column, since
3343 // we will exit from the main loop below before actually storing
3344 // anything computed from that data.
3345 "cmp %w[col], w8\n" // Have we finished the last column?
3346 "bge 5f\n" // If yes, just carry on without updating the column pointer.
3347 // Not finished last column: then advance to next column.
3348 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #3\n"
3349 "5:\n"
3350
3351 // Set the LHS and RHS data pointers to the start of the columns just
3352 // computed.
3353 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
3354 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
3355
3356 // Load some parameters needed for the end work on current block.
3357 "mvni v8.4s, #0\n"
3358 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_PROD_ZP_DEPTH) "]\n"
3359 "ldrb w6, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
3360 "dup v9.4s, w3\n" // create prod_zp_depth_vec
3361
3362 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
3363 // Determine the channel index.
3364 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
3365 "csel w3, %w[row], %w[col], eq\n"
3366
3367 // Offset the bias pointer as needed given the current row, col.
3368 "add x5, x1, x3, lsl #2\n"
3369
3370 // If there is no bias, use no offset, just address the passed zero
3371 // data.
3372 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
3373 "csel x1, x1, x5, eq\n"
3374
3375 // Load 8 bias values.
3376 "ld1 {v14.4s}, [x1], #16\n"
3377 "ld1 {v15.4s}, [x1]\n"
3378
3379 // Now that we know what LHS and RHS data the next iteration of the
3380 // main loop will need to load, we start loading the first 32 bytes of
3381 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
3382 // in the rest of the work on the current block.
3383 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
3384 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
3385 "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
3386 "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
3387
3388 // Add to the bias values the product (depth * lhs_zero_point * rhs_zero_point),
3389 // See the term NZ1Z2 in equation (7) in https://arxiv.org/pdf/1712.05877.pdf
3390 "add v14.4s, v14.4s, v9.4s\n"
3391 "add v15.4s, v15.4s, v9.4s\n"
3392
3393 // Perform the bias-addition (per the above, we have just folded into
3394 // the bias the (depth * lhs_zero_point * rhs_zero_point) term.)
3395 // Jump based on channel dimension.
3396 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
3397 "bne 6f\n"
3398 // Case where channels are rows
3399 "add v16.4s, v16.4s, v14.4s\n"
3400 "add v17.4s, v17.4s, v15.4s\n"
3401 "add v18.4s, v18.4s, v14.4s\n"
3402 "add v19.4s, v19.4s, v15.4s\n"
3403 "add v20.4s, v20.4s, v14.4s\n"
3404 "add v21.4s, v21.4s, v15.4s\n"
3405 "add v22.4s, v22.4s, v14.4s\n"
3406 "add v23.4s, v23.4s, v15.4s\n"
3407 "add v24.4s, v24.4s, v14.4s\n"
3408 "add v25.4s, v25.4s, v15.4s\n"
3409 "add v26.4s, v26.4s, v14.4s\n"
3410 "add v27.4s, v27.4s, v15.4s\n"
3411 "add v28.4s, v28.4s, v14.4s\n"
3412 "add v29.4s, v29.4s, v15.4s\n"
3413 "add v30.4s, v30.4s, v14.4s\n"
3414 "add v31.4s, v31.4s, v15.4s\n"
3415 "b 7f\n"
3416
3417 "6:\n"
3418 // Case where channels are columns
3419 "dup v10.4s, v14.s[0]\n"
3420 "dup v11.4s, v14.s[1]\n"
3421 "dup v12.4s, v14.s[2]\n"
3422 "dup v13.4s, v14.s[3]\n"
3423 "add v16.4s, v16.4s, v10.4s\n"
3424 "add v17.4s, v17.4s, v10.4s\n"
3425 "add v18.4s, v18.4s, v11.4s\n"
3426 "add v19.4s, v19.4s, v11.4s\n"
3427 "add v20.4s, v20.4s, v12.4s\n"
3428 "add v21.4s, v21.4s, v12.4s\n"
3429 "add v22.4s, v22.4s, v13.4s\n"
3430 "add v23.4s, v23.4s, v13.4s\n"
3431 "dup v10.4s, v15.s[0]\n"
3432 "dup v11.4s, v15.s[1]\n"
3433 "dup v12.4s, v15.s[2]\n"
3434 "dup v13.4s, v15.s[3]\n"
3435 "add v24.4s, v24.4s, v10.4s\n"
3436 "add v25.4s, v25.4s, v10.4s\n"
3437 "add v26.4s, v26.4s, v11.4s\n"
3438 "add v27.4s, v27.4s, v11.4s\n"
3439 "add v28.4s, v28.4s, v12.4s\n"
3440 "add v29.4s, v29.4s, v12.4s\n"
3441 "add v30.4s, v30.4s, v13.4s\n"
3442 "add v31.4s, v31.4s, v13.4s\n"
3443 "7:\n"
3444
3445 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_RHS_SUMS) "\n"
3446 "beq 401f\n"
3447 "ldr x3, [%[params], #" RUY_STR(RUY_OFFSET_RHS_SUMS) "]\n"
3448 "add x3, x3, %x[col], lsl #2\n"
3449 "ld1 {v14.4s}, [x3], #16\n"
3450 "ld1 {v15.4s}, [x3]\n"
3451 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_ZERO_POINT) "]\n"
3452 "dup v10.4s, w5\n" // create lhs_zero_point_vec
3453 // Subtract rhs_sums * lhs_zero_point, per
3454 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
3455 "mls v16.4s, v10.4s, v14.s[0]\n"
3456 "mls v17.4s, v10.4s, v14.s[0]\n"
3457 "mls v18.4s, v10.4s, v14.s[1]\n"
3458 "mls v19.4s, v10.4s, v14.s[1]\n"
3459 "mls v20.4s, v10.4s, v14.s[2]\n"
3460 "mls v21.4s, v10.4s, v14.s[2]\n"
3461 "mls v22.4s, v10.4s, v14.s[3]\n"
3462 "mls v23.4s, v10.4s, v14.s[3]\n"
3463 "mls v24.4s, v10.4s, v15.s[0]\n"
3464 "mls v25.4s, v10.4s, v15.s[0]\n"
3465 "mls v26.4s, v10.4s, v15.s[1]\n"
3466 "mls v27.4s, v10.4s, v15.s[1]\n"
3467 "mls v28.4s, v10.4s, v15.s[2]\n"
3468 "mls v29.4s, v10.4s, v15.s[2]\n"
3469 "mls v30.4s, v10.4s, v15.s[3]\n"
3470 "mls v31.4s, v10.4s, v15.s[3]\n"
3471 "401:\n"
3472
3473 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_LHS_SUMS) "\n"
3474 "beq 402f\n"
3475 "ldr x2, [%[params], #" RUY_STR(RUY_OFFSET_LHS_SUMS) "]\n"
3476 "add x2, x2, %x[row], lsl #2\n"
3477 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_RHS_ZERO_POINT) "]\n"
3478 // Load 4 lhs_sums values.
3479 "ld1 {v11.4s}, [x2], #16\n"
3480 "ld1 {v12.4s}, [x2]\n"
3481 "ins v13.s[1], w5\n" // rhs_zero_point
3482 // Compute lhs_sums * rhs_zero_point.
3483 "mul v11.4s, v11.4s, v13.s[1]\n"
3484 "mul v12.4s, v12.4s, v13.s[1]\n"
3485 // Subtract lhs_sums * rhs_zero_point, per
3486 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
3487 "sub v16.4s, v16.4s, v11.4s\n"
3488 "sub v17.4s, v17.4s, v12.4s\n"
3489 "sub v18.4s, v18.4s, v11.4s\n"
3490 "sub v19.4s, v19.4s, v12.4s\n"
3491 "sub v20.4s, v20.4s, v11.4s\n"
3492 "sub v21.4s, v21.4s, v12.4s\n"
3493 "sub v22.4s, v22.4s, v11.4s\n"
3494 "sub v23.4s, v23.4s, v12.4s\n"
3495 "sub v24.4s, v24.4s, v11.4s\n"
3496 "sub v25.4s, v25.4s, v12.4s\n"
3497 "sub v26.4s, v26.4s, v11.4s\n"
3498 "sub v27.4s, v27.4s, v12.4s\n"
3499 "sub v28.4s, v28.4s, v11.4s\n"
3500 "sub v29.4s, v29.4s, v12.4s\n"
3501 "sub v30.4s, v30.4s, v11.4s\n"
3502 "sub v31.4s, v31.4s, v12.4s\n"
3503
3504 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT32) "\n"
3505 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT32) "f\n"
3506
3507 "402:\n"
3508
3509 // At this point we have computed the final int32 values. Now we
3510 // start down-quantizing them to obtain the final 8bit values from them.
3511
3512 // As part of this down-quantization, our int32 values will be
3513 // multiplied by a multiplier that has a fixed-point component and an
3514 // exponent component.
3515
3516 //Load the exponent part of the multiplier.
3517 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_EXPONENT) "]\n"
3518 // Determine the channel index.
3519 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
3520 "csel w3, %w[row], %w[col], eq\n"
3521 // Compute the multiplier_exponent pointer
3522 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
3523 "add x5, x1, x3, lsl #2\n"
3524 "csel x1, x1, x5, eq\n"
3525 // Load multiplier_exponent
3526 "ldr q9, [x1]\n"
3527 "ldr q10, [x1, #16]\n"
3528 // Separate positive and negative exponents
3529 "smin v11.4s, v8.4s, v9.4s\n"
3530 "smin v12.4s, v8.4s, v10.4s\n"
3531 "sub v9.4s, v9.4s, v11.4s\n"
3532 "sub v10.4s, v10.4s, v12.4s\n"
3533
3534 // Compute the multiplier_fixedpoint pointer
3535 "ldr x4, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_FIXEDPOINT) "]\n"
3536 "add x5, x4, x3, lsl #2\n"
3537 "csel x4, x4, x5, eq\n"
3538 // Load multiplier_fixedpoint
3539 "ldr q14, [x4]\n"
3540 "ldr q15, [x4, #16]\n"
3541
3542 // Jump based on channel dimension.
3543 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
3544 "bne 8f\n"
3545 // Case where channels are rows
3546
3547 // Apply the positive exponent part of the multiplier.
3548 "sshl v16.4s, v16.4s, v9.4s\n"
3549 "sshl v17.4s, v17.4s, v10.4s\n"
3550 "sshl v18.4s, v18.4s, v9.4s\n"
3551 "sshl v19.4s, v19.4s, v10.4s\n"
3552 "sshl v20.4s, v20.4s, v9.4s\n"
3553 "sshl v21.4s, v21.4s, v10.4s\n"
3554 "sshl v22.4s, v22.4s, v9.4s\n"
3555 "sshl v23.4s, v23.4s, v10.4s\n"
3556 "sshl v24.4s, v24.4s, v9.4s\n"
3557 "sshl v25.4s, v25.4s, v10.4s\n"
3558 "sshl v26.4s, v26.4s, v9.4s\n"
3559 "sshl v27.4s, v27.4s, v10.4s\n"
3560 "sshl v28.4s, v28.4s, v9.4s\n"
3561 "sshl v29.4s, v29.4s, v10.4s\n"
3562 "sshl v30.4s, v30.4s, v9.4s\n"
3563 "sshl v31.4s, v31.4s, v10.4s\n"
3564 "10:\n"
3565
3566 // Apply the fixed-point part of the multiplier.
3567 "sqdmulh v16.4s, v16.4s, v14.4s\n"
3568 "sqdmulh v17.4s, v17.4s, v15.4s\n"
3569 "sqdmulh v18.4s, v18.4s, v14.4s\n"
3570 "sqdmulh v19.4s, v19.4s, v15.4s\n"
3571 "sqdmulh v20.4s, v20.4s, v14.4s\n"
3572 "sqdmulh v21.4s, v21.4s, v15.4s\n"
3573 "sqdmulh v22.4s, v22.4s, v14.4s\n"
3574 "sqdmulh v23.4s, v23.4s, v15.4s\n"
3575 "sqdmulh v24.4s, v24.4s, v14.4s\n"
3576 "sqdmulh v25.4s, v25.4s, v15.4s\n"
3577 "sqdmulh v26.4s, v26.4s, v14.4s\n"
3578 "sqdmulh v27.4s, v27.4s, v15.4s\n"
3579 "sqdmulh v28.4s, v28.4s, v14.4s\n"
3580 "sqdmulh v29.4s, v29.4s, v15.4s\n"
3581 "sqdmulh v30.4s, v30.4s, v14.4s\n"
3582 "sqdmulh v31.4s, v31.4s, v15.4s\n"
3583
3584 // Apply the negative exponent part of the multiplier.
3585 "srshl v16.4s, v16.4s, v11.4s\n"
3586 "srshl v17.4s, v17.4s, v12.4s\n"
3587 "srshl v18.4s, v18.4s, v11.4s\n"
3588 "srshl v19.4s, v19.4s, v12.4s\n"
3589 "srshl v20.4s, v20.4s, v11.4s\n"
3590 "srshl v21.4s, v21.4s, v12.4s\n"
3591 "srshl v22.4s, v22.4s, v11.4s\n"
3592 "srshl v23.4s, v23.4s, v12.4s\n"
3593 "srshl v24.4s, v24.4s, v11.4s\n"
3594 "srshl v25.4s, v25.4s, v12.4s\n"
3595 "srshl v26.4s, v26.4s, v11.4s\n"
3596 "srshl v27.4s, v27.4s, v12.4s\n"
3597 "srshl v28.4s, v28.4s, v11.4s\n"
3598 "srshl v29.4s, v29.4s, v12.4s\n"
3599 "srshl v30.4s, v30.4s, v11.4s\n"
3600 "srshl v31.4s, v31.4s, v12.4s\n"
3601 "b 9f\n"
3602
3603 "8:\n"
3604 // Case where channels are columns
3605
3606 // Apply the positive exponent part of the multiplier.
3607 "dup v4.4s, v9.s[0]\n"
3608 "dup v5.4s, v9.s[1]\n"
3609 "dup v6.4s, v9.s[2]\n"
3610 "dup v7.4s, v9.s[3]\n"
3611 "sshl v16.4s, v16.4s, v4.4s\n"
3612 "sshl v17.4s, v17.4s, v4.4s\n"
3613 "sshl v18.4s, v18.4s, v5.4s\n"
3614 "sshl v19.4s, v19.4s, v5.4s\n"
3615 "sshl v20.4s, v20.4s, v6.4s\n"
3616 "sshl v21.4s, v21.4s, v6.4s\n"
3617 "sshl v22.4s, v22.4s, v7.4s\n"
3618 "sshl v23.4s, v23.4s, v7.4s\n"
3619 "dup v4.4s, v10.s[0]\n"
3620 "dup v5.4s, v10.s[1]\n"
3621 "dup v6.4s, v10.s[2]\n"
3622 "dup v7.4s, v10.s[3]\n"
3623 "sshl v24.4s, v24.4s, v4.4s\n"
3624 "sshl v25.4s, v25.4s, v4.4s\n"
3625 "sshl v26.4s, v26.4s, v5.4s\n"
3626 "sshl v27.4s, v27.4s, v5.4s\n"
3627 "sshl v28.4s, v28.4s, v6.4s\n"
3628 "sshl v29.4s, v29.4s, v6.4s\n"
3629 "sshl v30.4s, v30.4s, v7.4s\n"
3630 "sshl v31.4s, v31.4s, v7.4s\n"
3631 "11:\n"
3632
3633 // Apply the fixed-point part of the multiplier.
3634 "sqdmulh v16.4s, v16.4s, v14.s[0]\n"
3635 "sqdmulh v17.4s, v17.4s, v14.s[0]\n"
3636 "sqdmulh v18.4s, v18.4s, v14.s[1]\n"
3637 "sqdmulh v19.4s, v19.4s, v14.s[1]\n"
3638 "sqdmulh v20.4s, v20.4s, v14.s[2]\n"
3639 "sqdmulh v21.4s, v21.4s, v14.s[2]\n"
3640 "sqdmulh v22.4s, v22.4s, v14.s[3]\n"
3641 "sqdmulh v23.4s, v23.4s, v14.s[3]\n"
3642 "sqdmulh v24.4s, v24.4s, v15.s[0]\n"
3643 "sqdmulh v25.4s, v25.4s, v15.s[0]\n"
3644 "sqdmulh v26.4s, v26.4s, v15.s[1]\n"
3645 "sqdmulh v27.4s, v27.4s, v15.s[1]\n"
3646 "sqdmulh v28.4s, v28.4s, v15.s[2]\n"
3647 "sqdmulh v29.4s, v29.4s, v15.s[2]\n"
3648 "sqdmulh v30.4s, v30.4s, v15.s[3]\n"
3649 "sqdmulh v31.4s, v31.4s, v15.s[3]\n"
3650
3651 // Apply the negative exponent part of the multiplier.
3652 "dup v4.4s, v11.s[0]\n"
3653 "dup v5.4s, v11.s[1]\n"
3654 "dup v6.4s, v11.s[2]\n"
3655 "dup v7.4s, v11.s[3]\n"
3656 "srshl v16.4s, v16.4s, v4.4s\n"
3657 "srshl v17.4s, v17.4s, v4.4s\n"
3658 "srshl v18.4s, v18.4s, v5.4s\n"
3659 "srshl v19.4s, v19.4s, v5.4s\n"
3660 "srshl v20.4s, v20.4s, v6.4s\n"
3661 "srshl v21.4s, v21.4s, v6.4s\n"
3662 "srshl v22.4s, v22.4s, v7.4s\n"
3663 "srshl v23.4s, v23.4s, v7.4s\n"
3664 "dup v4.4s, v12.s[0]\n"
3665 "dup v5.4s, v12.s[1]\n"
3666 "dup v6.4s, v12.s[2]\n"
3667 "dup v7.4s, v12.s[3]\n"
3668 "srshl v24.4s, v24.4s, v4.4s\n"
3669 "srshl v25.4s, v25.4s, v4.4s\n"
3670 "srshl v26.4s, v26.4s, v5.4s\n"
3671 "srshl v27.4s, v27.4s, v5.4s\n"
3672 "srshl v28.4s, v28.4s, v6.4s\n"
3673 "srshl v29.4s, v29.4s, v6.4s\n"
3674 "srshl v30.4s, v30.4s, v7.4s\n"
3675 "srshl v31.4s, v31.4s, v7.4s\n"
3676 "9:\n"
3677
3678 "ldr w4, [%[params], #" RUY_STR(RUY_OFFSET_DST_ZERO_POINT) "]\n"
3679 "ins v13.h[4], w4\n" // dst_zero_point
3680
3681 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT16) "\n"
3682 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT16) "f\n"
3683 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT8) "\n"
3684 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT8) "f\n"
3685
3686 RUY_STR(RUY_ASM_LABEL_STORE_UINT8) ":\n"
3687
3688 // Cast-and-saturate from int32 to int16
3689 "sqxtn v16.4h, v16.4s\n"
3690 "sqxtn2 v16.8h, v17.4s\n"
3691 "sqxtn v17.4h, v18.4s\n"
3692 "sqxtn2 v17.8h, v19.4s\n"
3693 "sqxtn v18.4h, v20.4s\n"
3694 "sqxtn2 v18.8h, v21.4s\n"
3695 "sqxtn v19.4h, v22.4s\n"
3696 "sqxtn2 v19.8h, v23.4s\n"
3697 "sqxtn v20.4h, v24.4s\n"
3698 "sqxtn2 v20.8h, v25.4s\n"
3699 "sqxtn v21.4h, v26.4s\n"
3700 "sqxtn2 v21.8h, v27.4s\n"
3701 "sqxtn v22.4h, v28.4s\n"
3702 "sqxtn2 v22.8h, v29.4s\n"
3703 "sqxtn v23.4h, v30.4s\n"
3704 "sqxtn2 v23.8h, v31.4s\n"
3705
3706 // At this point, v24 -- v31 aren't used anymore for the current block,
3707 // so we can start clearing these accumulators for the next block
3708 // (next iteration of the main loop).
3709 RUY_MAKE_ZERO(v24)
3710 RUY_MAKE_ZERO(v25)
3711 RUY_MAKE_ZERO(v26)
3712 RUY_MAKE_ZERO(v27)
3713 RUY_MAKE_ZERO(v28)
3714 RUY_MAKE_ZERO(v29)
3715 RUY_MAKE_ZERO(v30)
3716 RUY_MAKE_ZERO(v31)
3717
3718 // Add the destination zero point
3719 "dup v14.8h, v13.h[4]\n"
3720 "sqadd v16.8h, v16.8h, v14.8h\n"
3721 "sqadd v17.8h, v17.8h, v14.8h\n"
3722 "sqadd v18.8h, v18.8h, v14.8h\n"
3723 "sqadd v19.8h, v19.8h, v14.8h\n"
3724 "sqadd v20.8h, v20.8h, v14.8h\n"
3725 "sqadd v21.8h, v21.8h, v14.8h\n"
3726 "sqadd v22.8h, v22.8h, v14.8h\n"
3727 "sqadd v23.8h, v23.8h, v14.8h\n"
3728
3729 // Cast-and-saturate from int16 to uint8
3730 "sqxtun v16.8b, v16.8h\n"
3731 "sqxtun2 v16.16b, v17.8h\n"
3732 "sqxtun v17.8b, v18.8h\n"
3733 "sqxtun2 v17.16b, v19.8h\n"
3734 "sqxtun v18.8b, v20.8h\n"
3735 "sqxtun2 v18.16b, v21.8h\n"
3736 "sqxtun v19.8b, v22.8h\n"
3737 "sqxtun2 v19.16b, v23.8h\n"
3738
3739 // Load the clamp_min, clamp_max bounds
3740 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
3741 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
3742 "dup v14.16b, w2\n" // clamp_min
3743 "dup v15.16b, w3\n" // clamp_max
3744
3745 // Apply the clamp_min bound
3746 "umax v16.16b, v16.16b, v14.16b\n"
3747 "umax v17.16b, v17.16b, v14.16b\n"
3748 "umax v18.16b, v18.16b, v14.16b\n"
3749 "umax v19.16b, v19.16b, v14.16b\n"
3750
3751 // Apply the clamp_max bound
3752 "umin v16.16b, v16.16b, v15.16b\n"
3753 "umin v17.16b, v17.16b, v15.16b\n"
3754 "umin v18.16b, v18.16b, v15.16b\n"
3755 "umin v19.16b, v19.16b, v15.16b\n"
3756
3757 // Make it so that all of the final 8bit values are stored in the
3758 // first 64bits of 128bit NEON registers, so they can be stored
3759 // by 64bit st1 store instructions with byte alignment.
3760 "dup d20, v16.d[1]\n"
3761 "dup d21, v17.d[1]\n"
3762 "dup d22, v18.d[1]\n"
3763 "dup d23, v19.d[1]\n"
3764
3765 // Compute how much of the 8x8 block of destination 8bit values that
3766 // we have computed, fit in the destination matrix. Typically, all of
3767 // it fits, but when the destination matrix shape is not a multiple
3768 // of 8x8, there are some 8x8 blocks along the boundaries that do
3769 // not fit entirely.
3770 "sub w1, %w[dst_rows], %w[row]\n"
3771 "sub w2, %w[dst_cols], %w[col]\n"
3772 "mov w3, #8\n"
3773 "cmp w1, #8\n"
3774 // Compute w1 = how many rows of the 8x8 block fit
3775 "csel w1, w1, w3, le\n"
3776 "cmp w2, #8\n"
3777 // Compute w2 = how many cols of the 8x8 block fit
3778 "csel w2, w2, w3, le\n"
3779
3780 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
3781 "cmp w1, w3\n"
3782 "ccmp w2, w3, 0, eq\n"
3783 // Yes, all of the 8x8 block fits, go to fast path.
3784 "beq 30f\n"
3785 // Not all of the 8x8 block fits.
3786 // Set (x3 address, x4 stride) to write to dst_tmp_buf
3787 "mov x3, %[dst_tmp_buf]\n"
3788 "mov x4, #8\n"
3789 "b 31f\n"
3790 "30:\n"
3791 // Yes, all of the 8x8 block fits.
3792 // Set (x3 address, x4 stride) to write directly to destination matrix.
3793 "mov x3, %[dst_ptr]\n"
3794 "mov x4, x11\n"
3795 "31:\n"
3796
3797 // Write our 8bit values to the destination described by
3798 // (x3 address, x4 stride).
3799 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3800 "st1 {v16.8b}, [x3], x4\n"
3801 RUY_MAKE_ZERO(v16)
3802 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3803 "st1 {v20.8b}, [x3], x4\n"
3804 RUY_MAKE_ZERO(v20)
3805 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3806 "st1 {v17.8b}, [x3], x4\n"
3807 RUY_MAKE_ZERO(v17)
3808 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3809 "st1 {v21.8b}, [x3], x4\n"
3810 RUY_MAKE_ZERO(v21)
3811 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3812 "st1 {v18.8b}, [x3], x4\n"
3813 RUY_MAKE_ZERO(v18)
3814 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3815 "st1 {v22.8b}, [x3], x4\n"
3816 RUY_MAKE_ZERO(v22)
3817 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3818 "st1 {v19.8b}, [x3], x4\n"
3819 RUY_MAKE_ZERO(v19)
3820 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3821 "st1 {v23.8b}, [x3], x4\n"
3822 RUY_MAKE_ZERO(v23)
3823
3824 // For the next block: perform the first few multiply-adds on the data
3825 // that we have already loaded.
3826 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
3827 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
3828 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
3829 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
3830
3831 // If all of the 8x8 block fits, we just finished writing it to the
3832 // destination, so we skip the next part.
3833 "beq 41f\n"
3834 // Not all of the 8x8 block fits in the destination matrix. We just
3835 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
3836 // it to copy into the destination matrix the part that fits.
3837 "mov x3, %[dst_tmp_buf]\n"
3838 "mov x4, %[dst_ptr]\n"
3839 "mov w6, #0\n"
3840 "50:\n"
3841 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
3842 "mov w5, #0\n"
3843 "51:\n"
3844 "ldrb w7, [x3, w5, uxtw]\n"
3845 "strb w7, [x4, w5, uxtw]\n"
3846 "add w5, w5, #1\n"
3847 "cmp w5, w1\n"
3848 "blt 51b\n"
3849 "add w6, w6, #1\n"
3850 "add x3, x3, #8\n"
3851 "add x4, x4, x11\n"
3852 "cmp w6, w2\n"
3853 "blt 50b\n"
3854 "41:\n"
3855 "add %[dst_ptr], %[dst_ptr], #8\n"
3856 // At this point we have completely finished writing values to the
3857 // destination matrix for the current block.
3858
3859 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
3860
3861 RUY_STR(RUY_ASM_LABEL_STORE_INT8) ":\n"
3862
3863 // Cast-and-saturate from int32 to int16
3864 "sqxtn v16.4h, v16.4s\n"
3865 "sqxtn2 v16.8h, v17.4s\n"
3866 "sqxtn v17.4h, v18.4s\n"
3867 "sqxtn2 v17.8h, v19.4s\n"
3868 "sqxtn v18.4h, v20.4s\n"
3869 "sqxtn2 v18.8h, v21.4s\n"
3870 "sqxtn v19.4h, v22.4s\n"
3871 "sqxtn2 v19.8h, v23.4s\n"
3872 "sqxtn v20.4h, v24.4s\n"
3873 "sqxtn2 v20.8h, v25.4s\n"
3874 "sqxtn v21.4h, v26.4s\n"
3875 "sqxtn2 v21.8h, v27.4s\n"
3876 "sqxtn v22.4h, v28.4s\n"
3877 "sqxtn2 v22.8h, v29.4s\n"
3878 "sqxtn v23.4h, v30.4s\n"
3879 "sqxtn2 v23.8h, v31.4s\n"
3880
3881 // At this point, v24 -- v31 aren't used anymore for the current block,
3882 // so we can start clearing these accumulators for the next block
3883 // (next iteration of the main loop).
3884 RUY_MAKE_ZERO(v24)
3885 RUY_MAKE_ZERO(v25)
3886 RUY_MAKE_ZERO(v26)
3887 RUY_MAKE_ZERO(v27)
3888 RUY_MAKE_ZERO(v28)
3889 RUY_MAKE_ZERO(v29)
3890 RUY_MAKE_ZERO(v30)
3891 RUY_MAKE_ZERO(v31)
3892
3893 // Add the destination zero point
3894 "dup v14.8h, v13.h[4]\n"
3895 "sqadd v16.8h, v16.8h, v14.8h\n"
3896 "sqadd v17.8h, v17.8h, v14.8h\n"
3897 "sqadd v18.8h, v18.8h, v14.8h\n"
3898 "sqadd v19.8h, v19.8h, v14.8h\n"
3899 "sqadd v20.8h, v20.8h, v14.8h\n"
3900 "sqadd v21.8h, v21.8h, v14.8h\n"
3901 "sqadd v22.8h, v22.8h, v14.8h\n"
3902 "sqadd v23.8h, v23.8h, v14.8h\n"
3903
3904 // Cast-and-saturate from int16 to uint8
3905 "sqxtn v16.8b, v16.8h\n"
3906 "sqxtn2 v16.16b, v17.8h\n"
3907 "sqxtn v17.8b, v18.8h\n"
3908 "sqxtn2 v17.16b, v19.8h\n"
3909 "sqxtn v18.8b, v20.8h\n"
3910 "sqxtn2 v18.16b, v21.8h\n"
3911 "sqxtn v19.8b, v22.8h\n"
3912 "sqxtn2 v19.16b, v23.8h\n"
3913
3914 // Load the clamp_min, clamp_max bounds
3915 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
3916 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
3917 "dup v14.16b, w2\n" // clamp_min
3918 "dup v15.16b, w3\n" // clamp_max
3919
3920 // Apply the clamp_min bound
3921 "smax v16.16b, v16.16b, v14.16b\n"
3922 "smax v17.16b, v17.16b, v14.16b\n"
3923 "smax v18.16b, v18.16b, v14.16b\n"
3924 "smax v19.16b, v19.16b, v14.16b\n"
3925
3926 // Apply the clamp_max bound
3927 "smin v16.16b, v16.16b, v15.16b\n"
3928 "smin v17.16b, v17.16b, v15.16b\n"
3929 "smin v18.16b, v18.16b, v15.16b\n"
3930 "smin v19.16b, v19.16b, v15.16b\n"
3931
3932 // Make it so that all of the final 8bit values are stored in the
3933 // first 64bits of 128bit NEON registers, so they can be stored
3934 // by 64bit st1 store instructions with byte alignment.
3935 "dup d20, v16.d[1]\n"
3936 "dup d21, v17.d[1]\n"
3937 "dup d22, v18.d[1]\n"
3938 "dup d23, v19.d[1]\n"
3939
3940 // Compute how much of the 8x8 block of destination 8bit values that
3941 // we have computed, fit in the destination matrix. Typically, all of
3942 // it fits, but when the destination matrix shape is not a multiple
3943 // of 8x8, there are some 8x8 blocks along the boundaries that do
3944 // not fit entirely.
3945 "sub w1, %w[dst_rows], %w[row]\n"
3946 "sub w2, %w[dst_cols], %w[col]\n"
3947 "mov w3, #8\n"
3948 "cmp w1, #8\n"
3949 // Compute w1 = how many rows of the 8x8 block fit
3950 "csel w1, w1, w3, le\n"
3951 "cmp w2, #8\n"
3952 // Compute w2 = how many cols of the 8x8 block fit
3953 "csel w2, w2, w3, le\n"
3954
3955 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
3956 "cmp w1, w3\n"
3957 "ccmp w2, w3, 0, eq\n"
3958 // Yes, all of the 8x8 block fits, go to fast path.
3959 "beq 130f\n"
3960 // Not all of the 8x8 block fits.
3961 // Set (x3 address, x4 stride) to write to dst_tmp_buf
3962 "mov x3, %[dst_tmp_buf]\n"
3963 "mov x4, #8\n"
3964 "b 131f\n"
3965 "130:\n"
3966 // Yes, all of the 8x8 block fits.
3967 // Set (x3 address, x4 stride) to write directly to destination matrix.
3968 "mov x3, %[dst_ptr]\n"
3969 "mov x4, x11\n"
3970 "131:\n"
3971
3972 // Write our 8bit values to the destination described by
3973 // (x3 address, x4 stride).
3974 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3975 "st1 {v16.8b}, [x3], x4\n"
3976 RUY_MAKE_ZERO(v16)
3977 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3978 "st1 {v20.8b}, [x3], x4\n"
3979 RUY_MAKE_ZERO(v20)
3980 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3981 "st1 {v17.8b}, [x3], x4\n"
3982 RUY_MAKE_ZERO(v17)
3983 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3984 "st1 {v21.8b}, [x3], x4\n"
3985 RUY_MAKE_ZERO(v21)
3986 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3987 "st1 {v18.8b}, [x3], x4\n"
3988 RUY_MAKE_ZERO(v18)
3989 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3990 "st1 {v22.8b}, [x3], x4\n"
3991 RUY_MAKE_ZERO(v22)
3992 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3993 "st1 {v19.8b}, [x3], x4\n"
3994 RUY_MAKE_ZERO(v19)
3995 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
3996 "st1 {v23.8b}, [x3], x4\n"
3997 RUY_MAKE_ZERO(v23)
3998
3999 // For the next block: perform the first few multiply-adds on the data
4000 // that we have already loaded.
4001 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
4002 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
4003 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
4004 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
4005
4006 // If all of the 8x8 block fits, we just finished writing it to the
4007 // destination, so we skip the next part.
4008 "beq 141f\n"
4009 // Not all of the 8x8 block fits in the destination matrix. We just
4010 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
4011 // it to copy into the destination matrix the part that fits.
4012 "mov x3, %[dst_tmp_buf]\n"
4013 "mov x4, %[dst_ptr]\n"
4014 "mov w6, #0\n"
4015 "150:\n"
4016 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4017 "mov w5, #0\n"
4018 "151:\n"
4019 "ldrb w7, [x3, w5, uxtw]\n"
4020 "strb w7, [x4, w5, uxtw]\n"
4021 "add w5, w5, #1\n"
4022 "cmp w5, w1\n"
4023 "blt 151b\n"
4024 "add w6, w6, #1\n"
4025 "add x3, x3, #8\n"
4026 "add x4, x4, x11\n"
4027 "cmp w6, w2\n"
4028 "blt 150b\n"
4029 "141:\n"
4030 "add %[dst_ptr], %[dst_ptr], #8\n"
4031 // At this point we have completely finished writing values to the
4032 // destination matrix for the current block.
4033
4034 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
4035
4036 RUY_STR(RUY_ASM_LABEL_STORE_INT16) ":\n"
4037
4038 // Add the destination zero point
4039 "dup v14.8h, v13.h[4]\n"
4040 "saddw v16.4s, v16.4s, v14.4h\n"
4041 "saddw v17.4s, v17.4s, v14.4h\n"
4042 "saddw v18.4s, v18.4s, v14.4h\n"
4043 "saddw v19.4s, v19.4s, v14.4h\n"
4044 "saddw v20.4s, v20.4s, v14.4h\n"
4045 "saddw v21.4s, v21.4s, v14.4h\n"
4046 "saddw v22.4s, v22.4s, v14.4h\n"
4047 "saddw v23.4s, v23.4s, v14.4h\n"
4048 "saddw v24.4s, v24.4s, v14.4h\n"
4049 "saddw v25.4s, v25.4s, v14.4h\n"
4050 "saddw v26.4s, v26.4s, v14.4h\n"
4051 "saddw v27.4s, v27.4s, v14.4h\n"
4052 "saddw v28.4s, v28.4s, v14.4h\n"
4053 "saddw v29.4s, v29.4s, v14.4h\n"
4054 "saddw v30.4s, v30.4s, v14.4h\n"
4055 "saddw v31.4s, v31.4s, v14.4h\n"
4056
4057 // Cast-and-saturate from int32 to int16
4058 "sqxtn v16.4h, v16.4s\n"
4059 "sqxtn2 v16.8h, v17.4s\n"
4060 "sqxtn v17.4h, v18.4s\n"
4061 "sqxtn2 v17.8h, v19.4s\n"
4062 "sqxtn v18.4h, v20.4s\n"
4063 "sqxtn2 v18.8h, v21.4s\n"
4064 "sqxtn v19.4h, v22.4s\n"
4065 "sqxtn2 v19.8h, v23.4s\n"
4066 "sqxtn v20.4h, v24.4s\n"
4067 "sqxtn2 v20.8h, v25.4s\n"
4068 "sqxtn v21.4h, v26.4s\n"
4069 "sqxtn2 v21.8h, v27.4s\n"
4070 "sqxtn v22.4h, v28.4s\n"
4071 "sqxtn2 v22.8h, v29.4s\n"
4072 "sqxtn v23.4h, v30.4s\n"
4073 "sqxtn2 v23.8h, v31.4s\n"
4074
4075 // At this point, v24 -- v31 aren't used anymore for the current block,
4076 // so we can start clearing these accumulators for the next block
4077 // (next iteration of the main loop).
4078 RUY_MAKE_ZERO(v24)
4079 RUY_MAKE_ZERO(v25)
4080 RUY_MAKE_ZERO(v26)
4081 RUY_MAKE_ZERO(v27)
4082 RUY_MAKE_ZERO(v28)
4083 RUY_MAKE_ZERO(v29)
4084 RUY_MAKE_ZERO(v30)
4085 RUY_MAKE_ZERO(v31)
4086
4087 // Load the clamp_min, clamp_max bounds
4088 "ldrsh w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
4089 "ldrsh w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
4090 "dup v14.8h, w2\n" // clamp_min
4091 "dup v15.8h, w3\n" // clamp_max
4092
4093 // Apply the clamp_min bound
4094 "smax v16.8h, v16.8h, v14.8h\n"
4095 "smax v17.8h, v17.8h, v14.8h\n"
4096 "smax v18.8h, v18.8h, v14.8h\n"
4097 "smax v19.8h, v19.8h, v14.8h\n"
4098 "smax v20.8h, v20.8h, v14.8h\n"
4099 "smax v21.8h, v21.8h, v14.8h\n"
4100 "smax v22.8h, v22.8h, v14.8h\n"
4101 "smax v23.8h, v23.8h, v14.8h\n"
4102 // Apply the clamp_max bound
4103 "smin v16.8h, v16.8h, v15.8h\n"
4104 "smin v17.8h, v17.8h, v15.8h\n"
4105 "smin v18.8h, v18.8h, v15.8h\n"
4106 "smin v19.8h, v19.8h, v15.8h\n"
4107 "smin v20.8h, v20.8h, v15.8h\n"
4108 "smin v21.8h, v21.8h, v15.8h\n"
4109 "smin v22.8h, v22.8h, v15.8h\n"
4110 "smin v23.8h, v23.8h, v15.8h\n"
4111
4112 // Compute how much of the 8x8 block of destination 16bit values that
4113 // we have computed, fit in the destination matrix. Typically, all of
4114 // it fits, but when the destination matrix shape is not a multiple
4115 // of 8x8, there are some 8x8 blocks along the boundaries that do
4116 // not fit entirely.
4117 "sub w1, %w[dst_rows], %w[row]\n"
4118 "sub w2, %w[dst_cols], %w[col]\n"
4119 "mov w3, #8\n"
4120 "cmp w1, #8\n"
4121 // Compute w1 = how many rows of the 8x8 block fit
4122 "csel w1, w1, w3, le\n"
4123 "cmp w2, #8\n"
4124 // Compute w1 = how many rows of the 8x8 block fit
4125 "csel w2, w2, w3, le\n"
4126
4127 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
4128 "cmp w1, w3\n"
4129 "ccmp w2, w3, 0, eq\n"
4130 // Yes, all of the 8x8 block fits, go to fast path.
4131 "beq 230f\n"
4132 // Not all of the 8x8 block fits.
4133 // Set (x3 address, x4 stride) to write to dst_tmp_buf
4134 "mov x3, %[dst_tmp_buf]\n"
4135 "mov x4, #16\n"
4136 "b 231f\n"
4137 "230:\n"
4138 // Yes, all of the 8x8 block fits.
4139 // Set (x3 address, x4 stride) to write directly to destination matrix.
4140 "mov x3, %[dst_ptr]\n"
4141 "mov x4, x11\n"
4142 "231:\n"
4143
4144 // Write our 16bit values to the destination described by
4145 // (x3 address, x4 stride).
4146 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
4147 "st1 {v16.8h}, [x3], x4\n"
4148 RUY_MAKE_ZERO(v16)
4149 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
4150 "st1 {v17.8h}, [x3], x4\n"
4151 RUY_MAKE_ZERO(v17)
4152 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
4153 "st1 {v18.8h}, [x3], x4\n"
4154 RUY_MAKE_ZERO(v18)
4155 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
4156 "st1 {v19.8h}, [x3], x4\n"
4157 RUY_MAKE_ZERO(v19)
4158 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
4159 "st1 {v20.8h}, [x3], x4\n"
4160 RUY_MAKE_ZERO(v20)
4161 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
4162 "st1 {v21.8h}, [x3], x4\n"
4163 RUY_MAKE_ZERO(v21)
4164 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
4165 "st1 {v22.8h}, [x3], x4\n"
4166 RUY_MAKE_ZERO(v22)
4167 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
4168 "st1 {v23.8h}, [x3], x4\n"
4169 RUY_MAKE_ZERO(v23)
4170
4171 // For the next block: perform the first few multiply-adds on the data
4172 // that we have already loaded.
4173 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
4174 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
4175 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
4176 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
4177
4178 // If all of the 8x8 block fits, we just finished writing it to the
4179 // destination, so we skip the next part.
4180 "beq 241f\n"
4181 // Not all of the 8x8 block fits in the destination matrix. We just
4182 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
4183 // it to copy into the destination matrix the part that fits.
4184 "mov x3, %[dst_tmp_buf]\n"
4185 "mov x4, %[dst_ptr]\n"
4186 "mov w6, #0\n"
4187 "250:\n"
4188 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4189 "mov w5, #0\n"
4190 "251:\n"
4191 "ldrsh w7, [x3, x5, lsl #1]\n"
4192 "strh w7, [x4, x5, lsl #1]\n"
4193 "add w5, w5, #1\n"
4194 "cmp w5, w1\n"
4195 "blt 251b\n"
4196 "add w6, w6, #1\n"
4197 "add x3, x3, #16\n"
4198 "add x4, x4, x11\n"
4199 "cmp w6, w2\n"
4200 "blt 250b\n"
4201 "241:\n"
4202 "add %[dst_ptr], %[dst_ptr], #16\n"
4203 // At this point we have completely finished writing values to the
4204 // destination matrix for the current block.
4205
4206 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
4207
4208 RUY_STR(RUY_ASM_LABEL_STORE_INT32) ":\n"
4209
4210 // Since the store type is the same as the accum type, no need for
4211 // downcast. There's also no need for clamp by min/max.
4212
4213 // Compute how much of the 8x8 block of destination 32it values that
4214 // we have computed, fit in the destination matrix. Typically, all of
4215 // it fits, but when the destination matrix shape is not a multiple
4216 // of 8x8, there are some 8x8 blocks along the boundaries that do
4217 // not fit entirely.
4218 "sub w1, %w[dst_rows], %w[row]\n"
4219 "sub w2, %w[dst_cols], %w[col]\n"
4220 "mov w3, #8\n"
4221 "cmp w1, #8\n"
4222 // Compute w1 = how many rows of the 8x8 block fit
4223 "csel w1, w1, w3, le\n"
4224 "cmp w2, #8\n"
4225 // Compute w1 = how many rows of the 8x8 block fit
4226 "csel w2, w2, w3, le\n"
4227
4228 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
4229 "cmp w1, w3\n"
4230 "ccmp w2, w3, 0, eq\n"
4231 // Yes, all of the 8x8 block fits, go to fast path.
4232 "beq 330f\n"
4233 // Not all of the 8x8 block fits.
4234 // Write to dst_tmp_buf
4235 "mov x3, %[dst_tmp_buf]\n"
4236 "st1 {v16.4s}, [x3], #16\n"
4237 RUY_MAKE_ZERO(v16)
4238 "st1 {v17.4s}, [x3], #16\n"
4239 RUY_MAKE_ZERO(v17)
4240 "st1 {v18.4s}, [x3], #16\n"
4241 RUY_MAKE_ZERO(v18)
4242 "st1 {v19.4s}, [x3], #16\n"
4243 RUY_MAKE_ZERO(v19)
4244 "st1 {v20.4s}, [x3], #16\n"
4245 RUY_MAKE_ZERO(v20)
4246 "st1 {v21.4s}, [x3], #16\n"
4247 RUY_MAKE_ZERO(v21)
4248 "st1 {v22.4s}, [x3], #16\n"
4249 RUY_MAKE_ZERO(v22)
4250 "st1 {v23.4s}, [x3], #16\n"
4251 RUY_MAKE_ZERO(v23)
4252 "st1 {v24.4s}, [x3], #16\n"
4253 RUY_MAKE_ZERO(v24)
4254 "st1 {v25.4s}, [x3], #16\n"
4255 RUY_MAKE_ZERO(v25)
4256 "st1 {v26.4s}, [x3], #16\n"
4257 RUY_MAKE_ZERO(v26)
4258 "st1 {v27.4s}, [x3], #16\n"
4259 RUY_MAKE_ZERO(v27)
4260 "st1 {v28.4s}, [x3], #16\n"
4261 RUY_MAKE_ZERO(v28)
4262 "st1 {v29.4s}, [x3], #16\n"
4263 RUY_MAKE_ZERO(v29)
4264 "st1 {v30.4s}, [x3], #16\n"
4265 RUY_MAKE_ZERO(v30)
4266 "st1 {v31.4s}, [x3], #16\n"
4267 RUY_MAKE_ZERO(v31)
4268
4269 "b 331f\n"
4270
4271 "330:\n"
4272 // Yes, all of the 8x8 block fits.
4273 "mov x4, %[dst_ptr]\n"
4274 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4275 "mov x3, x4\n"
4276 "st1 {v16.4s, v17.4s}, [x3], #32\n"
4277 RUY_MAKE_ZERO(v16)
4278 RUY_MAKE_ZERO(v17)
4279 "add x4, x4, x11\n"
4280 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4281 "mov x3, x4\n"
4282 "st1 {v18.4s, v19.4s}, [x3], #32\n"
4283 RUY_MAKE_ZERO(v18)
4284 RUY_MAKE_ZERO(v19)
4285 "add x4, x4, x11\n"
4286 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4287 "mov x3, x4\n"
4288 "st1 {v20.4s, v21.4s}, [x3], #32\n"
4289 RUY_MAKE_ZERO(v20)
4290 RUY_MAKE_ZERO(v21)
4291 "add x4, x4, x11\n"
4292 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4293 "mov x3, x4\n"
4294 "st1 {v22.4s, v23.4s}, [x3], #32\n"
4295 RUY_MAKE_ZERO(v22)
4296 RUY_MAKE_ZERO(v23)
4297 "add x4, x4, x11\n"
4298 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4299 "mov x3, x4\n"
4300 "st1 {v24.4s, v25.4s}, [x3], #32\n"
4301 RUY_MAKE_ZERO(v24)
4302 RUY_MAKE_ZERO(v25)
4303 "add x4, x4, x11\n"
4304 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4305 "mov x3, x4\n"
4306 "st1 {v26.4s, v27.4s}, [x3], #32\n"
4307 RUY_MAKE_ZERO(v26)
4308 RUY_MAKE_ZERO(v27)
4309 "add x4, x4, x11\n"
4310 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4311 "mov x3, x4\n"
4312 "st1 {v28.4s, v29.4s}, [x3], #32\n"
4313 RUY_MAKE_ZERO(v28)
4314 RUY_MAKE_ZERO(v29)
4315 "add x4, x4, x11\n"
4316 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4317 "mov x3, x4\n"
4318 "st1 {v30.4s, v31.4s}, [x3], #32\n"
4319 RUY_MAKE_ZERO(v30)
4320 RUY_MAKE_ZERO(v31)
4321
4322 "331:\n"
4323
4324 // For the next block: perform the first few multiply-adds on the data
4325 // that we have already loaded.
4326 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
4327 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
4328 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
4329 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
4330
4331 // If all of the 8x8 block fits, we just finished writing it to the
4332 // destination, so we skip the next part.
4333 "beq 341f\n"
4334
4335 // Not all of the 8x8 block fits in the destination matrix. We just
4336 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
4337 // it to copy into the destination matrix the part that fits.
4338 "mov x3, %[dst_tmp_buf]\n"
4339 "mov x4, %[dst_ptr]\n"
4340 "mov w6, #0\n"
4341 "350:\n"
4342 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
4343 "mov w5, #0\n"
4344 "351:\n"
4345 "ldr w7, [x3, x5, lsl #2]\n"
4346 "str w7, [x4, x5, lsl #2]\n"
4347 "add w5, w5, #1\n"
4348 "cmp w5, w1\n"
4349 "blt 351b\n"
4350 "add w6, w6, #1\n"
4351 "add x3, x3, #32\n"
4352 "add x4, x4, x11\n"
4353 "cmp w6, w2\n"
4354 "blt 350b\n"
4355 "341:\n"
4356 "add %[dst_ptr], %[dst_ptr], #32\n"
4357 // At this point we have completely finished writing values to the
4358 // destination matrix for the current block.
4359
4360 RUY_STR(RUY_ASM_LABEL_AFTER_STORE) ":\n"
4361
4362 // Reload some params --- we had used x5 -- x7 for a few other things
4363 // since the last time we had loaded them.
4364 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
4365 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
4366 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
4367
4368 // Move to the next block of the destination matrix, for the next iter
4369 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
4370 // been updated earlier.
4371 // Have we reached the end row?
4372 "cmp %w[row], w7\n"
4373 "beq 20f\n" // yes, end row.
4374 // Not end row. Move to the next row.
4375 "add %w[row], %w[row], #8\n"
4376 "b 21f\n"
4377 "20:\n"
4378 // Was already at end row.
4379 "mov %w[row], w6\n" // Move back to first row.
4380 "add %w[col], %w[col], #8\n" // Move to the next column.
4381 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #3\n"
4382 "mov %[dst_ptr], %[dst_col_ptr]\n"
4383 "21:\n"
4384
4385 // Main loop exit condition: have we hit the end column?
4386 "cmp %w[col], w8\n"
4387
4388 // w1 is the number of levels of depth that we have already loaded
4389 // LHS and RHS data for. Corresponding to the initial ld1 instructions
4390 // above, this is currently 4.
4391 "mov w1, #4\n"
4392
4393 "ble 1b\n"
4394
4395 // clang-format on
4396
4397 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
4398 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
4399 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
4400 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
4401 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf),
4402 [dst_type_id] "r"(params.dst_type_id)
4403 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
4404 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
4405 "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25",
4406 "v26", "v27", "v28", "v29", "v30", "v31");
4407}
4408
4409// A fork of the above 8bitNeonDotprod kernel but removes the max streaming
4410// manual unrolling. Manually unrolling the inner loops benefits some GEMM
4411// shapes on the Cortex-A76 but destroys performance on the X1 by increasing
4412// backend stalls. Therefore, we remove the MAX_STREAMING option in this
4413// kernel. The target CPU for this kernel is currently only the Cortex-X1.
4414void Kernel8bitNeonDotprodX1(const KernelParams8bit<8, 8>& params) {
4415 profiler::ScopeLabel label("Kernel (kNeonDotprod)");
4416
4417 CheckOffsetsInKernelParams8bit(params);
4418
4419 const std::int8_t* lhs_col_ptr = params.lhs_base_ptr;
4420 const std::int8_t* rhs_col_ptr =
4421 static_cast<const int8_t*>(params.rhs_base_ptr);
4422 const std::int8_t* lhs_ptr = lhs_col_ptr;
4423 const std::int8_t* rhs_ptr = rhs_col_ptr;
4424 void* dst_col_ptr = params.dst_base_ptr;
4425 void* dst_ptr = dst_col_ptr;
4426 int row = params.start_row;
4427 int col = params.start_col;
4428
4429 // The asm kernel below has the following NEON register allocation:
4430 //
4431 // v16 -- v31 are int32 accumulators.
4432 // During accumulation, v0 -- v15 are used to load int8 data from LHS and
4433 // RHS. At least v0 and v1 are used to load a 8x4 block of LHS, and v2 and
4434 // v3 are used to load a 4x8 block of RHS, like this:
4435 //
4436 // int8 RHS 4x8 block
4437 // /-----------------------------------------|
4438 // |v2.b[0] ... v2.b[12] v3.b[0] ... v3.b[12]|
4439 // | ... ... |
4440 // |v2.b[3] ... v2.b[15] v3.b[3] ... v3.b[15]|
4441 // \-----------------------------------------/
4442 // int8 LHS 8x4 block
4443 // /---------------------\ /-----------------------------------------|
4444 // |v0.b[0] ... v0.b[3] | |v16.s[0] ... v30.s[0]|
4445 // | ... ... | | ... ... |
4446 // |v0.b[12] ... v0.b[15]| |v16.s[3] ... v30.s[3]|
4447 // |v1.b[0] ... v1.b[3] | |v17.s[0] ... v31.s[0]|
4448 // | ... ... | | ... ... |
4449 // |v1.b[12] ... v1.b[15]| |v17.s[3] ... v31.s[3]|
4450 // \---------------------/ \-----------------------------------------/
4451 // int32 accumulators 8x8 block
4452 //
4453 // In the RUY_OPT_MAX_STREAMING part of the kernel, this elementary step
4454 // is repeated 4 times, using 4x more registers for LHS and RHS, so that
4455 // is where instead of using v0 -- v3 for LHS and RHS, we use v0 -- v15.
4456 //
4457 // Outside of the RUY_OPT_MAX_STREAMING part of the kernel, v4 -- v7 are
4458 // unused, and v8 -- v15 are used for loading parameters used for the
4459 // post-accumulation part of the kernel.
4460 asm volatile(
4461#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
4462
4463 // clang-format off
4464
4465 // Load some parameters into registers.
4466 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
4467 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
4468 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
4469 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
4470 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
4471 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
4472 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
4473 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
4474
4475 // Load the first 32 bytes of LHS and RHS data.
4476 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
4477 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
4478 "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
4479 "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
4480
4481 // Clear accumulators.
4482 RUY_MAKE_ZERO(v16)
4483 RUY_MAKE_ZERO(v17)
4484 RUY_MAKE_ZERO(v18)
4485 RUY_MAKE_ZERO(v19)
4486 RUY_MAKE_ZERO(v20)
4487 RUY_MAKE_ZERO(v21)
4488 RUY_MAKE_ZERO(v22)
4489 RUY_MAKE_ZERO(v23)
4490 RUY_MAKE_ZERO(v24)
4491 RUY_MAKE_ZERO(v25)
4492 RUY_MAKE_ZERO(v26)
4493 RUY_MAKE_ZERO(v27)
4494 RUY_MAKE_ZERO(v28)
4495 RUY_MAKE_ZERO(v29)
4496 RUY_MAKE_ZERO(v30)
4497 RUY_MAKE_ZERO(v31)
4498
4499 // w1 is the number of levels of depth that we have already loaded
4500 // LHS and RHS data for. Corresponding to the initial ld1 instructions
4501 // above, this is currently 4.
4502 "mov w1, #4\n"
4503
4504 // Perform the first few multiply-adds on the data that we have already
4505 // loaded.
4506 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
4507 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
4508 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
4509 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
4510
4511 // Main loop of the whole GEMM, over rows and columns of the
4512 // destination matrix.
4513 "1:\n"
4514
4515 // Kernel inner loop (over depth).
4516 // Reminder - w1 is how many levels of depth we have already loaded
4517 // data for, w12 is the total depth.
4518 "cmp w1, w12\n"
4519 "beq 79f\n"
4520
4521 "2:\n"
4522
4523 // Because of the data that we have already loaded, we can start the
4524 // loop body right away with some multiply-adds.
4525 ".word 0x4f83e018 // sdot v24.4s, v0.16b, v3.4b[0]\n"
4526 ".word 0x4fa3e01a // sdot v26.4s, v0.16b, v3.4b[1]\n"
4527 // Each iteration of this loop advances by 4 levels of depth.
4528 "add w1, w1, #4\n"
4529 ".word 0x4f83e81c // sdot v28.4s, v0.16b, v3.4b[2]\n"
4530 ".word 0x4fa3e81e // sdot v30.4s, v0.16b, v3.4b[3]\n"
4531 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
4532 ".word 0x4f82e031 // sdot v17.4s, v1.16b, v2.4b[0]\n"
4533 ".word 0x4fa2e033 // sdot v19.4s, v1.16b, v2.4b[1]\n"
4534 // Loop termination condition.
4535 "cmp w1, w12\n"
4536 ".word 0x4f82e835 // sdot v21.4s, v1.16b, v2.4b[2]\n"
4537 ".word 0x4fa2e837 // sdot v23.4s, v1.16b, v2.4b[3]\n"
4538 "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
4539 ".word 0x4f83e039 // sdot v25.4s, v1.16b, v3.4b[0]\n"
4540 ".word 0x4fa3e03b // sdot v27.4s, v1.16b, v3.4b[1]\n"
4541 ".word 0x4f83e83d // sdot v29.4s, v1.16b, v3.4b[2]\n"
4542 ".word 0x4fa3e83f // sdot v31.4s, v1.16b, v3.4b[3]\n"
4543 "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
4544 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
4545 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
4546 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
4547 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
4548 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
4549
4550 "blt 2b\n"
4551
4552 "79:\n"
4553 // End of the inner loop on depth. Now perform the remaining
4554 // multiply-adds of the last 4 levels of depth, for which the LHS
4555 // and RHS data is already loaded.
4556
4557 ".word 0x4f83e018 // sdot v24.4s, v0.16b, v3.4b[0]\n"
4558 ".word 0x4fa3e01a // sdot v26.4s, v0.16b, v3.4b[1]\n"
4559 ".word 0x4f83e81c // sdot v28.4s, v0.16b, v3.4b[2]\n"
4560 ".word 0x4fa3e81e // sdot v30.4s, v0.16b, v3.4b[3]\n"
4561 ".word 0x4f82e031 // sdot v17.4s, v1.16b, v2.4b[0]\n"
4562 ".word 0x4fa2e033 // sdot v19.4s, v1.16b, v2.4b[1]\n"
4563 ".word 0x4f82e835 // sdot v21.4s, v1.16b, v2.4b[2]\n"
4564 ".word 0x4fa2e837 // sdot v23.4s, v1.16b, v2.4b[3]\n"
4565 ".word 0x4f83e039 // sdot v25.4s, v1.16b, v3.4b[0]\n"
4566 ".word 0x4fa3e03b // sdot v27.4s, v1.16b, v3.4b[1]\n"
4567 ".word 0x4f83e83d // sdot v29.4s, v1.16b, v3.4b[2]\n"
4568 ".word 0x4fa3e83f // sdot v31.4s, v1.16b, v3.4b[3]\n"
4569
4570 // End of accumulation. The registers v16 -- v31 contain the final
4571 // int32 accumulator values of the current 8x8 destination block.
4572 // We now have to compute the final 8-bit values from these int32
4573 // accumulators, and advance to the next 8x8 block. We intertwine
4574 // these two aspects whenever possible for optimal pipelining, both
4575 // at the data flow level (prefetch data for next block as early as
4576 // possible) and instruction pipelining level (some of the next-block
4577 // work can dual-issue with some of the final work on the current
4578 // block).
4579
4580 // Logic to advance to the next block in preparation for the next
4581 // iteration of the main loop. For now, we only want to compute
4582 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
4583 // not yet ready to update the values of row and col, as we still need
4584 // the current values for the rest of the work on the current block.
4585
4586 "cmp %w[row], w7\n" // Have we finished the last row?
4587 "bge 4f\n" // If finished last row, go to 4
4588 // Not finished last row: then advance to next row.
4589 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #3\n"
4590 "b 5f\n"
4591 "4:\n" // Finished last row...
4592 "mov %[lhs_col_ptr], x5\n" // Go back to first row
4593 // Now we need to advance to the next column. If we already
4594 // finished the last column, then in principle we are done, however
4595 // we can't just return here, as we need to allow the end work of the
4596 // current block to complete. The good news is that at this point it
4597 // doesn't matter what data we load for the next column, since
4598 // we will exit from the main loop below before actually storing
4599 // anything computed from that data.
4600 "cmp %w[col], w8\n" // Have we finished the last column?
4601 "bge 5f\n" // If yes, just carry on without updating the column pointer.
4602 // Not finished last column: then advance to next column.
4603 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #3\n"
4604 "5:\n"
4605
4606 // Set the LHS and RHS data pointers to the start of the columns just
4607 // computed.
4608 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
4609 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
4610
4611 // Load some parameters needed for the end work on current block.
4612 "mvni v8.4s, #0\n"
4613 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_PROD_ZP_DEPTH) "]\n"
4614 "ldrb w6, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
4615 "dup v9.4s, w3\n" // create prod_zp_depth_vec
4616
4617 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
4618 // Determine the channel index.
4619 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
4620 "csel w3, %w[row], %w[col], eq\n"
4621
4622 // Offset the bias pointer as needed given the current row, col.
4623 "add x5, x1, x3, lsl #2\n"
4624
4625 // If there is no bias, use no offset, just address the passed zero
4626 // data.
4627 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
4628 "csel x1, x1, x5, eq\n"
4629
4630 // Load 8 bias values.
4631 "ld1 {v14.4s}, [x1], #16\n"
4632 "ld1 {v15.4s}, [x1]\n"
4633
4634 // Now that we know what LHS and RHS data the next iteration of the
4635 // main loop will need to load, we start loading the first 32 bytes of
4636 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
4637 // in the rest of the work on the current block.
4638 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
4639 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
4640 "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
4641 "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
4642
4643 // Add to the bias values the product (depth * lhs_zero_point * rhs_zero_point),
4644 // See the term NZ1Z2 in equation (7) in https://arxiv.org/pdf/1712.05877.pdf
4645 "add v14.4s, v14.4s, v9.4s\n"
4646 "add v15.4s, v15.4s, v9.4s\n"
4647
4648 // Perform the bias-addition (per the above, we have just folded into
4649 // the bias the (depth * lhs_zero_point * rhs_zero_point) term.)
4650 // Jump based on channel dimension.
4651 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
4652 "bne 6f\n"
4653 // Case where channels are rows
4654 "add v16.4s, v16.4s, v14.4s\n"
4655 "add v17.4s, v17.4s, v15.4s\n"
4656 "add v18.4s, v18.4s, v14.4s\n"
4657 "add v19.4s, v19.4s, v15.4s\n"
4658 "add v20.4s, v20.4s, v14.4s\n"
4659 "add v21.4s, v21.4s, v15.4s\n"
4660 "add v22.4s, v22.4s, v14.4s\n"
4661 "add v23.4s, v23.4s, v15.4s\n"
4662 "add v24.4s, v24.4s, v14.4s\n"
4663 "add v25.4s, v25.4s, v15.4s\n"
4664 "add v26.4s, v26.4s, v14.4s\n"
4665 "add v27.4s, v27.4s, v15.4s\n"
4666 "add v28.4s, v28.4s, v14.4s\n"
4667 "add v29.4s, v29.4s, v15.4s\n"
4668 "add v30.4s, v30.4s, v14.4s\n"
4669 "add v31.4s, v31.4s, v15.4s\n"
4670 "b 7f\n"
4671
4672 "6:\n"
4673 // Case where channels are columns
4674 "dup v10.4s, v14.s[0]\n"
4675 "dup v11.4s, v14.s[1]\n"
4676 "dup v12.4s, v14.s[2]\n"
4677 "dup v13.4s, v14.s[3]\n"
4678 "add v16.4s, v16.4s, v10.4s\n"
4679 "add v17.4s, v17.4s, v10.4s\n"
4680 "add v18.4s, v18.4s, v11.4s\n"
4681 "add v19.4s, v19.4s, v11.4s\n"
4682 "add v20.4s, v20.4s, v12.4s\n"
4683 "add v21.4s, v21.4s, v12.4s\n"
4684 "add v22.4s, v22.4s, v13.4s\n"
4685 "add v23.4s, v23.4s, v13.4s\n"
4686 "dup v10.4s, v15.s[0]\n"
4687 "dup v11.4s, v15.s[1]\n"
4688 "dup v12.4s, v15.s[2]\n"
4689 "dup v13.4s, v15.s[3]\n"
4690 "add v24.4s, v24.4s, v10.4s\n"
4691 "add v25.4s, v25.4s, v10.4s\n"
4692 "add v26.4s, v26.4s, v11.4s\n"
4693 "add v27.4s, v27.4s, v11.4s\n"
4694 "add v28.4s, v28.4s, v12.4s\n"
4695 "add v29.4s, v29.4s, v12.4s\n"
4696 "add v30.4s, v30.4s, v13.4s\n"
4697 "add v31.4s, v31.4s, v13.4s\n"
4698 "7:\n"
4699
4700 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_RHS_SUMS) "\n"
4701 "beq 401f\n"
4702 "ldr x3, [%[params], #" RUY_STR(RUY_OFFSET_RHS_SUMS) "]\n"
4703 "add x3, x3, %x[col], lsl #2\n"
4704 "ld1 {v14.4s}, [x3], #16\n"
4705 "ld1 {v15.4s}, [x3]\n"
4706 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_ZERO_POINT) "]\n"
4707 "dup v10.4s, w5\n" // create lhs_zero_point_vec
4708 // Subtract rhs_sums * lhs_zero_point, per
4709 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
4710 "mls v16.4s, v10.4s, v14.s[0]\n"
4711 "mls v17.4s, v10.4s, v14.s[0]\n"
4712 "mls v18.4s, v10.4s, v14.s[1]\n"
4713 "mls v19.4s, v10.4s, v14.s[1]\n"
4714 "mls v20.4s, v10.4s, v14.s[2]\n"
4715 "mls v21.4s, v10.4s, v14.s[2]\n"
4716 "mls v22.4s, v10.4s, v14.s[3]\n"
4717 "mls v23.4s, v10.4s, v14.s[3]\n"
4718 "mls v24.4s, v10.4s, v15.s[0]\n"
4719 "mls v25.4s, v10.4s, v15.s[0]\n"
4720 "mls v26.4s, v10.4s, v15.s[1]\n"
4721 "mls v27.4s, v10.4s, v15.s[1]\n"
4722 "mls v28.4s, v10.4s, v15.s[2]\n"
4723 "mls v29.4s, v10.4s, v15.s[2]\n"
4724 "mls v30.4s, v10.4s, v15.s[3]\n"
4725 "mls v31.4s, v10.4s, v15.s[3]\n"
4726 "401:\n"
4727
4728 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_LHS_SUMS) "\n"
4729 "beq 402f\n"
4730 "ldr x2, [%[params], #" RUY_STR(RUY_OFFSET_LHS_SUMS) "]\n"
4731 "add x2, x2, %x[row], lsl #2\n"
4732 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_RHS_ZERO_POINT) "]\n"
4733 // Load 4 lhs_sums values.
4734 "ld1 {v11.4s}, [x2], #16\n"
4735 "ld1 {v12.4s}, [x2]\n"
4736 "ins v13.s[1], w5\n" // rhs_zero_point
4737 // Compute lhs_sums * rhs_zero_point.
4738 "mul v11.4s, v11.4s, v13.s[1]\n"
4739 "mul v12.4s, v12.4s, v13.s[1]\n"
4740 // Subtract lhs_sums * rhs_zero_point, per
4741 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
4742 "sub v16.4s, v16.4s, v11.4s\n"
4743 "sub v17.4s, v17.4s, v12.4s\n"
4744 "sub v18.4s, v18.4s, v11.4s\n"
4745 "sub v19.4s, v19.4s, v12.4s\n"
4746 "sub v20.4s, v20.4s, v11.4s\n"
4747 "sub v21.4s, v21.4s, v12.4s\n"
4748 "sub v22.4s, v22.4s, v11.4s\n"
4749 "sub v23.4s, v23.4s, v12.4s\n"
4750 "sub v24.4s, v24.4s, v11.4s\n"
4751 "sub v25.4s, v25.4s, v12.4s\n"
4752 "sub v26.4s, v26.4s, v11.4s\n"
4753 "sub v27.4s, v27.4s, v12.4s\n"
4754 "sub v28.4s, v28.4s, v11.4s\n"
4755 "sub v29.4s, v29.4s, v12.4s\n"
4756 "sub v30.4s, v30.4s, v11.4s\n"
4757 "sub v31.4s, v31.4s, v12.4s\n"
4758
4759 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT32) "\n"
4760 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT32) "f\n"
4761
4762 "402:\n"
4763
4764 // At this point we have computed the final int32 values. Now we
4765 // start down-quantizing them to obtain the final 8bit values from them.
4766
4767 // As part of this down-quantization, our int32 values will be
4768 // multiplied by a multiplier that has a fixed-point component and an
4769 // exponent component.
4770
4771 //Load the exponent part of the multiplier.
4772 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_EXPONENT) "]\n"
4773 // Determine the channel index.
4774 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
4775 "csel w3, %w[row], %w[col], eq\n"
4776 // Compute the multiplier_exponent pointer
4777 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
4778 "add x5, x1, x3, lsl #2\n"
4779 "csel x1, x1, x5, eq\n"
4780 // Load multiplier_exponent
4781 "ldr q9, [x1]\n"
4782 "ldr q10, [x1, #16]\n"
4783 // Separate positive and negative exponents
4784 "smin v11.4s, v8.4s, v9.4s\n"
4785 "smin v12.4s, v8.4s, v10.4s\n"
4786 "sub v9.4s, v9.4s, v11.4s\n"
4787 "sub v10.4s, v10.4s, v12.4s\n"
4788
4789 // Compute the multiplier_fixedpoint pointer
4790 "ldr x4, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_FIXEDPOINT) "]\n"
4791 "add x5, x4, x3, lsl #2\n"
4792 "csel x4, x4, x5, eq\n"
4793 // Load multiplier_fixedpoint
4794 "ldr q14, [x4]\n"
4795 "ldr q15, [x4, #16]\n"
4796
4797 // Jump based on channel dimension.
4798 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
4799 "bne 8f\n"
4800 // Case where channels are rows
4801
4802 // Apply the positive exponent part of the multiplier.
4803 "sshl v16.4s, v16.4s, v9.4s\n"
4804 "sshl v17.4s, v17.4s, v10.4s\n"
4805 "sshl v18.4s, v18.4s, v9.4s\n"
4806 "sshl v19.4s, v19.4s, v10.4s\n"
4807 "sshl v20.4s, v20.4s, v9.4s\n"
4808 "sshl v21.4s, v21.4s, v10.4s\n"
4809 "sshl v22.4s, v22.4s, v9.4s\n"
4810 "sshl v23.4s, v23.4s, v10.4s\n"
4811 "sshl v24.4s, v24.4s, v9.4s\n"
4812 "sshl v25.4s, v25.4s, v10.4s\n"
4813 "sshl v26.4s, v26.4s, v9.4s\n"
4814 "sshl v27.4s, v27.4s, v10.4s\n"
4815 "sshl v28.4s, v28.4s, v9.4s\n"
4816 "sshl v29.4s, v29.4s, v10.4s\n"
4817 "sshl v30.4s, v30.4s, v9.4s\n"
4818 "sshl v31.4s, v31.4s, v10.4s\n"
4819 "10:\n"
4820
4821 // Apply the fixed-point part of the multiplier.
4822 "sqdmulh v16.4s, v16.4s, v14.4s\n"
4823 "sqdmulh v17.4s, v17.4s, v15.4s\n"
4824 "sqdmulh v18.4s, v18.4s, v14.4s\n"
4825 "sqdmulh v19.4s, v19.4s, v15.4s\n"
4826 "sqdmulh v20.4s, v20.4s, v14.4s\n"
4827 "sqdmulh v21.4s, v21.4s, v15.4s\n"
4828 "sqdmulh v22.4s, v22.4s, v14.4s\n"
4829 "sqdmulh v23.4s, v23.4s, v15.4s\n"
4830 "sqdmulh v24.4s, v24.4s, v14.4s\n"
4831 "sqdmulh v25.4s, v25.4s, v15.4s\n"
4832 "sqdmulh v26.4s, v26.4s, v14.4s\n"
4833 "sqdmulh v27.4s, v27.4s, v15.4s\n"
4834 "sqdmulh v28.4s, v28.4s, v14.4s\n"
4835 "sqdmulh v29.4s, v29.4s, v15.4s\n"
4836 "sqdmulh v30.4s, v30.4s, v14.4s\n"
4837 "sqdmulh v31.4s, v31.4s, v15.4s\n"
4838
4839 // Apply the negative exponent part of the multiplier.
4840 "srshl v16.4s, v16.4s, v11.4s\n"
4841 "srshl v17.4s, v17.4s, v12.4s\n"
4842 "srshl v18.4s, v18.4s, v11.4s\n"
4843 "srshl v19.4s, v19.4s, v12.4s\n"
4844 "srshl v20.4s, v20.4s, v11.4s\n"
4845 "srshl v21.4s, v21.4s, v12.4s\n"
4846 "srshl v22.4s, v22.4s, v11.4s\n"
4847 "srshl v23.4s, v23.4s, v12.4s\n"
4848 "srshl v24.4s, v24.4s, v11.4s\n"
4849 "srshl v25.4s, v25.4s, v12.4s\n"
4850 "srshl v26.4s, v26.4s, v11.4s\n"
4851 "srshl v27.4s, v27.4s, v12.4s\n"
4852 "srshl v28.4s, v28.4s, v11.4s\n"
4853 "srshl v29.4s, v29.4s, v12.4s\n"
4854 "srshl v30.4s, v30.4s, v11.4s\n"
4855 "srshl v31.4s, v31.4s, v12.4s\n"
4856 "b 9f\n"
4857
4858 "8:\n"
4859 // Case where channels are columns
4860
4861 // Apply the positive exponent part of the multiplier.
4862 "dup v4.4s, v9.s[0]\n"
4863 "dup v5.4s, v9.s[1]\n"
4864 "dup v6.4s, v9.s[2]\n"
4865 "dup v7.4s, v9.s[3]\n"
4866 "sshl v16.4s, v16.4s, v4.4s\n"
4867 "sshl v17.4s, v17.4s, v4.4s\n"
4868 "sshl v18.4s, v18.4s, v5.4s\n"
4869 "sshl v19.4s, v19.4s, v5.4s\n"
4870 "sshl v20.4s, v20.4s, v6.4s\n"
4871 "sshl v21.4s, v21.4s, v6.4s\n"
4872 "sshl v22.4s, v22.4s, v7.4s\n"
4873 "sshl v23.4s, v23.4s, v7.4s\n"
4874 "dup v4.4s, v10.s[0]\n"
4875 "dup v5.4s, v10.s[1]\n"
4876 "dup v6.4s, v10.s[2]\n"
4877 "dup v7.4s, v10.s[3]\n"
4878 "sshl v24.4s, v24.4s, v4.4s\n"
4879 "sshl v25.4s, v25.4s, v4.4s\n"
4880 "sshl v26.4s, v26.4s, v5.4s\n"
4881 "sshl v27.4s, v27.4s, v5.4s\n"
4882 "sshl v28.4s, v28.4s, v6.4s\n"
4883 "sshl v29.4s, v29.4s, v6.4s\n"
4884 "sshl v30.4s, v30.4s, v7.4s\n"
4885 "sshl v31.4s, v31.4s, v7.4s\n"
4886 "11:\n"
4887
4888 // Apply the fixed-point part of the multiplier.
4889 "sqdmulh v16.4s, v16.4s, v14.s[0]\n"
4890 "sqdmulh v17.4s, v17.4s, v14.s[0]\n"
4891 "sqdmulh v18.4s, v18.4s, v14.s[1]\n"
4892 "sqdmulh v19.4s, v19.4s, v14.s[1]\n"
4893 "sqdmulh v20.4s, v20.4s, v14.s[2]\n"
4894 "sqdmulh v21.4s, v21.4s, v14.s[2]\n"
4895 "sqdmulh v22.4s, v22.4s, v14.s[3]\n"
4896 "sqdmulh v23.4s, v23.4s, v14.s[3]\n"
4897 "sqdmulh v24.4s, v24.4s, v15.s[0]\n"
4898 "sqdmulh v25.4s, v25.4s, v15.s[0]\n"
4899 "sqdmulh v26.4s, v26.4s, v15.s[1]\n"
4900 "sqdmulh v27.4s, v27.4s, v15.s[1]\n"
4901 "sqdmulh v28.4s, v28.4s, v15.s[2]\n"
4902 "sqdmulh v29.4s, v29.4s, v15.s[2]\n"
4903 "sqdmulh v30.4s, v30.4s, v15.s[3]\n"
4904 "sqdmulh v31.4s, v31.4s, v15.s[3]\n"
4905
4906 // Apply the negative exponent part of the multiplier.
4907 "dup v4.4s, v11.s[0]\n"
4908 "dup v5.4s, v11.s[1]\n"
4909 "dup v6.4s, v11.s[2]\n"
4910 "dup v7.4s, v11.s[3]\n"
4911 "srshl v16.4s, v16.4s, v4.4s\n"
4912 "srshl v17.4s, v17.4s, v4.4s\n"
4913 "srshl v18.4s, v18.4s, v5.4s\n"
4914 "srshl v19.4s, v19.4s, v5.4s\n"
4915 "srshl v20.4s, v20.4s, v6.4s\n"
4916 "srshl v21.4s, v21.4s, v6.4s\n"
4917 "srshl v22.4s, v22.4s, v7.4s\n"
4918 "srshl v23.4s, v23.4s, v7.4s\n"
4919 "dup v4.4s, v12.s[0]\n"
4920 "dup v5.4s, v12.s[1]\n"
4921 "dup v6.4s, v12.s[2]\n"
4922 "dup v7.4s, v12.s[3]\n"
4923 "srshl v24.4s, v24.4s, v4.4s\n"
4924 "srshl v25.4s, v25.4s, v4.4s\n"
4925 "srshl v26.4s, v26.4s, v5.4s\n"
4926 "srshl v27.4s, v27.4s, v5.4s\n"
4927 "srshl v28.4s, v28.4s, v6.4s\n"
4928 "srshl v29.4s, v29.4s, v6.4s\n"
4929 "srshl v30.4s, v30.4s, v7.4s\n"
4930 "srshl v31.4s, v31.4s, v7.4s\n"
4931 "9:\n"
4932
4933 "ldr w4, [%[params], #" RUY_STR(RUY_OFFSET_DST_ZERO_POINT) "]\n"
4934 "ins v13.h[4], w4\n" // dst_zero_point
4935
4936 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT16) "\n"
4937 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT16) "f\n"
4938 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT8) "\n"
4939 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT8) "f\n"
4940
4941 RUY_STR(RUY_ASM_LABEL_STORE_UINT8) ":\n"
4942
4943 // Cast-and-saturate from int32 to int16
4944 "sqxtn v16.4h, v16.4s\n"
4945 "sqxtn2 v16.8h, v17.4s\n"
4946 "sqxtn v17.4h, v18.4s\n"
4947 "sqxtn2 v17.8h, v19.4s\n"
4948 "sqxtn v18.4h, v20.4s\n"
4949 "sqxtn2 v18.8h, v21.4s\n"
4950 "sqxtn v19.4h, v22.4s\n"
4951 "sqxtn2 v19.8h, v23.4s\n"
4952 "sqxtn v20.4h, v24.4s\n"
4953 "sqxtn2 v20.8h, v25.4s\n"
4954 "sqxtn v21.4h, v26.4s\n"
4955 "sqxtn2 v21.8h, v27.4s\n"
4956 "sqxtn v22.4h, v28.4s\n"
4957 "sqxtn2 v22.8h, v29.4s\n"
4958 "sqxtn v23.4h, v30.4s\n"
4959 "sqxtn2 v23.8h, v31.4s\n"
4960
4961 // At this point, v24 -- v31 aren't used anymore for the current block,
4962 // so we can start clearing these accumulators for the next block
4963 // (next iteration of the main loop).
4964 RUY_MAKE_ZERO(v24)
4965 RUY_MAKE_ZERO(v25)
4966 RUY_MAKE_ZERO(v26)
4967 RUY_MAKE_ZERO(v27)
4968 RUY_MAKE_ZERO(v28)
4969 RUY_MAKE_ZERO(v29)
4970 RUY_MAKE_ZERO(v30)
4971 RUY_MAKE_ZERO(v31)
4972
4973 // Add the destination zero point
4974 "dup v14.8h, v13.h[4]\n"
4975 "sqadd v16.8h, v16.8h, v14.8h\n"
4976 "sqadd v17.8h, v17.8h, v14.8h\n"
4977 "sqadd v18.8h, v18.8h, v14.8h\n"
4978 "sqadd v19.8h, v19.8h, v14.8h\n"
4979 "sqadd v20.8h, v20.8h, v14.8h\n"
4980 "sqadd v21.8h, v21.8h, v14.8h\n"
4981 "sqadd v22.8h, v22.8h, v14.8h\n"
4982 "sqadd v23.8h, v23.8h, v14.8h\n"
4983
4984 // Cast-and-saturate from int16 to uint8
4985 "sqxtun v16.8b, v16.8h\n"
4986 "sqxtun2 v16.16b, v17.8h\n"
4987 "sqxtun v17.8b, v18.8h\n"
4988 "sqxtun2 v17.16b, v19.8h\n"
4989 "sqxtun v18.8b, v20.8h\n"
4990 "sqxtun2 v18.16b, v21.8h\n"
4991 "sqxtun v19.8b, v22.8h\n"
4992 "sqxtun2 v19.16b, v23.8h\n"
4993
4994 // Load the clamp_min, clamp_max bounds
4995 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
4996 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
4997 "dup v14.16b, w2\n" // clamp_min
4998 "dup v15.16b, w3\n" // clamp_max
4999
5000 // Apply the clamp_min bound
5001 "umax v16.16b, v16.16b, v14.16b\n"
5002 "umax v17.16b, v17.16b, v14.16b\n"
5003 "umax v18.16b, v18.16b, v14.16b\n"
5004 "umax v19.16b, v19.16b, v14.16b\n"
5005
5006 // Apply the clamp_max bound
5007 "umin v16.16b, v16.16b, v15.16b\n"
5008 "umin v17.16b, v17.16b, v15.16b\n"
5009 "umin v18.16b, v18.16b, v15.16b\n"
5010 "umin v19.16b, v19.16b, v15.16b\n"
5011
5012 // Make it so that all of the final 8bit values are stored in the
5013 // first 64bits of 128bit NEON registers, so they can be stored
5014 // by 64bit st1 store instructions with byte alignment.
5015 "dup d20, v16.d[1]\n"
5016 "dup d21, v17.d[1]\n"
5017 "dup d22, v18.d[1]\n"
5018 "dup d23, v19.d[1]\n"
5019
5020 // Compute how much of the 8x8 block of destination 8bit values that
5021 // we have computed, fit in the destination matrix. Typically, all of
5022 // it fits, but when the destination matrix shape is not a multiple
5023 // of 8x8, there are some 8x8 blocks along the boundaries that do
5024 // not fit entirely.
5025 "sub w1, %w[dst_rows], %w[row]\n"
5026 "sub w2, %w[dst_cols], %w[col]\n"
5027 "mov w3, #8\n"
5028 "cmp w1, #8\n"
5029 // Compute w1 = how many rows of the 8x8 block fit
5030 "csel w1, w1, w3, le\n"
5031 "cmp w2, #8\n"
5032 // Compute w2 = how many cols of the 8x8 block fit
5033 "csel w2, w2, w3, le\n"
5034
5035 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
5036 "cmp w1, w3\n"
5037 "ccmp w2, w3, 0, eq\n"
5038 // Yes, all of the 8x8 block fits, go to fast path.
5039 "beq 30f\n"
5040 // Not all of the 8x8 block fits.
5041 // Set (x3 address, x4 stride) to write to dst_tmp_buf
5042 "mov x3, %[dst_tmp_buf]\n"
5043 "mov x4, #8\n"
5044 "b 31f\n"
5045 "30:\n"
5046 // Yes, all of the 8x8 block fits.
5047 // Set (x3 address, x4 stride) to write directly to destination matrix.
5048 "mov x3, %[dst_ptr]\n"
5049 "mov x4, x11\n"
5050 "31:\n"
5051
5052 // Write our 8bit values to the destination described by
5053 // (x3 address, x4 stride).
5054 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5055 "st1 {v16.8b}, [x3], x4\n"
5056 RUY_MAKE_ZERO(v16)
5057 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5058 "st1 {v20.8b}, [x3], x4\n"
5059 RUY_MAKE_ZERO(v20)
5060 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5061 "st1 {v17.8b}, [x3], x4\n"
5062 RUY_MAKE_ZERO(v17)
5063 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5064 "st1 {v21.8b}, [x3], x4\n"
5065 RUY_MAKE_ZERO(v21)
5066 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5067 "st1 {v18.8b}, [x3], x4\n"
5068 RUY_MAKE_ZERO(v18)
5069 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5070 "st1 {v22.8b}, [x3], x4\n"
5071 RUY_MAKE_ZERO(v22)
5072 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5073 "st1 {v19.8b}, [x3], x4\n"
5074 RUY_MAKE_ZERO(v19)
5075 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5076 "st1 {v23.8b}, [x3], x4\n"
5077 RUY_MAKE_ZERO(v23)
5078
5079 // For the next block: perform the first few multiply-adds on the data
5080 // that we have already loaded.
5081 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
5082 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
5083 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
5084 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
5085
5086 // If all of the 8x8 block fits, we just finished writing it to the
5087 // destination, so we skip the next part.
5088 "beq 41f\n"
5089 // Not all of the 8x8 block fits in the destination matrix. We just
5090 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
5091 // it to copy into the destination matrix the part that fits.
5092 "mov x3, %[dst_tmp_buf]\n"
5093 "mov x4, %[dst_ptr]\n"
5094 "mov w6, #0\n"
5095 "50:\n"
5096 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5097 "mov w5, #0\n"
5098 "51:\n"
5099 "ldrb w7, [x3, w5, uxtw]\n"
5100 "strb w7, [x4, w5, uxtw]\n"
5101 "add w5, w5, #1\n"
5102 "cmp w5, w1\n"
5103 "blt 51b\n"
5104 "add w6, w6, #1\n"
5105 "add x3, x3, #8\n"
5106 "add x4, x4, x11\n"
5107 "cmp w6, w2\n"
5108 "blt 50b\n"
5109 "41:\n"
5110 "add %[dst_ptr], %[dst_ptr], #8\n"
5111 // At this point we have completely finished writing values to the
5112 // destination matrix for the current block.
5113
5114 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
5115
5116 RUY_STR(RUY_ASM_LABEL_STORE_INT8) ":\n"
5117
5118 // Cast-and-saturate from int32 to int16
5119 "sqxtn v16.4h, v16.4s\n"
5120 "sqxtn2 v16.8h, v17.4s\n"
5121 "sqxtn v17.4h, v18.4s\n"
5122 "sqxtn2 v17.8h, v19.4s\n"
5123 "sqxtn v18.4h, v20.4s\n"
5124 "sqxtn2 v18.8h, v21.4s\n"
5125 "sqxtn v19.4h, v22.4s\n"
5126 "sqxtn2 v19.8h, v23.4s\n"
5127 "sqxtn v20.4h, v24.4s\n"
5128 "sqxtn2 v20.8h, v25.4s\n"
5129 "sqxtn v21.4h, v26.4s\n"
5130 "sqxtn2 v21.8h, v27.4s\n"
5131 "sqxtn v22.4h, v28.4s\n"
5132 "sqxtn2 v22.8h, v29.4s\n"
5133 "sqxtn v23.4h, v30.4s\n"
5134 "sqxtn2 v23.8h, v31.4s\n"
5135
5136 // At this point, v24 -- v31 aren't used anymore for the current block,
5137 // so we can start clearing these accumulators for the next block
5138 // (next iteration of the main loop).
5139 RUY_MAKE_ZERO(v24)
5140 RUY_MAKE_ZERO(v25)
5141 RUY_MAKE_ZERO(v26)
5142 RUY_MAKE_ZERO(v27)
5143 RUY_MAKE_ZERO(v28)
5144 RUY_MAKE_ZERO(v29)
5145 RUY_MAKE_ZERO(v30)
5146 RUY_MAKE_ZERO(v31)
5147
5148 // Add the destination zero point
5149 "dup v14.8h, v13.h[4]\n"
5150 "sqadd v16.8h, v16.8h, v14.8h\n"
5151 "sqadd v17.8h, v17.8h, v14.8h\n"
5152 "sqadd v18.8h, v18.8h, v14.8h\n"
5153 "sqadd v19.8h, v19.8h, v14.8h\n"
5154 "sqadd v20.8h, v20.8h, v14.8h\n"
5155 "sqadd v21.8h, v21.8h, v14.8h\n"
5156 "sqadd v22.8h, v22.8h, v14.8h\n"
5157 "sqadd v23.8h, v23.8h, v14.8h\n"
5158
5159 // Cast-and-saturate from int16 to uint8
5160 "sqxtn v16.8b, v16.8h\n"
5161 "sqxtn2 v16.16b, v17.8h\n"
5162 "sqxtn v17.8b, v18.8h\n"
5163 "sqxtn2 v17.16b, v19.8h\n"
5164 "sqxtn v18.8b, v20.8h\n"
5165 "sqxtn2 v18.16b, v21.8h\n"
5166 "sqxtn v19.8b, v22.8h\n"
5167 "sqxtn2 v19.16b, v23.8h\n"
5168
5169 // Load the clamp_min, clamp_max bounds
5170 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
5171 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
5172 "dup v14.16b, w2\n" // clamp_min
5173 "dup v15.16b, w3\n" // clamp_max
5174
5175 // Apply the clamp_min bound
5176 "smax v16.16b, v16.16b, v14.16b\n"
5177 "smax v17.16b, v17.16b, v14.16b\n"
5178 "smax v18.16b, v18.16b, v14.16b\n"
5179 "smax v19.16b, v19.16b, v14.16b\n"
5180
5181 // Apply the clamp_max bound
5182 "smin v16.16b, v16.16b, v15.16b\n"
5183 "smin v17.16b, v17.16b, v15.16b\n"
5184 "smin v18.16b, v18.16b, v15.16b\n"
5185 "smin v19.16b, v19.16b, v15.16b\n"
5186
5187 // Make it so that all of the final 8bit values are stored in the
5188 // first 64bits of 128bit NEON registers, so they can be stored
5189 // by 64bit st1 store instructions with byte alignment.
5190 "dup d20, v16.d[1]\n"
5191 "dup d21, v17.d[1]\n"
5192 "dup d22, v18.d[1]\n"
5193 "dup d23, v19.d[1]\n"
5194
5195 // Compute how much of the 8x8 block of destination 8bit values that
5196 // we have computed, fit in the destination matrix. Typically, all of
5197 // it fits, but when the destination matrix shape is not a multiple
5198 // of 8x8, there are some 8x8 blocks along the boundaries that do
5199 // not fit entirely.
5200 "sub w1, %w[dst_rows], %w[row]\n"
5201 "sub w2, %w[dst_cols], %w[col]\n"
5202 "mov w3, #8\n"
5203 "cmp w1, #8\n"
5204 // Compute w1 = how many rows of the 8x8 block fit
5205 "csel w1, w1, w3, le\n"
5206 "cmp w2, #8\n"
5207 // Compute w2 = how many cols of the 8x8 block fit
5208 "csel w2, w2, w3, le\n"
5209
5210 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
5211 "cmp w1, w3\n"
5212 "ccmp w2, w3, 0, eq\n"
5213 // Yes, all of the 8x8 block fits, go to fast path.
5214 "beq 130f\n"
5215 // Not all of the 8x8 block fits.
5216 // Set (x3 address, x4 stride) to write to dst_tmp_buf
5217 "mov x3, %[dst_tmp_buf]\n"
5218 "mov x4, #8\n"
5219 "b 131f\n"
5220 "130:\n"
5221 // Yes, all of the 8x8 block fits.
5222 // Set (x3 address, x4 stride) to write directly to destination matrix.
5223 "mov x3, %[dst_ptr]\n"
5224 "mov x4, x11\n"
5225 "131:\n"
5226
5227 // Write our 8bit values to the destination described by
5228 // (x3 address, x4 stride).
5229 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5230 "st1 {v16.8b}, [x3], x4\n"
5231 RUY_MAKE_ZERO(v16)
5232 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5233 "st1 {v20.8b}, [x3], x4\n"
5234 RUY_MAKE_ZERO(v20)
5235 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5236 "st1 {v17.8b}, [x3], x4\n"
5237 RUY_MAKE_ZERO(v17)
5238 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5239 "st1 {v21.8b}, [x3], x4\n"
5240 RUY_MAKE_ZERO(v21)
5241 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5242 "st1 {v18.8b}, [x3], x4\n"
5243 RUY_MAKE_ZERO(v18)
5244 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5245 "st1 {v22.8b}, [x3], x4\n"
5246 RUY_MAKE_ZERO(v22)
5247 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5248 "st1 {v19.8b}, [x3], x4\n"
5249 RUY_MAKE_ZERO(v19)
5250 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5251 "st1 {v23.8b}, [x3], x4\n"
5252 RUY_MAKE_ZERO(v23)
5253
5254 // For the next block: perform the first few multiply-adds on the data
5255 // that we have already loaded.
5256 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
5257 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
5258 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
5259 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
5260
5261 // If all of the 8x8 block fits, we just finished writing it to the
5262 // destination, so we skip the next part.
5263 "beq 141f\n"
5264 // Not all of the 8x8 block fits in the destination matrix. We just
5265 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
5266 // it to copy into the destination matrix the part that fits.
5267 "mov x3, %[dst_tmp_buf]\n"
5268 "mov x4, %[dst_ptr]\n"
5269 "mov w6, #0\n"
5270 "150:\n"
5271 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5272 "mov w5, #0\n"
5273 "151:\n"
5274 "ldrb w7, [x3, w5, uxtw]\n"
5275 "strb w7, [x4, w5, uxtw]\n"
5276 "add w5, w5, #1\n"
5277 "cmp w5, w1\n"
5278 "blt 151b\n"
5279 "add w6, w6, #1\n"
5280 "add x3, x3, #8\n"
5281 "add x4, x4, x11\n"
5282 "cmp w6, w2\n"
5283 "blt 150b\n"
5284 "141:\n"
5285 "add %[dst_ptr], %[dst_ptr], #8\n"
5286 // At this point we have completely finished writing values to the
5287 // destination matrix for the current block.
5288
5289 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
5290
5291 RUY_STR(RUY_ASM_LABEL_STORE_INT16) ":\n"
5292
5293 // Add the destination zero point
5294 "dup v14.8h, v13.h[4]\n"
5295 "saddw v16.4s, v16.4s, v14.4h\n"
5296 "saddw v17.4s, v17.4s, v14.4h\n"
5297 "saddw v18.4s, v18.4s, v14.4h\n"
5298 "saddw v19.4s, v19.4s, v14.4h\n"
5299 "saddw v20.4s, v20.4s, v14.4h\n"
5300 "saddw v21.4s, v21.4s, v14.4h\n"
5301 "saddw v22.4s, v22.4s, v14.4h\n"
5302 "saddw v23.4s, v23.4s, v14.4h\n"
5303 "saddw v24.4s, v24.4s, v14.4h\n"
5304 "saddw v25.4s, v25.4s, v14.4h\n"
5305 "saddw v26.4s, v26.4s, v14.4h\n"
5306 "saddw v27.4s, v27.4s, v14.4h\n"
5307 "saddw v28.4s, v28.4s, v14.4h\n"
5308 "saddw v29.4s, v29.4s, v14.4h\n"
5309 "saddw v30.4s, v30.4s, v14.4h\n"
5310 "saddw v31.4s, v31.4s, v14.4h\n"
5311
5312 // Cast-and-saturate from int32 to int16
5313 "sqxtn v16.4h, v16.4s\n"
5314 "sqxtn2 v16.8h, v17.4s\n"
5315 "sqxtn v17.4h, v18.4s\n"
5316 "sqxtn2 v17.8h, v19.4s\n"
5317 "sqxtn v18.4h, v20.4s\n"
5318 "sqxtn2 v18.8h, v21.4s\n"
5319 "sqxtn v19.4h, v22.4s\n"
5320 "sqxtn2 v19.8h, v23.4s\n"
5321 "sqxtn v20.4h, v24.4s\n"
5322 "sqxtn2 v20.8h, v25.4s\n"
5323 "sqxtn v21.4h, v26.4s\n"
5324 "sqxtn2 v21.8h, v27.4s\n"
5325 "sqxtn v22.4h, v28.4s\n"
5326 "sqxtn2 v22.8h, v29.4s\n"
5327 "sqxtn v23.4h, v30.4s\n"
5328 "sqxtn2 v23.8h, v31.4s\n"
5329
5330 // At this point, v24 -- v31 aren't used anymore for the current block,
5331 // so we can start clearing these accumulators for the next block
5332 // (next iteration of the main loop).
5333 RUY_MAKE_ZERO(v24)
5334 RUY_MAKE_ZERO(v25)
5335 RUY_MAKE_ZERO(v26)
5336 RUY_MAKE_ZERO(v27)
5337 RUY_MAKE_ZERO(v28)
5338 RUY_MAKE_ZERO(v29)
5339 RUY_MAKE_ZERO(v30)
5340 RUY_MAKE_ZERO(v31)
5341
5342 // Load the clamp_min, clamp_max bounds
5343 "ldrsh w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
5344 "ldrsh w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
5345 "dup v14.8h, w2\n" // clamp_min
5346 "dup v15.8h, w3\n" // clamp_max
5347
5348 // Apply the clamp_min bound
5349 "smax v16.8h, v16.8h, v14.8h\n"
5350 "smax v17.8h, v17.8h, v14.8h\n"
5351 "smax v18.8h, v18.8h, v14.8h\n"
5352 "smax v19.8h, v19.8h, v14.8h\n"
5353 "smax v20.8h, v20.8h, v14.8h\n"
5354 "smax v21.8h, v21.8h, v14.8h\n"
5355 "smax v22.8h, v22.8h, v14.8h\n"
5356 "smax v23.8h, v23.8h, v14.8h\n"
5357 // Apply the clamp_max bound
5358 "smin v16.8h, v16.8h, v15.8h\n"
5359 "smin v17.8h, v17.8h, v15.8h\n"
5360 "smin v18.8h, v18.8h, v15.8h\n"
5361 "smin v19.8h, v19.8h, v15.8h\n"
5362 "smin v20.8h, v20.8h, v15.8h\n"
5363 "smin v21.8h, v21.8h, v15.8h\n"
5364 "smin v22.8h, v22.8h, v15.8h\n"
5365 "smin v23.8h, v23.8h, v15.8h\n"
5366
5367 // Compute how much of the 8x8 block of destination 16bit values that
5368 // we have computed, fit in the destination matrix. Typically, all of
5369 // it fits, but when the destination matrix shape is not a multiple
5370 // of 8x8, there are some 8x8 blocks along the boundaries that do
5371 // not fit entirely.
5372 "sub w1, %w[dst_rows], %w[row]\n"
5373 "sub w2, %w[dst_cols], %w[col]\n"
5374 "mov w3, #8\n"
5375 "cmp w1, #8\n"
5376 // Compute w1 = how many rows of the 8x8 block fit
5377 "csel w1, w1, w3, le\n"
5378 "cmp w2, #8\n"
5379 // Compute w1 = how many rows of the 8x8 block fit
5380 "csel w2, w2, w3, le\n"
5381
5382 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
5383 "cmp w1, w3\n"
5384 "ccmp w2, w3, 0, eq\n"
5385 // Yes, all of the 8x8 block fits, go to fast path.
5386 "beq 230f\n"
5387 // Not all of the 8x8 block fits.
5388 // Set (x3 address, x4 stride) to write to dst_tmp_buf
5389 "mov x3, %[dst_tmp_buf]\n"
5390 "mov x4, #16\n"
5391 "b 231f\n"
5392 "230:\n"
5393 // Yes, all of the 8x8 block fits.
5394 // Set (x3 address, x4 stride) to write directly to destination matrix.
5395 "mov x3, %[dst_ptr]\n"
5396 "mov x4, x11\n"
5397 "231:\n"
5398
5399 // Write our 16bit values to the destination described by
5400 // (x3 address, x4 stride).
5401 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5402 "st1 {v16.8h}, [x3], x4\n"
5403 RUY_MAKE_ZERO(v16)
5404 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5405 "st1 {v17.8h}, [x3], x4\n"
5406 RUY_MAKE_ZERO(v17)
5407 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5408 "st1 {v18.8h}, [x3], x4\n"
5409 RUY_MAKE_ZERO(v18)
5410 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5411 "st1 {v19.8h}, [x3], x4\n"
5412 RUY_MAKE_ZERO(v19)
5413 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5414 "st1 {v20.8h}, [x3], x4\n"
5415 RUY_MAKE_ZERO(v20)
5416 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5417 "st1 {v21.8h}, [x3], x4\n"
5418 RUY_MAKE_ZERO(v21)
5419 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5420 "st1 {v22.8h}, [x3], x4\n"
5421 RUY_MAKE_ZERO(v22)
5422 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
5423 "st1 {v23.8h}, [x3], x4\n"
5424 RUY_MAKE_ZERO(v23)
5425
5426 // For the next block: perform the first few multiply-adds on the data
5427 // that we have already loaded.
5428 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
5429 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
5430 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
5431 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
5432
5433 // If all of the 8x8 block fits, we just finished writing it to the
5434 // destination, so we skip the next part.
5435 "beq 241f\n"
5436 // Not all of the 8x8 block fits in the destination matrix. We just
5437 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
5438 // it to copy into the destination matrix the part that fits.
5439 "mov x3, %[dst_tmp_buf]\n"
5440 "mov x4, %[dst_ptr]\n"
5441 "mov w6, #0\n"
5442 "250:\n"
5443 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5444 "mov w5, #0\n"
5445 "251:\n"
5446 "ldrsh w7, [x3, x5, lsl #1]\n"
5447 "strh w7, [x4, x5, lsl #1]\n"
5448 "add w5, w5, #1\n"
5449 "cmp w5, w1\n"
5450 "blt 251b\n"
5451 "add w6, w6, #1\n"
5452 "add x3, x3, #16\n"
5453 "add x4, x4, x11\n"
5454 "cmp w6, w2\n"
5455 "blt 250b\n"
5456 "241:\n"
5457 "add %[dst_ptr], %[dst_ptr], #16\n"
5458 // At this point we have completely finished writing values to the
5459 // destination matrix for the current block.
5460
5461 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
5462
5463 RUY_STR(RUY_ASM_LABEL_STORE_INT32) ":\n"
5464
5465 // Since the store type is the same as the accum type, no need for
5466 // downcast. There's also no need for clamp by min/max.
5467
5468 // Compute how much of the 8x8 block of destination 32it values that
5469 // we have computed, fit in the destination matrix. Typically, all of
5470 // it fits, but when the destination matrix shape is not a multiple
5471 // of 8x8, there are some 8x8 blocks along the boundaries that do
5472 // not fit entirely.
5473 "sub w1, %w[dst_rows], %w[row]\n"
5474 "sub w2, %w[dst_cols], %w[col]\n"
5475 "mov w3, #8\n"
5476 "cmp w1, #8\n"
5477 // Compute w1 = how many rows of the 8x8 block fit
5478 "csel w1, w1, w3, le\n"
5479 "cmp w2, #8\n"
5480 // Compute w1 = how many rows of the 8x8 block fit
5481 "csel w2, w2, w3, le\n"
5482
5483 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
5484 "cmp w1, w3\n"
5485 "ccmp w2, w3, 0, eq\n"
5486 // Yes, all of the 8x8 block fits, go to fast path.
5487 "beq 330f\n"
5488 // Not all of the 8x8 block fits.
5489 // Write to dst_tmp_buf
5490 "mov x3, %[dst_tmp_buf]\n"
5491 "st1 {v16.4s}, [x3], #16\n"
5492 RUY_MAKE_ZERO(v16)
5493 "st1 {v17.4s}, [x3], #16\n"
5494 RUY_MAKE_ZERO(v17)
5495 "st1 {v18.4s}, [x3], #16\n"
5496 RUY_MAKE_ZERO(v18)
5497 "st1 {v19.4s}, [x3], #16\n"
5498 RUY_MAKE_ZERO(v19)
5499 "st1 {v20.4s}, [x3], #16\n"
5500 RUY_MAKE_ZERO(v20)
5501 "st1 {v21.4s}, [x3], #16\n"
5502 RUY_MAKE_ZERO(v21)
5503 "st1 {v22.4s}, [x3], #16\n"
5504 RUY_MAKE_ZERO(v22)
5505 "st1 {v23.4s}, [x3], #16\n"
5506 RUY_MAKE_ZERO(v23)
5507 "st1 {v24.4s}, [x3], #16\n"
5508 RUY_MAKE_ZERO(v24)
5509 "st1 {v25.4s}, [x3], #16\n"
5510 RUY_MAKE_ZERO(v25)
5511 "st1 {v26.4s}, [x3], #16\n"
5512 RUY_MAKE_ZERO(v26)
5513 "st1 {v27.4s}, [x3], #16\n"
5514 RUY_MAKE_ZERO(v27)
5515 "st1 {v28.4s}, [x3], #16\n"
5516 RUY_MAKE_ZERO(v28)
5517 "st1 {v29.4s}, [x3], #16\n"
5518 RUY_MAKE_ZERO(v29)
5519 "st1 {v30.4s}, [x3], #16\n"
5520 RUY_MAKE_ZERO(v30)
5521 "st1 {v31.4s}, [x3], #16\n"
5522 RUY_MAKE_ZERO(v31)
5523
5524 "b 331f\n"
5525
5526 "330:\n"
5527 // Yes, all of the 8x8 block fits.
5528 "mov x4, %[dst_ptr]\n"
5529 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5530 "mov x3, x4\n"
5531 "st1 {v16.4s, v17.4s}, [x3], #32\n"
5532 RUY_MAKE_ZERO(v16)
5533 RUY_MAKE_ZERO(v17)
5534 "add x4, x4, x11\n"
5535 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5536 "mov x3, x4\n"
5537 "st1 {v18.4s, v19.4s}, [x3], #32\n"
5538 RUY_MAKE_ZERO(v18)
5539 RUY_MAKE_ZERO(v19)
5540 "add x4, x4, x11\n"
5541 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5542 "mov x3, x4\n"
5543 "st1 {v20.4s, v21.4s}, [x3], #32\n"
5544 RUY_MAKE_ZERO(v20)
5545 RUY_MAKE_ZERO(v21)
5546 "add x4, x4, x11\n"
5547 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5548 "mov x3, x4\n"
5549 "st1 {v22.4s, v23.4s}, [x3], #32\n"
5550 RUY_MAKE_ZERO(v22)
5551 RUY_MAKE_ZERO(v23)
5552 "add x4, x4, x11\n"
5553 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5554 "mov x3, x4\n"
5555 "st1 {v24.4s, v25.4s}, [x3], #32\n"
5556 RUY_MAKE_ZERO(v24)
5557 RUY_MAKE_ZERO(v25)
5558 "add x4, x4, x11\n"
5559 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5560 "mov x3, x4\n"
5561 "st1 {v26.4s, v27.4s}, [x3], #32\n"
5562 RUY_MAKE_ZERO(v26)
5563 RUY_MAKE_ZERO(v27)
5564 "add x4, x4, x11\n"
5565 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5566 "mov x3, x4\n"
5567 "st1 {v28.4s, v29.4s}, [x3], #32\n"
5568 RUY_MAKE_ZERO(v28)
5569 RUY_MAKE_ZERO(v29)
5570 "add x4, x4, x11\n"
5571 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5572 "mov x3, x4\n"
5573 "st1 {v30.4s, v31.4s}, [x3], #32\n"
5574 RUY_MAKE_ZERO(v30)
5575 RUY_MAKE_ZERO(v31)
5576
5577 "331:\n"
5578
5579 // For the next block: perform the first few multiply-adds on the data
5580 // that we have already loaded.
5581 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
5582 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
5583 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
5584 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
5585
5586 // If all of the 8x8 block fits, we just finished writing it to the
5587 // destination, so we skip the next part.
5588 "beq 341f\n"
5589
5590 // Not all of the 8x8 block fits in the destination matrix. We just
5591 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
5592 // it to copy into the destination matrix the part that fits.
5593 "mov x3, %[dst_tmp_buf]\n"
5594 "mov x4, %[dst_ptr]\n"
5595 "mov w6, #0\n"
5596 "350:\n"
5597 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
5598 "mov w5, #0\n"
5599 "351:\n"
5600 "ldr w7, [x3, x5, lsl #2]\n"
5601 "str w7, [x4, x5, lsl #2]\n"
5602 "add w5, w5, #1\n"
5603 "cmp w5, w1\n"
5604 "blt 351b\n"
5605 "add w6, w6, #1\n"
5606 "add x3, x3, #32\n"
5607 "add x4, x4, x11\n"
5608 "cmp w6, w2\n"
5609 "blt 350b\n"
5610 "341:\n"
5611 "add %[dst_ptr], %[dst_ptr], #32\n"
5612 // At this point we have completely finished writing values to the
5613 // destination matrix for the current block.
5614
5615 RUY_STR(RUY_ASM_LABEL_AFTER_STORE) ":\n"
5616
5617 // Reload some params --- we had used x5 -- x7 for a few other things
5618 // since the last time we had loaded them.
5619 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
5620 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
5621 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
5622
5623 // Move to the next block of the destination matrix, for the next iter
5624 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
5625 // been updated earlier.
5626 // Have we reached the end row?
5627 "cmp %w[row], w7\n"
5628 "beq 20f\n" // yes, end row.
5629 // Not end row. Move to the next row.
5630 "add %w[row], %w[row], #8\n"
5631 "b 21f\n"
5632 "20:\n"
5633 // Was already at end row.
5634 "mov %w[row], w6\n" // Move back to first row.
5635 "add %w[col], %w[col], #8\n" // Move to the next column.
5636 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #3\n"
5637 "mov %[dst_ptr], %[dst_col_ptr]\n"
5638 "21:\n"
5639
5640 // Main loop exit condition: have we hit the end column?
5641 "cmp %w[col], w8\n"
5642
5643 // w1 is the number of levels of depth that we have already loaded
5644 // LHS and RHS data for. Corresponding to the initial ld1 instructions
5645 // above, this is currently 4.
5646 "mov w1, #4\n"
5647
5648 "ble 1b\n"
5649
5650 // clang-format on
5651
5652 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
5653 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
5654 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
5655 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
5656 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf),
5657 [dst_type_id] "r"(params.dst_type_id)
5658 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
5659 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
5660 "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25",
5661 "v26", "v27", "v28", "v29", "v30", "v31");
5662}
5663
5664
5665// Similar to the above 8-bit dotprod kernel, but specialized for the case of
5666// RHS cols == 1.
5667// Relevant target CPUs for this kernel include ARM Cortex-A76,
5668// since these are 64-bit, out-of-order and with dotprod support.
5669void Kernel8bitNeonDotprod1Col(const KernelParams8bit<8, 8>& params) {
5670 profiler::ScopeLabel label("Kernel (kNeonDotprod)");
5671
5672 CheckOffsetsInKernelParams8bit(params);
5673
5674 const std::int8_t* lhs_col_ptr = params.lhs_base_ptr;
5675 const std::int8_t* rhs_col_ptr =
5676 static_cast<const int8_t*>(params.rhs_base_ptr);
5677 const std::int8_t* lhs_ptr = lhs_col_ptr;
5678 const std::int8_t* rhs_ptr = rhs_col_ptr;
5679 void* dst_col_ptr = params.dst_base_ptr;
5680 void* dst_ptr = dst_col_ptr;
5681 int row = params.start_row;
5682 int col = params.start_col;
5683
5684 RUY_DCHECK(!(params.flags & RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL));
5685
5686 // The asm kernel below has the following NEON register allocation:
5687 //
5688 // v16 -- v31 are int32 accumulators.
5689 // During accumulation, v0 -- v15 are used to load int8 data from LHS and
5690 // RHS. At least v0 and v1 are used to load a 8x4 block of LHS, and v2 and
5691 // v3 are used to load a 4x8 block of RHS, like this:
5692 //
5693 // int8 RHS 4x1 block
5694 // /-------|
5695 // |v2.b[0]|
5696 // | ... |
5697 // |v2.b[3]|
5698 // \-------/
5699 // int8 LHS 8x4 block
5700 // /---------------------\ /--------|
5701 // |v0.b[0] ... v0.b[3] | |v16.s[0]|
5702 // | ... ... | | ... |
5703 // |v0.b[12] ... v0.b[15]| |v16.s[3]|
5704 // |v1.b[0] ... v1.b[3] | |v17.s[0]|
5705 // | ... ... | | ... |
5706 // |v1.b[12] ... v1.b[15]| |v17.s[3]|
5707 // \---------------------/ \--------/
5708 // int32 accumulators 8x1 block
5709 //
5710 // In the RUY_OPT_MAX_STREAMING part of the kernel, this elementary step
5711 // is repeated 4 times, using 4x more registers for LHS and RHS, so that
5712 // is where instead of using v0 -- v3 for LHS and RHS, we use v0 -- v15.
5713 //
5714 // Outside of the RUY_OPT_MAX_STREAMING part of the kernel, v4 -- v7 are
5715 // unused, and v8 -- v15 are used for loading parameters used for the
5716 // post-accumulation part of the kernel.
5717 asm volatile(
5718#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
5719
5720 // clang-format off
5721
5722 // Load some parameters into registers.
5723 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
5724 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
5725 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
5726 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
5727 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
5728 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
5729 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
5730 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
5731
5732 // Load the first 32 bytes of LHS and RHS data.
5733 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
5734 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
5735 "ld1 {v2.8b}, [%[rhs_ptr]]\n"
5736 "add %[rhs_ptr], %[rhs_ptr], #32\n"
5737
5738 // Clear accumulators.
5739 RUY_MAKE_ZERO(v16)
5740 RUY_MAKE_ZERO(v17)
5741
5742 // w1 is the number of levels of depth that we have already loaded
5743 // LHS and RHS data for. Corresponding to the initial ld1 instructions
5744 // above, this is currently 4.
5745 "mov w1, #4\n"
5746
5747 // Perform the first few multiply-adds on the data that we have already
5748 // loaded.
5749 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
5750
5751 // Main loop of the whole GEMM, over rows and columns of the
5752 // destination matrix.
5753 "1:\n"
5754
5755 // Ordinary kernel inner loop (over depth), the simpler loop that the
5756 // above was an equivalent 4x-partially-unrolled version of.
5757
5758 // Reminder - w1 is how many levels of depth we have already loaded
5759 // data for, w12 is the total depth.
5760 "cmp w1, w12\n"
5761 "beq 79f\n"
5762
5763 "2:\n"
5764
5765 // Because of the data that we have already loaded, we can start the
5766 // loop body right away with some multiply-adds.
5767 // Each iteration of this loop advances by 4 levels of depth.
5768 "add w1, w1, #4\n"
5769 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
5770 ".word 0x4f82e031 // sdot v17.4s, v1.16b, v2.4b[0]\n"
5771 // Loop termination condition.
5772 "cmp w1, w12\n"
5773 "ld1 {v2.8b}, [%[rhs_ptr]]\n"
5774 "add %[rhs_ptr], %[rhs_ptr], #32\n"
5775 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
5776 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
5777
5778 "blt 2b\n"
5779
5780 "79:\n"
5781 // End of the inner loop on depth. Now perform the remaining
5782 // multiply-adds of the last 4 levels of depth, for which the LHS
5783 // and RHS data is already loaded.
5784
5785 ".word 0x4f82e031 // sdot v17.4s, v1.16b, v2.4b[0]\n"
5786
5787 // End of accumulation. The registers v16 -- v31 contain the final
5788 // int32 accumulator values of the current 8x8 destination block.
5789 // We now have to compute the final 8-bit values from these int32
5790 // accumulators, and advance to the next 8x8 block. We intertwine
5791 // these two aspects whenever possible for optimal pipelining, both
5792 // at the data flow level (prefetch data for next block as early as
5793 // possible) and instruction pipelining level (some of the next-block
5794 // work can dual-issue with some of the final work on the current
5795 // block).
5796
5797 // Logic to advance to the next block in preparation for the next
5798 // iteration of the main loop. For now, we only want to compute
5799 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
5800 // not yet ready to update the values of row and col, as we still need
5801 // the current values for the rest of the work on the current block.
5802
5803 "cmp %w[row], w7\n" // Have we finished the last row?
5804 "bge 4f\n" // If finished last row, go to 4
5805 // Not finished last row: then advance to next row.
5806 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #3\n"
5807 "b 5f\n"
5808 "4:\n" // Finished last row...
5809 "mov %[lhs_col_ptr], x5\n" // Go back to first row
5810 // Now we need to advance to the next column. If we already
5811 // finished the last column, then in principle we are done, however
5812 // we can't just return here, as we need to allow the end work of the
5813 // current block to complete. The good news is that at this point it
5814 // doesn't matter what data we load for the next column, since
5815 // we will exit from the main loop below before actually storing
5816 // anything computed from that data.
5817 "cmp %w[col], w8\n" // Have we finished the last column?
5818 "bge 5f\n" // If yes, just carry on without updating the column pointer.
5819 // Not finished last column: then advance to next column.
5820 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #3\n"
5821 "5:\n"
5822
5823 // Set the LHS and RHS data pointers to the start of the columns just
5824 // computed.
5825 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
5826 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
5827
5828 // Load some parameters needed for the end work on current block.
5829 "mvni v8.4s, #0\n"
5830 "ldr w4, [%[params], #" RUY_STR(RUY_OFFSET_DST_ZERO_POINT) "]\n"
5831 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_PROD_ZP_DEPTH) "]\n"
5832 "ins v13.h[4], w4\n" // dst_zero_point
5833 "ldr x4, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_FIXEDPOINT) "]\n"
5834 "ldrb w6, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
5835 "dup v9.4s, w3\n" // create prod_zp_depth_vec
5836 "add x5, x4, %x[row], lsl #2\n"
5837 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
5838 "csel x4, x4, x5, eq\n"
5839
5840 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
5841 "add x5, x1, %x[row], lsl #2\n"
5842
5843 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
5844 "csel x1, x1, x5, eq\n"
5845
5846 // Load 8 bias values.
5847 "ld1 {v14.4s}, [x1], #16\n"
5848 "ld1 {v15.4s}, [x1]\n"
5849
5850 // Now that we know what LHS and RHS data the next iteration of the
5851 // main loop will need to load, we start loading the first 32 bytes of
5852 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
5853 // in the rest of the work on the current block.
5854 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
5855 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
5856 "ld1 {v2.8b}, [%[rhs_ptr]]\n"
5857 "add %[rhs_ptr], %[rhs_ptr], #32\n"
5858
5859 // Add to the bias values the product (depth * lhs_zero_point * rhs_zero_point),
5860 // See the term NZ1Z2 in equation (7) in https://arxiv.org/pdf/1712.05877.pdf
5861 "add v14.4s, v14.4s, v9.4s\n"
5862 "add v15.4s, v15.4s, v9.4s\n"
5863
5864 // Perform the bias-addition (per the above, we have just folded into
5865 // the bias the (depth * lhs_zero_point * rhs_zero_point) term.)
5866 "add v16.4s, v16.4s, v14.4s\n"
5867 "add v17.4s, v17.4s, v15.4s\n"
5868
5869 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_RHS_SUMS) "\n"
5870 "beq 401f\n"
5871 "ldr x3, [%[params], #" RUY_STR(RUY_OFFSET_RHS_SUMS) "]\n"
5872 "add x3, x3, %x[col], lsl #2\n"
5873 "ld1 {v14.4s}, [x3], #16\n"
5874 "ld1 {v15.4s}, [x3]\n"
5875 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_ZERO_POINT) "]\n"
5876 "dup v10.4s, w5\n" // create lhs_zero_point_vec
5877 // Subtract rhs_sums * lhs_zero_point, per
5878 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
5879 "mls v16.4s, v10.4s, v14.s[0]\n"
5880 "mls v17.4s, v10.4s, v14.s[0]\n"
5881 "401:\n"
5882
5883 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_LHS_SUMS) "\n"
5884 "beq 402f\n"
5885 "ldr x2, [%[params], #" RUY_STR(RUY_OFFSET_LHS_SUMS) "]\n"
5886 "add x2, x2, %x[row], lsl #2\n"
5887 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_RHS_ZERO_POINT) "]\n"
5888 // Load 4 lhs_sums values.
5889 "ld1 {v11.4s}, [x2], #16\n"
5890 "ld1 {v12.4s}, [x2]\n"
5891 "ins v13.s[1], w5\n" // rhs_zero_point
5892 // Compute lhs_sums * rhs_zero_point.
5893 "mul v11.4s, v11.4s, v13.s[1]\n"
5894 "mul v12.4s, v12.4s, v13.s[1]\n"
5895 // Subtract lhs_sums * rhs_zero_point, per
5896 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
5897 "sub v16.4s, v16.4s, v11.4s\n"
5898 "sub v17.4s, v17.4s, v12.4s\n"
5899
5900 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT32) "\n"
5901 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT32) "f\n"
5902
5903 "402:\n"
5904
5905 // At this point we have computed the final int32 values. Now we
5906 // start down-quantizing them to obtain the final 8bit values from them.
5907
5908 // As part of this down-quantization, our int32 values will be
5909 // multiplied by a multiplier that has a fixed-point component and an
5910 // exponent component.
5911
5912 //Load the exponent part of the multiplier.
5913 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_EXPONENT) "]\n"
5914 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
5915 "add x5, x1, %x[row], lsl #2\n"
5916 "csel x1, x1, x5, eq\n"
5917
5918 "ldr q9, [x1]\n"
5919 "ldr q10, [x1, #16]\n"
5920
5921 "smin v11.4s, v8.4s, v9.4s\n"
5922 "smin v12.4s, v8.4s, v10.4s\n"
5923 "sub v9.4s, v9.4s, v11.4s\n"
5924 "sub v10.4s, v10.4s, v12.4s\n"
5925
5926 // Apply the positive exponent part of the multiplier.
5927 "sshl v16.4s, v16.4s, v9.4s\n"
5928 "sshl v17.4s, v17.4s, v10.4s\n"
5929 "403:\n"
5930
5931 "ldr q14, [x4]\n" // multiplier_fixedpoint
5932 "ldr q15, [x4, #16]\n" // multiplier_fixedpoint
5933
5934 // Apply the fixed-point part of the multiplier.
5935 "sqdmulh v16.4s, v16.4s, v14.4s\n"
5936 "sqdmulh v17.4s, v17.4s, v15.4s\n"
5937
5938 // Apply the negative exponent part of the multiplier.
5939 "srshl v16.4s, v16.4s, v11.4s\n"
5940 "srshl v17.4s, v17.4s, v12.4s\n"
5941
5942 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT16) "\n"
5943 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT16) "f\n"
5944 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT8) "\n"
5945 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT8) "f\n"
5946
5947 RUY_STR(RUY_ASM_LABEL_STORE_UINT8) ":\n"
5948
5949 // Cast-and-saturate from int32 to int16
5950 "sqxtn v16.4h, v16.4s\n"
5951 "sqxtn2 v16.8h, v17.4s\n"
5952 // All data in v16 at this point.
5953
5954 // Add the destination zero point
5955 "dup v14.8h, v13.h[4]\n"
5956 "sqadd v16.8h, v16.8h, v14.8h\n"
5957
5958 // Cast-and-saturate from int16 to uint8, leaving all data in the
5959 // lower half of v16.
5960 "sqxtun v16.8b, v16.8h\n"
5961
5962 // Load the clamp_min, clamp_max bounds
5963 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
5964 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
5965 "dup v14.16b, w2\n" // clamp_min
5966 "dup v15.16b, w3\n" // clamp_max
5967
5968 // Apply the clamp_min bound
5969 "umax v16.16b, v16.16b, v14.16b\n"
5970
5971 // Apply the clamp_max bound
5972 "umin v16.16b, v16.16b, v15.16b\n"
5973
5974 // Make it so that all of the final 8bit values are stored in the
5975 // first 64bits of 128bit NEON registers, so they can be stored
5976 // by 64bit st1 store instructions with byte alignment.
5977 "dup d20, v16.d[1]\n"
5978
5979 // Compute how much of the 8x1 block of destination 8bit values that
5980 // we have computed, fit in the destination matrix. Typically, all of
5981 // it fits, but when the destination matrix shape is not a multiple
5982 // of 8x1, there are some 8x1 blocks along the boundaries that do
5983 // not fit entirely.
5984 "sub w1, %w[dst_rows], %w[row]\n"
5985 "sub w2, %w[dst_cols], %w[col]\n"
5986 "mov w3, #8\n"
5987 "cmp w1, #8\n"
5988 // Compute w1 = how many rows of the 8x1 block fit
5989 "csel w1, w1, w3, le\n"
5990 "cmp w2, #8\n"
5991
5992 // Test if w1==8, i.e. if all of the 8x1 block fits.
5993 "cmp w1, w3\n"
5994 // Yes, all of the 8x1 block fits, go to fast path.
5995 "beq 30f\n"
5996 // Not all of the 8x1 block fits.
5997 // Set (x3 address, x4 stride) to write to dst_tmp_buf
5998 "mov x3, %[dst_tmp_buf]\n"
5999 "mov x4, #8\n"
6000 "b 31f\n"
6001 "30:\n"
6002 // Yes, all of the 8x1 block fits.
6003 // Set (x3 address, x4 stride) to write directly to destination matrix.
6004 "mov x3, %[dst_ptr]\n"
6005 "mov x4, x11\n"
6006 "31:\n"
6007
6008 // Write our 8bit values to the destination
6009 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
6010 "st1 {v16.8b}, [x3]\n"
6011 RUY_MAKE_ZERO(v16)
6012 RUY_MAKE_ZERO(v17)
6013
6014 // For the next block: perform the first few multiply-adds on the data
6015 // that we have already loaded.
6016 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
6017
6018 // If all of the 8x8 block fits, we just finished writing it to the
6019 // destination, so we skip the next part.
6020 "beq 41f\n"
6021 // Not all of the 8x8 block fits in the destination matrix. We just
6022 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
6023 // it to copy into the destination matrix the part that fits.
6024 "mov x3, %[dst_tmp_buf]\n"
6025 "mov x4, %[dst_ptr]\n"
6026 "mov w6, #0\n"
6027 "50:\n"
6028 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
6029 "mov w5, #0\n"
6030 "51:\n"
6031 "ldrb w7, [x3, w5, uxtw]\n"
6032 "strb w7, [x4, w5, uxtw]\n"
6033 "add w5, w5, #1\n"
6034 "cmp w5, w1\n"
6035 "blt 51b\n"
6036 "41:\n"
6037 "add %[dst_ptr], %[dst_ptr], #8\n"
6038 // At this point we have completely finished writing values to the
6039 // destination matrix for the current block.
6040
6041 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
6042
6043 RUY_STR(RUY_ASM_LABEL_STORE_INT8) ":\n"
6044
6045 // Cast-and-saturate from int32 to int16
6046 "sqxtn v16.4h, v16.4s\n"
6047 "sqxtn2 v16.8h, v17.4s\n"
6048
6049
6050 // Add the destination zero point
6051 "dup v14.8h, v13.h[4]\n"
6052 "sqadd v16.8h, v16.8h, v14.8h\n"
6053
6054 // Cast-and-saturate from int16 to uint8
6055 "sqxtn v16.8b, v16.8h\n"
6056
6057 // Load the clamp_min, clamp_max bounds
6058 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
6059 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
6060 "dup v14.16b, w2\n" // clamp_min
6061 "dup v15.16b, w3\n" // clamp_max
6062
6063 // Apply the clamp_min bound
6064 "smax v16.16b, v16.16b, v14.16b\n"
6065
6066 // Apply the clamp_max bound
6067 "smin v16.16b, v16.16b, v15.16b\n"
6068
6069 // Make it so that all of the final 8bit values are stored in the
6070 // first 64bits of 128bit NEON registers, so they can be stored
6071 // by 64bit st1 store instructions with byte alignment.
6072 "dup d20, v16.d[1]\n"
6073
6074 // Compute how much of the 8x1 block of destination 8bit values that
6075 // we have computed, fit in the destination matrix. Typically, all of
6076 // it fits, but when the destination matrix shape is not a multiple
6077 // of 8x8, there are some 8x8 blocks along the boundaries that do
6078 // not fit entirely.
6079 "sub w1, %w[dst_rows], %w[row]\n"
6080 "sub w2, %w[dst_cols], %w[col]\n"
6081 "mov w3, #8\n"
6082 "cmp w1, #8\n"
6083 // Compute w1 = how many rows of the 8x1 block fit
6084 "csel w1, w1, w3, le\n"
6085 "cmp w2, #8\n"
6086
6087 // Test if w1==8, i.e. if all of the 8x1 block fits.
6088 "cmp w1, w3\n"
6089 // Yes, all of the 8x1 block fits, go to fast path.
6090 "beq 130f\n"
6091 // Not all of the 8x1 block fits.
6092 // Set (x3 address, x4 stride) to write to dst_tmp_buf
6093 "mov x3, %[dst_tmp_buf]\n"
6094 "mov x4, #8\n"
6095 "b 131f\n"
6096 "130:\n"
6097 // Yes, all of the 8x8 block fits.
6098 // Set (x3 address, x4 stride) to write directly to destination matrix.
6099 "mov x3, %[dst_ptr]\n"
6100 "mov x4, x11\n"
6101 "131:\n"
6102
6103 // Write our 8bit values to the destination
6104 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
6105 "st1 {v16.8b}, [x3]\n"
6106 RUY_MAKE_ZERO(v16)
6107 RUY_MAKE_ZERO(v17)
6108
6109 // For the next block: perform the first few multiply-adds on the data
6110 // that we have already loaded.
6111 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
6112
6113 // If all of the 8x8 block fits, we just finished writing it to the
6114 // destination, so we skip the next part.
6115 "beq 141f\n"
6116 // Not all of the 8x8 block fits in the destination matrix. We just
6117 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
6118 // it to copy into the destination matrix the part that fits.
6119 "mov x3, %[dst_tmp_buf]\n"
6120 "mov x4, %[dst_ptr]\n"
6121 "mov w6, #0\n"
6122 "150:\n"
6123 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
6124 "mov w5, #0\n"
6125 "151:\n"
6126 "ldrb w7, [x3, w5, uxtw]\n"
6127 "strb w7, [x4, w5, uxtw]\n"
6128 "add w5, w5, #1\n"
6129 "cmp w5, w1\n"
6130 "blt 151b\n"
6131 "141:\n"
6132 "add %[dst_ptr], %[dst_ptr], #8\n"
6133 // At this point we have completely finished writing values to the
6134 // destination matrix for the current block.
6135
6136 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
6137
6138 RUY_STR(RUY_ASM_LABEL_STORE_INT16) ":\n"
6139
6140 // Add the destination zero point
6141 "dup v14.8h, v13.h[4]\n"
6142 "saddw v16.4s, v16.4s, v14.4h\n"
6143 "saddw v17.4s, v17.4s, v14.4h\n"
6144
6145 // Cast-and-saturate from int32 to int16
6146 "sqxtn v16.4h, v16.4s\n"
6147 "sqxtn2 v16.8h, v17.4s\n"
6148
6149 // Load the clamp_min, clamp_max bounds
6150 "ldrsh w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
6151 "ldrsh w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
6152 "dup v14.8h, w2\n" // clamp_min
6153 "dup v15.8h, w3\n" // clamp_max
6154
6155 // Apply the clamp_min bound
6156 "smax v16.8h, v16.8h, v14.8h\n"
6157 // Apply the clamp_max bound
6158 "smin v16.8h, v16.8h, v15.8h\n"
6159
6160 // Compute how much of the 8x1 block of destination 16bit values that
6161 // we have computed, fit in the destination matrix. Typically, all of
6162 // it fits, but when the destination matrix shape is not a multiple
6163 // of 8x8, there are some 8x1 blocks along the boundaries that do
6164 // not fit entirely.
6165 "sub w1, %w[dst_rows], %w[row]\n"
6166 "sub w2, %w[dst_cols], %w[col]\n"
6167 "mov w3, #8\n"
6168 "cmp w1, #8\n"
6169 // Compute w1 = how many rows of the 8x1 block fit
6170 "csel w1, w1, w3, le\n"
6171 "cmp w2, #8\n"
6172
6173 // Test if w1==8, i.e. if all of the 8x8 block fits.
6174 "cmp w1, w3\n"
6175 // Yes, all of the 8x1 block fits, go to fast path.
6176 "beq 230f\n"
6177 // Not all of the 8x1 block fits.
6178 // Set (x3 address, x4 stride) to write to dst_tmp_buf
6179 "mov x3, %[dst_tmp_buf]\n"
6180 "mov x4, #16\n"
6181 "b 231f\n"
6182 "230:\n"
6183 // Yes, all of the 8x1 block fits.
6184 // Set (x3 address, x4 stride) to write directly to destination matrix.
6185 "mov x3, %[dst_ptr]\n"
6186 "mov x4, x11\n"
6187 "231:\n"
6188
6189 // Write our 16bit values to the destination
6190 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
6191 "st1 {v16.8h}, [x3]\n"
6192 RUY_MAKE_ZERO(v16)
6193 RUY_MAKE_ZERO(v17)
6194
6195 // For the next block: perform the first few multiply-adds on the data
6196 // that we have already loaded.
6197 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
6198
6199 // If all of the 8x1 block fits, we just finished writing it to the
6200 // destination, so we skip the next part.
6201 "beq 241f\n"
6202 // Not all of the 8x1 block fits in the destination matrix. We just
6203 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
6204 // it to copy into the destination matrix the part that fits.
6205 "mov x3, %[dst_tmp_buf]\n"
6206 "mov x4, %[dst_ptr]\n"
6207 "mov w6, #0\n"
6208 "250:\n"
6209 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
6210 "mov w5, #0\n"
6211 "251:\n"
6212 "ldrsh w7, [x3, x5, lsl #1]\n"
6213 "strh w7, [x4, x5, lsl #1]\n"
6214 "add w5, w5, #1\n"
6215 "cmp w5, w1\n"
6216 "blt 251b\n"
6217 "241:\n"
6218 "add %[dst_ptr], %[dst_ptr], #16\n"
6219 // At this point we have completely finished writing values to the
6220 // destination matrix for the current block.
6221
6222 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
6223
6224 RUY_STR(RUY_ASM_LABEL_STORE_INT32) ":\n"
6225
6226 // Since the store type is the same as the accum type, no need for
6227 // downcast. There's also no need for clamp by min/max.
6228
6229 // Compute how much of the 8x1 block of destination 32 bit values that
6230 // we have computed, fit in the destination matrix. Typically, all of
6231 // it fits, but when the destination matrix shape is not a multiple
6232 // of 8x1, there are some 8x1 blocks along the boundaries that do
6233 // not fit entirely.
6234 "sub w1, %w[dst_rows], %w[row]\n"
6235 "sub w2, %w[dst_cols], %w[col]\n"
6236 "mov w3, #8\n"
6237 "cmp w1, #8\n"
6238 // Compute w1 = how many rows of the 8x1 block fit
6239 "csel w1, w1, w3, le\n"
6240 "cmp w2, #8\n"
6241 // Compute w1 = how many rows of the 8x8 block fit
6242 "csel w2, w2, w3, le\n"
6243
6244 // Test if w1==8, i.e. if all of the 8x8 block fits.
6245 "cmp w1, w3\n"
6246 // Yes, all of the 8x1 block fits, go to fast path.
6247 "beq 330f\n"
6248 // Not all of the 8x1 block fits.
6249 // Set (x3 address, x4 stride) to write to dst_tmp_buf
6250 "mov x3, %[dst_tmp_buf]\n"
6251 "mov x4, #16\n"
6252
6253 // Write our 32bit values to the destination described by
6254 // (x3 address, x4 stride).
6255 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
6256 "st1 {v16.4s}, [x3], x4\n"
6257 RUY_MAKE_ZERO(v16)
6258 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
6259 "st1 {v17.4s}, [x3], x4\n"
6260 RUY_MAKE_ZERO(v17)
6261
6262 "b 331f\n"
6263
6264 "330:\n"
6265 // Yes, all of the 8x1 block fits.
6266 // Set (x3 address, x4 stride) to write directly to destination matrix.
6267 "mov x4, %[dst_ptr]\n"
6268 "mov x3, x4\n"
6269
6270 // Write our 32bit values to the destination described by
6271 // (x3 address, x4 stride).
6272 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
6273 "st1 {v16.4s, v17.4s}, [x3], #32\n"
6274 RUY_MAKE_ZERO(v16)
6275 RUY_MAKE_ZERO(v17)
6276
6277 "331:\n"
6278
6279 // For the next block: perform the first few multiply-adds on the data
6280 // that we have already loaded.
6281 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
6282
6283 // If all of the 8x8 block fits, we just finished writing it to the
6284 // destination, so we skip the next part.
6285 "beq 341f\n"
6286
6287 // Not all of the 8x8 block fits in the destination matrix. We just
6288 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
6289 // it to copy into the destination matrix the part that fits.
6290 "mov x3, %[dst_tmp_buf]\n"
6291 "mov x4, %[dst_ptr]\n"
6292 "mov w6, #0\n"
6293 "350:\n"
6294 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
6295 "mov w5, #0\n"
6296 "351:\n"
6297 "ldr w7, [x3, x5, lsl #2]\n"
6298 "str w7, [x4, x5, lsl #2]\n"
6299 "add w5, w5, #1\n"
6300 "cmp w5, w1\n"
6301 "blt 351b\n"
6302 "341:\n"
6303 "add %[dst_ptr], %[dst_ptr], #32\n"
6304 // At this point we have completely finished writing values to the
6305 // destination matrix for the current block.
6306
6307 RUY_STR(RUY_ASM_LABEL_AFTER_STORE) ":\n"
6308
6309 // Reload some params --- we had used x5 -- x7 for a few other things
6310 // since the last time we had loaded them.
6311 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
6312 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
6313 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
6314
6315 // Move to the next block of the destination matrix, for the next iter
6316 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
6317 // been updated earlier.
6318 // Have we reached the end row?
6319 "cmp %w[row], w7\n"
6320 "beq 20f\n" // yes, end row.
6321 // Not end row. Move to the next row.
6322 "add %w[row], %w[row], #8\n"
6323 "b 21f\n"
6324 "20:\n"
6325 // Was already at end row.
6326 "mov %w[row], w6\n" // Move back to first row.
6327 "add %w[col], %w[col], #8\n" // Move to the next column.
6328 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #3\n"
6329 "mov %[dst_ptr], %[dst_col_ptr]\n"
6330 "21:\n"
6331
6332 // Main loop exit condition: have we hit the end column?
6333 "cmp %w[col], w8\n"
6334
6335 // w1 is the number of levels of depth that we have already loaded
6336 // LHS and RHS data for. Corresponding to the initial ld1 instructions
6337 // above, this is currently 4.
6338 "mov w1, #4\n"
6339
6340 "ble 1b\n"
6341
6342 // clang-format on
6343
6344 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
6345 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
6346 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
6347 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
6348 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf),
6349 [dst_type_id] "r"(params.dst_type_id)
6350 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
6351 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
6352 "v13", "v14", "v15", "v16", "v17");
6353}
6354
6355// Variant of the above Kernel8bitNeonDotprod, tuned for in-order
6356// CPUs. Specifically here, the relevant in-order CPUs are ARM Cortex-A55r1,
6357// since these are 64-bit and support dotprod.
6358//
6359// While this kernel does not have a direct equivalent in gemmlowp, it was
6360// developed based on insights that David Mansell at ARM shared with their
6361// contribution of gemmlowp kernels tuned for Cortex-A55r1, with very helpful
6362// comments. Specifically, see this comment about tuning for Cortex-A55r1:
6363// https://github.com/google/gemmlowp/blob/36212ad3651871bc3e9a599f1a6d5324778aea25/standalone/neon-gemm-kernel-benchmark.cc#L4412
6364void Kernel8bitNeonDotprodA55ish(const KernelParams8bit<8, 8>& params) {
6365 profiler::ScopeLabel label(
6366 "Kernel (kNeonDotprod, optimized for in-order cores)");
6367
6368 CheckOffsetsInKernelParams8bit(params);
6369
6370 const std::int8_t* lhs_col_ptr = params.lhs_base_ptr;
6371 const std::int8_t* rhs_col_ptr =
6372 static_cast<const int8_t*>(params.rhs_base_ptr);
6373 const std::int8_t* lhs_ptr = lhs_col_ptr;
6374 const std::int8_t* rhs_ptr = rhs_col_ptr;
6375 void* dst_col_ptr = params.dst_base_ptr;
6376 void* dst_ptr = dst_col_ptr;
6377 int row = params.start_row;
6378 int col = params.start_col;
6379
6380 // The asm kernel below has the following NEON register allocation:
6381 //
6382 // v16 -- v31 are int32 accumulators.
6383 // During accumulation, v0 -- v3 are used to load int8 data from LHS and
6384 // RHS.
6385 //
6386 // int8 RHS 4x8 block
6387 // /-----------------------------------------|
6388 // |v2.b[0] ... v2.b[12] v3.b[0] ... v3.b[12]|
6389 // | ... ... |
6390 // |v2.b[3] ... v2.b[15] v3.b[3] ... v3.b[15]|
6391 // \-----------------------------------------/
6392 // int8 LHS 8x4 block
6393 // /---------------------\ /-----------------------------------------|
6394 // |v0.b[0] ... v0.b[3] | |v16.s[0] ... v30.s[0]|
6395 // | ... ... | | ... ... |
6396 // |v0.b[12] ... v0.b[15]| |v16.s[3] ... v30.s[3]|
6397 // |v1.b[0] ... v1.b[3] | |v17.s[0] ... v31.s[0]|
6398 // | ... ... | | ... ... |
6399 // |v1.b[12] ... v1.b[15]| |v17.s[3] ... v31.s[3]|
6400 // \---------------------/ \-----------------------------------------/
6401 // int32 accumulators 8x8 block
6402 //
6403 // There is no RUY_OPT_MAX_STREAMING 4x-unrolled part in this kernel because
6404 // we did not observe a benefit of such partial unrolling on in-order CPUs.
6405 //
6406 // v4 -- v7 are unused, and v8 -- v15 are used for loading parameters used for
6407 // the post-accumulation part of the kernel.
6408 asm volatile(
6409#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
6410
6411 // clang-format off
6412
6413 // Load some parameters into registers.
6414 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
6415 RUY_MAKE_ZERO(v16)
6416 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
6417 RUY_MAKE_ZERO(v17)
6418 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
6419 RUY_MAKE_ZERO(v18)
6420 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
6421 RUY_MAKE_ZERO(v19)
6422 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
6423 RUY_MAKE_ZERO(v20)
6424 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
6425 RUY_MAKE_ZERO(v21)
6426 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
6427 RUY_MAKE_ZERO(v22)
6428 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
6429
6430 // Load the first 32 bytes of LHS and RHS data.
6431 "ld1 {v0.16b}, [%[lhs_ptr]], #16\n"
6432 "ld1 {v1.16b}, [%[lhs_ptr]], #16\n"
6433 "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
6434 "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
6435
6436 // Clear accumulators.
6437 RUY_MAKE_ZERO(v23)
6438 RUY_MAKE_ZERO(v24)
6439 RUY_MAKE_ZERO(v25)
6440 RUY_MAKE_ZERO(v26)
6441 RUY_MAKE_ZERO(v27)
6442 // Perform the first few multiply-adds on the data that we have already
6443 // loaded.
6444 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
6445 RUY_MAKE_ZERO(v28)
6446 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
6447 RUY_MAKE_ZERO(v29)
6448 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
6449 RUY_MAKE_ZERO(v30)
6450 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
6451 RUY_MAKE_ZERO(v31)
6452
6453
6454 "1:\n"
6455
6456 "add x5, %[lhs_ptr], x12, lsl #3\n"
6457 "sub x5, x5, #32\n"
6458 "cmp %[lhs_ptr], x5\n"
6459
6460 "beq 79f\n"
6461
6462 // Main accumulation loop
6463 "2:\n"
6464 ".word 0x4f83e018 // sdot v24.4s, v0.16b, v3.4b[0]\n"
6465 "ldr x1, [%[lhs_ptr], #8]\n"
6466 ".word 0x4fa3e01a // sdot v26.4s, v0.16b, v3.4b[1]\n"
6467 "ldr x3, [%[rhs_ptr], #8]\n"
6468 ".word 0x4f83e81c // sdot v28.4s, v0.16b, v3.4b[2]\n"
6469 "ldr x4, [%[rhs_ptr], #24]\n"
6470 ".word 0x4fa3e81e // sdot v30.4s, v0.16b, v3.4b[3]\n"
6471 "ldr d0, [%[lhs_ptr], #0]\n"
6472 ".word 0x4f82e031 // sdot v17.4s, v1.16b, v2.4b[0]\n"
6473 "ins v0.d[1], x1\n"
6474 ".word 0x4fa2e033 // sdot v19.4s, v1.16b, v2.4b[1]\n"
6475 "ldr x2, [%[lhs_ptr], #24]\n"
6476 ".word 0x4f82e835 // sdot v21.4s, v1.16b, v2.4b[2]\n"
6477 "add %[lhs_ptr], %[lhs_ptr], #32\n"
6478 ".word 0x4fa2e837 // sdot v23.4s, v1.16b, v2.4b[3]\n"
6479 "ldr d2, [%[rhs_ptr], #0]\n"
6480 ".word 0x4f83e039 // sdot v25.4s, v1.16b, v3.4b[0]\n"
6481 "ins v2.d[1], x3\n"
6482 ".word 0x4fa3e03b // sdot v27.4s, v1.16b, v3.4b[1]\n"
6483 "cmp %[lhs_ptr], x5\n"
6484 ".word 0x4f83e83d // sdot v29.4s, v1.16b, v3.4b[2]\n"
6485 "add %[rhs_ptr], %[rhs_ptr], #32\n"
6486 ".word 0x4fa3e83f // sdot v31.4s, v1.16b, v3.4b[3]\n"
6487 "ldr d3, [%[rhs_ptr], #-16]\n"
6488 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
6489 "ldr d1, [%[lhs_ptr], #-16]\n"
6490 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
6491 "ins v3.d[1], x4\n"
6492 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
6493 "ins v1.d[1], x2\n"
6494 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
6495 "blt 2b\n"
6496
6497 // Last accumulation steps, nothing left to load.
6498 "79:\n"
6499 ".word 0x4f83e018 // sdot v24.4s, v0.16b, v3.4b[0]\n"
6500 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
6501 ".word 0x4fa3e01a // sdot v26.4s, v0.16b, v3.4b[1]\n"
6502 "cmp %w[row], w7\n" // Have we finished the last row?
6503 ".word 0x4f83e81c // sdot v28.4s, v0.16b, v3.4b[2]\n"
6504 ".word 0x4fa3e81e // sdot v30.4s, v0.16b, v3.4b[3]\n"
6505 ".word 0x4f82e031 // sdot v17.4s, v1.16b, v2.4b[0]\n"
6506 ".word 0x4fa2e033 // sdot v19.4s, v1.16b, v2.4b[1]\n"
6507 ".word 0x4f82e835 // sdot v21.4s, v1.16b, v2.4b[2]\n"
6508 ".word 0x4fa2e837 // sdot v23.4s, v1.16b, v2.4b[3]\n"
6509 ".word 0x4f83e039 // sdot v25.4s, v1.16b, v3.4b[0]\n"
6510 ".word 0x4fa3e03b // sdot v27.4s, v1.16b, v3.4b[1]\n"
6511 ".word 0x4f83e83d // sdot v29.4s, v1.16b, v3.4b[2]\n"
6512 ".word 0x4fa3e83f // sdot v31.4s, v1.16b, v3.4b[3]\n"
6513
6514 // End of accumulation. The registers v16 -- v31 contain the final
6515 // int32 accumulator values of the current 8x8 destination block.
6516 // We now have to compute the final 8-bit values from these int32
6517 // accumulators, and advance to the next 8x8 block. We intertwine
6518 // these two aspects whenever possible for optimal pipelining, both
6519 // at the data flow level (prefetch data for next block as early as
6520 // possible) and instruction pipelining level (some of the next-block
6521 // work can dual-issue with some of the final work on the current
6522 // block).
6523
6524 // Logic to advance to the next block in preparation for the next
6525 // iteration of the main loop. For now, we only want to compute
6526 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
6527 // not yet ready to update the values of row and col, as we still need
6528 // the current values for the rest of the work on the current block.
6529
6530 "bge 4f\n" // If finished last row, go to 4
6531 // Not finished last row: then advance to next row.
6532 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #3\n"
6533 "b 5f\n"
6534 "4:\n" // Finished last row...
6535 "mov %[lhs_col_ptr], x5\n" // Go back to first row
6536 // Now we need to advance to the next column. If we already
6537 // finished the last column, then in principle we are done, however
6538 // we can't just return here, as we need to allow the end work of the
6539 // current block to complete. The good news is that at this point it
6540 // doesn't matter what data we load for the next column, since
6541 // we will exit from the main loop below before actually storing
6542 // anything computed from that data.
6543 "cmp %w[col], w8\n" // Have we finished the last column?
6544 "bge 5f\n" // If yes, just carry on without updating the column pointer.
6545 // Not finished last column: then advance to next column.
6546 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #3\n"
6547 "5:\n"
6548
6549 // Set the LHS and RHS data pointers to the start of the columns just
6550 // computed.
6551 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
6552 // Load some parameters needed for the end work on current block.
6553 "mvni v8.4s, #0\n"
6554 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
6555 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_PROD_ZP_DEPTH) "]\n"
6556 "ldrb w6, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
6557 "dup v9.4s, w3\n" // create prod_zp_depth_vec
6558
6559 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
6560 // Determine the channel index.
6561 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
6562 "csel w3, %w[row], %w[col], eq\n"
6563
6564 // Offset the bias pointer as needed given the current row, col.
6565 "add x5, x1, x3, lsl #2\n"
6566
6567 // If there is no bias, use no offset, just address the passed zero
6568 // data.
6569 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
6570 "csel x1, x1, x5, eq\n"
6571
6572 // Load 8 bias values.
6573 "ld1 {v14.2s}, [x1], #8\n"
6574 "ldr x5, [x1], #8\n"
6575 "ins v14.d[1], x5\n"
6576 "ld1 {v15.2s}, [x1], #8\n"
6577 "ldr x5, [x1], #8\n"
6578 "ins v15.d[1], x5\n"
6579
6580 // Add to the bias values the product (depth * lhs_zero_point * rhs_zero_point),
6581 // See the term NZ1Z2 in equation (7) in https://arxiv.org/pdf/1712.05877.pdf
6582 "add v14.4s, v14.4s, v9.4s\n"
6583 "add v15.4s, v15.4s, v9.4s\n"
6584 // Perform the bias-addition (per the above, we have just folded into
6585 // the bias the (depth * lhs_zero_point * rhs_zero_point) term.)
6586 // Jump based on channel dimension.
6587 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
6588 "bne 6f\n"
6589 // Case where channels are rows
6590 "add v16.4s, v16.4s, v14.4s\n"
6591 "add v17.4s, v17.4s, v15.4s\n"
6592 "add v18.4s, v18.4s, v14.4s\n"
6593 "add v19.4s, v19.4s, v15.4s\n"
6594 "add v20.4s, v20.4s, v14.4s\n"
6595 "add v21.4s, v21.4s, v15.4s\n"
6596 "add v22.4s, v22.4s, v14.4s\n"
6597 "add v23.4s, v23.4s, v15.4s\n"
6598 "add v24.4s, v24.4s, v14.4s\n"
6599 "add v25.4s, v25.4s, v15.4s\n"
6600 "add v26.4s, v26.4s, v14.4s\n"
6601 "add v27.4s, v27.4s, v15.4s\n"
6602 "add v28.4s, v28.4s, v14.4s\n"
6603 "add v29.4s, v29.4s, v15.4s\n"
6604 "add v30.4s, v30.4s, v14.4s\n"
6605 "add v31.4s, v31.4s, v15.4s\n"
6606 "b 7f\n"
6607
6608 "6:\n"
6609 // Case where channels are columns
6610 "dup v10.4s, v14.s[0]\n"
6611 "dup v11.4s, v14.s[1]\n"
6612 "add v16.4s, v16.4s, v10.4s\n"
6613 "dup v12.4s, v14.s[2]\n"
6614 "add v17.4s, v17.4s, v10.4s\n"
6615 "dup v13.4s, v14.s[3]\n"
6616 "add v18.4s, v18.4s, v11.4s\n"
6617 "dup v10.4s, v15.s[0]\n"
6618 "add v19.4s, v19.4s, v11.4s\n"
6619 "dup v11.4s, v15.s[1]\n"
6620 "add v20.4s, v20.4s, v12.4s\n"
6621 "add v21.4s, v21.4s, v12.4s\n"
6622 "dup v12.4s, v15.s[2]\n"
6623 "add v22.4s, v22.4s, v13.4s\n"
6624 "add v23.4s, v23.4s, v13.4s\n"
6625 "dup v13.4s, v15.s[3]\n"
6626 "add v24.4s, v24.4s, v10.4s\n"
6627 "add v25.4s, v25.4s, v10.4s\n"
6628 "add v26.4s, v26.4s, v11.4s\n"
6629 "add v27.4s, v27.4s, v11.4s\n"
6630 "add v28.4s, v28.4s, v12.4s\n"
6631 "add v29.4s, v29.4s, v12.4s\n"
6632 "add v30.4s, v30.4s, v13.4s\n"
6633 "add v31.4s, v31.4s, v13.4s\n"
6634 "7:\n"
6635
6636 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_RHS_SUMS) "\n"
6637 "beq 401f\n"
6638 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_ZERO_POINT) "]\n"
6639 "dup v10.4s, w5\n" // create lhs_zero_point_vec
6640 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_RHS_SUMS) "]\n"
6641 "add x5, x5, %x[col], lsl #2\n"
6642 // Load 8 rhs_sums values.
6643 "ld1 {v14.2s}, [x5], #8\n"
6644 "ldr x7, [x5], #8\n"
6645 "ld1 {v15.2s}, [x5], #8\n"
6646 "ins v14.d[1], x7\n"
6647 "ldr x7, [x5], #8\n"
6648 "ins v15.d[1], x7\n"
6649 // Subtract rhs_sums * lhs_zero_point, per
6650 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
6651 "mls v16.4s, v10.4s, v14.s[0]\n"
6652 "mls v17.4s, v10.4s, v14.s[0]\n"
6653 "mls v18.4s, v10.4s, v14.s[1]\n"
6654 "mls v19.4s, v10.4s, v14.s[1]\n"
6655 "mls v20.4s, v10.4s, v14.s[2]\n"
6656 "mls v21.4s, v10.4s, v14.s[2]\n"
6657 "mls v22.4s, v10.4s, v14.s[3]\n"
6658 "mls v23.4s, v10.4s, v14.s[3]\n"
6659 "mls v24.4s, v10.4s, v15.s[0]\n"
6660 "mls v25.4s, v10.4s, v15.s[0]\n"
6661 "mls v26.4s, v10.4s, v15.s[1]\n"
6662 "mls v27.4s, v10.4s, v15.s[1]\n"
6663 "mls v28.4s, v10.4s, v15.s[2]\n"
6664 "mls v29.4s, v10.4s, v15.s[2]\n"
6665 "mls v30.4s, v10.4s, v15.s[3]\n"
6666 "mls v31.4s, v10.4s, v15.s[3]\n"
6667 "401:\n"
6668
6669 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_LHS_SUMS) "\n"
6670 "beq 402f\n"
6671 "ldr x2, [%[params], #" RUY_STR(RUY_OFFSET_LHS_SUMS) "]\n"
6672 "add x2, x2, %x[row], lsl #2\n"
6673 "ldr w5, [%[params], #" RUY_STR(RUY_OFFSET_RHS_ZERO_POINT) "]\n"
6674 "ins v13.s[1], w5\n" // rhs_zero_point
6675 // Load 8 lhs_sums values.
6676 "ld1 {v11.2s}, [x2], #8\n"
6677 "ldr x4, [x2], #8\n"
6678 "ins v11.d[1], x4\n"
6679 "ld1 {v12.2s}, [x2], #8\n"
6680 "ldr x4, [x2], #8\n"
6681 "ins v12.d[1], x4\n"
6682 // Compute lhs_sums * rhs_zero_point.
6683 "mul v11.4s, v11.4s, v13.s[1]\n"
6684 "mul v12.4s, v12.4s, v13.s[1]\n"
6685 // Subtract lhs_sums * rhs_zero_point, per
6686 // equation (7) in https://arxiv.org/pdf/1712.05877.pdf
6687 "sub v16.4s, v16.4s, v11.4s\n"
6688 "sub v17.4s, v17.4s, v12.4s\n"
6689 "sub v18.4s, v18.4s, v11.4s\n"
6690 "sub v19.4s, v19.4s, v12.4s\n"
6691 "sub v20.4s, v20.4s, v11.4s\n"
6692 "sub v21.4s, v21.4s, v12.4s\n"
6693 "sub v22.4s, v22.4s, v11.4s\n"
6694 "sub v23.4s, v23.4s, v12.4s\n"
6695 "sub v24.4s, v24.4s, v11.4s\n"
6696 "sub v25.4s, v25.4s, v12.4s\n"
6697 "sub v26.4s, v26.4s, v11.4s\n"
6698 "sub v27.4s, v27.4s, v12.4s\n"
6699 "sub v28.4s, v28.4s, v11.4s\n"
6700 "sub v29.4s, v29.4s, v12.4s\n"
6701 "sub v30.4s, v30.4s, v11.4s\n"
6702 "sub v31.4s, v31.4s, v12.4s\n"
6703
6704 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT32) "\n"
6705 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT32) "f\n"
6706
6707 "402:\n"
6708
6709 // At this point we have computed the final int32 values. Now we
6710 // start down-quantizing them to obtain the final 8bit values from them.
6711
6712 // As part of this down-quantization, our int32 values will be
6713 // multiplied by a multiplier that has a fixed-point component and an
6714 // exponent component.
6715
6716 //Load the exponent part of the multiplier.
6717 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_EXPONENT) "]\n"
6718 // Compute the multiplier_exponent pointer
6719 "ldrb w6, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
6720 "tst w6, #" RUY_STR(RUY_ASM_FLAG_HAS_PERCHANNEL) "\n"
6721 "add x5, x1, x3, lsl #2\n"
6722 "csel x1, x1, x5, eq\n"
6723 // Load multiplier_exponent
6724 "ldr q9, [x1]\n"
6725 "ldr q10, [x1, #16]\n"
6726 // Separate positive and negative exponents
6727 "smin v11.4s, v8.4s, v9.4s\n"
6728 "smin v12.4s, v8.4s, v10.4s\n"
6729 "sub v9.4s, v9.4s, v11.4s\n"
6730 "sub v10.4s, v10.4s, v12.4s\n"
6731
6732 // Compute the multiplier_fixedpoint pointer
6733 "ldr x4, [%[params], #" RUY_STR(RUY_OFFSET_MULTIPLIER_FIXEDPOINT) "]\n"
6734 "add x5, x4, x3, lsl #2\n"
6735 "csel x4, x4, x5, eq\n"
6736 // Load multiplier_fixedpoint
6737 "ldr q14, [x4]\n"
6738 "ldr q15, [x4, #16]\n"
6739
6740 // Jump based on channel dimension.
6741 "tst w6, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
6742 "bne 8f\n"
6743 // Case where channels are rows
6744
6745 // Apply the positive exponent part of the multiplier.
6746 "sshl v16.4s, v16.4s, v9.4s\n"
6747 "sshl v17.4s, v17.4s, v10.4s\n"
6748 "sshl v18.4s, v18.4s, v9.4s\n"
6749 "sshl v19.4s, v19.4s, v10.4s\n"
6750 "sshl v20.4s, v20.4s, v9.4s\n"
6751 "sshl v21.4s, v21.4s, v10.4s\n"
6752 "sshl v22.4s, v22.4s, v9.4s\n"
6753 "sshl v23.4s, v23.4s, v10.4s\n"
6754 "sshl v24.4s, v24.4s, v9.4s\n"
6755 "sshl v25.4s, v25.4s, v10.4s\n"
6756 "sshl v26.4s, v26.4s, v9.4s\n"
6757 "sshl v27.4s, v27.4s, v10.4s\n"
6758 "sshl v28.4s, v28.4s, v9.4s\n"
6759 "sshl v29.4s, v29.4s, v10.4s\n"
6760 "sshl v30.4s, v30.4s, v9.4s\n"
6761 "sshl v31.4s, v31.4s, v10.4s\n"
6762 "10:\n"
6763
6764 // Apply the fixed-point part of the multiplier.
6765 //
6766 // ... and, interleaved into that:
6767 // Now that we know what LHS and RHS data the next iteration of the
6768 // main loop will need to load, we start loading the first 32 bytes of
6769 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
6770 // in the rest of the work on the current block.
6771 "ld1 {v0.8b}, [%[lhs_ptr]], #8\n"
6772 "sqdmulh v16.4s, v16.4s, v14.4s\n"
6773 "ldr x1, [%[lhs_ptr]], #8\n"
6774 "sqdmulh v17.4s, v17.4s, v15.4s\n"
6775 "ld1 {v1.8b}, [%[lhs_ptr]], #8\n"
6776 "sqdmulh v18.4s, v18.4s, v14.4s\n"
6777 "ldr x2, [%[lhs_ptr]], #8\n"
6778 "sqdmulh v19.4s, v19.4s, v15.4s\n"
6779 "ld1 {v2.8b}, [%[rhs_ptr]], #8\n"
6780 "sqdmulh v20.4s, v20.4s, v14.4s\n"
6781 "ldr x5, [%[rhs_ptr]], #8\n"
6782 "sqdmulh v21.4s, v21.4s, v15.4s\n"
6783 "ld1 {v3.8b}, [%[rhs_ptr]], #8\n"
6784 "sqdmulh v22.4s, v22.4s, v14.4s\n"
6785 "ldr x6, [%[rhs_ptr]], #8\n"
6786 "sqdmulh v23.4s, v23.4s, v15.4s\n"
6787 "sqdmulh v24.4s, v24.4s, v14.4s\n"
6788 "sqdmulh v25.4s, v25.4s, v15.4s\n"
6789 "sqdmulh v26.4s, v26.4s, v14.4s\n"
6790 "sqdmulh v27.4s, v27.4s, v15.4s\n"
6791 "sqdmulh v28.4s, v28.4s, v14.4s\n"
6792 "sqdmulh v29.4s, v29.4s, v15.4s\n"
6793 "sqdmulh v30.4s, v30.4s, v14.4s\n"
6794 "sqdmulh v31.4s, v31.4s, v15.4s\n"
6795
6796 // Apply the negative exponent part of the multiplier.
6797 "srshl v16.4s, v16.4s, v11.4s\n"
6798 "srshl v17.4s, v17.4s, v12.4s\n"
6799 "srshl v18.4s, v18.4s, v11.4s\n"
6800 "srshl v19.4s, v19.4s, v12.4s\n"
6801 "srshl v20.4s, v20.4s, v11.4s\n"
6802 "srshl v21.4s, v21.4s, v12.4s\n"
6803 "srshl v22.4s, v22.4s, v11.4s\n"
6804 "srshl v23.4s, v23.4s, v12.4s\n"
6805 "srshl v24.4s, v24.4s, v11.4s\n"
6806 "srshl v25.4s, v25.4s, v12.4s\n"
6807 "ldr w4, [%[params], #" RUY_STR(RUY_OFFSET_DST_ZERO_POINT) "]\n"
6808 "srshl v26.4s, v26.4s, v11.4s\n"
6809 "ins v13.h[4], w4\n" // dst_zero_point
6810 "srshl v27.4s, v27.4s, v12.4s\n"
6811 "ins v0.d[1], x1\n"
6812 "srshl v28.4s, v28.4s, v11.4s\n"
6813 "ins v1.d[1], x2\n"
6814 "srshl v29.4s, v29.4s, v12.4s\n"
6815 "ins v2.d[1], x5\n"
6816 "srshl v30.4s, v30.4s, v11.4s\n"
6817 "ins v3.d[1], x6\n"
6818 "srshl v31.4s, v31.4s, v12.4s\n"
6819 "b 9f\n"
6820
6821 "8:\n"
6822 // Case where channels are columns
6823
6824 // Apply the positive exponent part of the multiplier.
6825 "dup v4.4s, v9.s[0]\n"
6826 "dup v5.4s, v9.s[1]\n"
6827 "sshl v16.4s, v16.4s, v4.4s\n"
6828 "dup v6.4s, v9.s[2]\n"
6829 "sshl v17.4s, v17.4s, v4.4s\n"
6830 "dup v7.4s, v9.s[3]\n"
6831 "sshl v18.4s, v18.4s, v5.4s\n"
6832 "dup v4.4s, v10.s[0]\n"
6833 "sshl v19.4s, v19.4s, v5.4s\n"
6834 "dup v5.4s, v10.s[1]\n"
6835 "sshl v20.4s, v20.4s, v6.4s\n"
6836 "sshl v21.4s, v21.4s, v6.4s\n"
6837 "dup v6.4s, v10.s[2]\n"
6838 "sshl v22.4s, v22.4s, v7.4s\n"
6839 "sshl v23.4s, v23.4s, v7.4s\n"
6840 "dup v7.4s, v10.s[3]\n"
6841 "sshl v24.4s, v24.4s, v4.4s\n"
6842 "sshl v25.4s, v25.4s, v4.4s\n"
6843 "sshl v26.4s, v26.4s, v5.4s\n"
6844 "sshl v27.4s, v27.4s, v5.4s\n"
6845 "sshl v28.4s, v28.4s, v6.4s\n"
6846 "sshl v29.4s, v29.4s, v6.4s\n"
6847 "sshl v30.4s, v30.4s, v7.4s\n"
6848 "sshl v31.4s, v31.4s, v7.4s\n"
6849 "11:\n"
6850
6851 // Apply the fixed-point part of the multiplier.
6852 //
6853 // ... and, interleaved into that:
6854 // Now that we know what LHS and RHS data the next iteration of the
6855 // main loop will need to load, we start loading the first 32 bytes of
6856 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
6857 // in the rest of the work on the current block.
6858 "ld1 {v0.8b}, [%[lhs_ptr]], #8\n"
6859 "sqdmulh v16.4s, v16.4s, v14.s[0]\n"
6860 "ldr x1, [%[lhs_ptr]], #8\n"
6861 "sqdmulh v17.4s, v17.4s, v14.s[0]\n"
6862 "ld1 {v1.8b}, [%[lhs_ptr]], #8\n"
6863 "sqdmulh v18.4s, v18.4s, v14.s[1]\n"
6864 "ldr x2, [%[lhs_ptr]], #8\n"
6865 "sqdmulh v19.4s, v19.4s, v14.s[1]\n"
6866 "ld1 {v2.8b}, [%[rhs_ptr]], #8\n"
6867 "sqdmulh v20.4s, v20.4s, v14.s[2]\n"
6868 "ldr x5, [%[rhs_ptr]], #8\n"
6869 "sqdmulh v21.4s, v21.4s, v14.s[2]\n"
6870 "ld1 {v3.8b}, [%[rhs_ptr]], #8\n"
6871 "sqdmulh v22.4s, v22.4s, v14.s[3]\n"
6872 "ldr x6, [%[rhs_ptr]], #8\n"
6873 "sqdmulh v23.4s, v23.4s, v14.s[3]\n"
6874 "dup v4.4s, v11.s[0]\n"
6875 "sqdmulh v24.4s, v24.4s, v15.s[0]\n"
6876 "dup v5.4s, v11.s[1]\n"
6877 "sqdmulh v25.4s, v25.4s, v15.s[0]\n"
6878 "dup v6.4s, v11.s[2]\n"
6879 "sqdmulh v26.4s, v26.4s, v15.s[1]\n"
6880 "dup v7.4s, v11.s[3]\n"
6881 "sqdmulh v27.4s, v27.4s, v15.s[1]\n"
6882 "sqdmulh v28.4s, v28.4s, v15.s[2]\n"
6883 "sqdmulh v29.4s, v29.4s, v15.s[2]\n"
6884 "sqdmulh v30.4s, v30.4s, v15.s[3]\n"
6885 "sqdmulh v31.4s, v31.4s, v15.s[3]\n"
6886
6887 // Apply the negative exponent part of the multiplier.
6888 "srshl v16.4s, v16.4s, v4.4s\n"
6889 "srshl v17.4s, v17.4s, v4.4s\n"
6890 "dup v4.4s, v12.s[0]\n"
6891 "srshl v18.4s, v18.4s, v5.4s\n"
6892 "srshl v19.4s, v19.4s, v5.4s\n"
6893 "dup v5.4s, v12.s[1]\n"
6894 "srshl v20.4s, v20.4s, v6.4s\n"
6895 "srshl v21.4s, v21.4s, v6.4s\n"
6896 "dup v6.4s, v12.s[2]\n"
6897 "srshl v22.4s, v22.4s, v7.4s\n"
6898 "srshl v23.4s, v23.4s, v7.4s\n"
6899 "dup v7.4s, v12.s[3]\n"
6900 "srshl v24.4s, v24.4s, v4.4s\n"
6901 "ldr w4, [%[params], #" RUY_STR(RUY_OFFSET_DST_ZERO_POINT) "]\n"
6902 "srshl v25.4s, v25.4s, v4.4s\n"
6903 "ins v13.h[4], w4\n" // dst_zero_point
6904 "srshl v26.4s, v26.4s, v5.4s\n"
6905 "ins v0.d[1], x1\n"
6906 "srshl v27.4s, v27.4s, v5.4s\n"
6907 "ins v1.d[1], x2\n"
6908 "srshl v28.4s, v28.4s, v6.4s\n"
6909 "ins v2.d[1], x5\n"
6910 "srshl v29.4s, v29.4s, v6.4s\n"
6911 "ins v3.d[1], x6\n"
6912 "srshl v30.4s, v30.4s, v7.4s\n"
6913 "srshl v31.4s, v31.4s, v7.4s\n"
6914 "9:\n"
6915
6916 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT16) "\n"
6917 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT16) "f\n"
6918 "cmp %w[dst_type_id], #" RUY_STR(RUY_ASM_TYPE_ID_INT8) "\n"
6919 "beq " RUY_STR(RUY_ASM_LABEL_STORE_INT8) "f\n"
6920
6921 RUY_STR(RUY_ASM_LABEL_STORE_UINT8) ":\n"
6922
6923 // Cast-and-saturate from int32 to int16
6924 "sqxtn v16.4h, v16.4s\n"
6925 "sqxtn2 v16.8h, v17.4s\n"
6926 "sqxtn v17.4h, v18.4s\n"
6927 "sqxtn2 v17.8h, v19.4s\n"
6928 "sqxtn v18.4h, v20.4s\n"
6929 "sqxtn2 v18.8h, v21.4s\n"
6930 "sqxtn v19.4h, v22.4s\n"
6931 "sqxtn2 v19.8h, v23.4s\n"
6932 "sqxtn v20.4h, v24.4s\n"
6933 "sqxtn2 v20.8h, v25.4s\n"
6934 "sqxtn v21.4h, v26.4s\n"
6935 "sqxtn2 v21.8h, v27.4s\n"
6936 "sqxtn v22.4h, v28.4s\n"
6937 "sqxtn2 v22.8h, v29.4s\n"
6938 "sqxtn v23.4h, v30.4s\n"
6939 "sqxtn2 v23.8h, v31.4s\n"
6940
6941 // Destination zero_point
6942 "dup v14.8h, v13.h[4]\n"
6943 // At this point, v24 -- v31 aren't used anymore for the current block,
6944 // so we can start clearing these accumulators for the next block
6945 // (next iteration of the main loop).
6946 RUY_MAKE_ZERO(v24)
6947 RUY_MAKE_ZERO(v25)
6948 RUY_MAKE_ZERO(v26)
6949 RUY_MAKE_ZERO(v27)
6950 RUY_MAKE_ZERO(v28)
6951 RUY_MAKE_ZERO(v29)
6952 RUY_MAKE_ZERO(v30)
6953 RUY_MAKE_ZERO(v31)
6954
6955 // Add the destination zero point
6956 "sqadd v16.8h, v16.8h, v14.8h\n"
6957 "sqadd v17.8h, v17.8h, v14.8h\n"
6958 "sqadd v18.8h, v18.8h, v14.8h\n"
6959 "sqadd v19.8h, v19.8h, v14.8h\n"
6960 "sqadd v20.8h, v20.8h, v14.8h\n"
6961 "sqadd v21.8h, v21.8h, v14.8h\n"
6962 "sqadd v22.8h, v22.8h, v14.8h\n"
6963 "sqadd v23.8h, v23.8h, v14.8h\n"
6964
6965 // Load the clamp_min, clamp_max bounds
6966 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
6967 // Cast-and-saturate from int16 to uint8
6968 "sqxtun v16.8b, v16.8h\n"
6969 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
6970 "sqxtun2 v16.16b, v17.8h\n"
6971 "sqxtun v17.8b, v18.8h\n"
6972 "sqxtun2 v17.16b, v19.8h\n"
6973 "sqxtun v18.8b, v20.8h\n"
6974 "sqxtun2 v18.16b, v21.8h\n"
6975 "sqxtun v19.8b, v22.8h\n"
6976 "sqxtun2 v19.16b, v23.8h\n"
6977
6978 "dup v14.16b, w2\n" // clamp_min
6979 "dup v15.16b, w3\n" // clamp_max
6980
6981 // Compute how much of the 8x8 block of destination 8bit values that
6982 // we have computed, fit in the destination matrix. Typically, all of
6983 // it fits, but when the destination matrix shape is not a multiple
6984 // of 8x8, there are some 8x8 blocks along the boundaries that do
6985 // not fit entirely.
6986 "sub w1, %w[dst_rows], %w[row]\n"
6987 // Apply the clamp_min bound
6988 "umax v16.16b, v16.16b, v14.16b\n"
6989 "sub w2, %w[dst_cols], %w[col]\n"
6990 "umax v17.16b, v17.16b, v14.16b\n"
6991 "mov w3, #8\n"
6992 "umax v18.16b, v18.16b, v14.16b\n"
6993 "cmp w1, #8\n"
6994 "umax v19.16b, v19.16b, v14.16b\n"
6995 // Compute w1 = how many rows of the 8x8 block fit
6996 "csel w1, w1, w3, le\n"
6997 // Apply the clamp_max bound
6998 "umin v16.16b, v16.16b, v15.16b\n"
6999 "cmp w2, #8\n"
7000 "umin v17.16b, v17.16b, v15.16b\n"
7001 // Compute w2 = how many cols of the 8x8 block fit
7002 "csel w2, w2, w3, le\n"
7003 "umin v18.16b, v18.16b, v15.16b\n"
7004 "umin v19.16b, v19.16b, v15.16b\n"
7005
7006 // Make it so that all of the final 8bit values are stored in the
7007 // first 64bits of 128bit NEON registers, so they can be stored
7008 // by 64bit st1 store instructions with byte alignment.
7009 "dup d20, v16.d[1]\n"
7010 "dup d21, v17.d[1]\n"
7011 "dup d22, v18.d[1]\n"
7012 "dup d23, v19.d[1]\n"
7013
7014 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
7015 "cmp w1, w3\n"
7016 "ccmp w2, w3, 0, eq\n"
7017 // Yes, all of the 8x8 block fits, go to fast path.
7018 "beq 30f\n"
7019 // Not all of the 8x8 block fits.
7020 // Set (x3 address, x4 stride) to write to dst_tmp_buf
7021 "mov x3, %[dst_tmp_buf]\n"
7022 "mov x4, #8\n"
7023 "b 31f\n"
7024 "30:\n"
7025 // Yes, all of the 8x8 block fits.
7026 // Set (x3 address, x4 stride) to write directly to destination matrix.
7027 "mov x3, %[dst_ptr]\n"
7028 "mov x4, x11\n"
7029 "31:\n"
7030
7031 // Write our 8bit values to the destination described by
7032 // (x3 address, x4 stride).
7033 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7034 "st1 {v16.8b}, [x3], x4\n"
7035 RUY_MAKE_ZERO(v16)
7036 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7037 "st1 {v20.8b}, [x3], x4\n"
7038 RUY_MAKE_ZERO(v20)
7039 // For the next block: perform the first few multiply-adds on the data
7040 // that we have already loaded.
7041 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
7042 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7043 "st1 {v17.8b}, [x3], x4\n"
7044 RUY_MAKE_ZERO(v17)
7045 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
7046 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7047 "st1 {v21.8b}, [x3], x4\n"
7048 RUY_MAKE_ZERO(v21)
7049 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7050 "st1 {v18.8b}, [x3], x4\n"
7051 RUY_MAKE_ZERO(v18)
7052 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7053 "st1 {v22.8b}, [x3], x4\n"
7054 RUY_MAKE_ZERO(v22)
7055 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
7056 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7057 "st1 {v19.8b}, [x3], x4\n"
7058 RUY_MAKE_ZERO(v19)
7059 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
7060 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7061 "st1 {v23.8b}, [x3], x4\n"
7062 RUY_MAKE_ZERO(v23)
7063
7064 // If all of the 8x8 block fits, we just finished writing it to the
7065 // destination, so we skip the next part.
7066 "beq 41f\n"
7067 // Not all of the 8x8 block fits in the destination matrix. We just
7068 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
7069 // it to copy into the destination matrix the part that fits.
7070 "mov x3, %[dst_tmp_buf]\n"
7071 "mov x4, %[dst_ptr]\n"
7072 "mov w6, #0\n"
7073 "50:\n"
7074 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7075 "mov w5, #0\n"
7076 "51:\n"
7077 "ldrb w7, [x3, w5, uxtw]\n"
7078 "strb w7, [x4, w5, uxtw]\n"
7079 "add w5, w5, #1\n"
7080 "cmp w5, w1\n"
7081 "blt 51b\n"
7082 "add w6, w6, #1\n"
7083 "add x3, x3, #8\n"
7084 "add x4, x4, x11\n"
7085 "cmp w6, w2\n"
7086 "blt 50b\n"
7087 "41:\n"
7088 "add %[dst_ptr], %[dst_ptr], #8\n"
7089
7090 // At this point we have completely finished writing values to the
7091 // destination matrix for the current block.
7092
7093 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
7094
7095 RUY_STR(RUY_ASM_LABEL_STORE_INT8) ":\n"
7096
7097 // Cast-and-saturate from int32 to int16
7098 "sqxtn v16.4h, v16.4s\n"
7099 "sqxtn2 v16.8h, v17.4s\n"
7100 "sqxtn v17.4h, v18.4s\n"
7101 "sqxtn2 v17.8h, v19.4s\n"
7102 "sqxtn v18.4h, v20.4s\n"
7103 "sqxtn2 v18.8h, v21.4s\n"
7104 "sqxtn v19.4h, v22.4s\n"
7105 "sqxtn2 v19.8h, v23.4s\n"
7106 "sqxtn v20.4h, v24.4s\n"
7107 "sqxtn2 v20.8h, v25.4s\n"
7108 "sqxtn v21.4h, v26.4s\n"
7109 "sqxtn2 v21.8h, v27.4s\n"
7110 "sqxtn v22.4h, v28.4s\n"
7111 "sqxtn2 v22.8h, v29.4s\n"
7112 "sqxtn v23.4h, v30.4s\n"
7113 "sqxtn2 v23.8h, v31.4s\n"
7114
7115 // Destination zero_point
7116 "dup v14.8h, v13.h[4]\n"
7117 // At this point, v24 -- v31 aren't used anymore for the current block,
7118 // so we can start clearing these accumulators for the next block
7119 // (next iteration of the main loop).
7120 RUY_MAKE_ZERO(v24)
7121 RUY_MAKE_ZERO(v25)
7122 RUY_MAKE_ZERO(v26)
7123 RUY_MAKE_ZERO(v27)
7124 RUY_MAKE_ZERO(v28)
7125 RUY_MAKE_ZERO(v29)
7126 RUY_MAKE_ZERO(v30)
7127 RUY_MAKE_ZERO(v31)
7128
7129 // Add the destination zero point
7130 "sqadd v16.8h, v16.8h, v14.8h\n"
7131 "sqadd v17.8h, v17.8h, v14.8h\n"
7132 "sqadd v18.8h, v18.8h, v14.8h\n"
7133 "sqadd v19.8h, v19.8h, v14.8h\n"
7134 "sqadd v20.8h, v20.8h, v14.8h\n"
7135 "sqadd v21.8h, v21.8h, v14.8h\n"
7136 "sqadd v22.8h, v22.8h, v14.8h\n"
7137 "sqadd v23.8h, v23.8h, v14.8h\n"
7138
7139 // Load the clamp_min, clamp_max bounds
7140 "ldrb w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
7141 // Cast-and-saturate from int16 to uint8
7142 "sqxtn v16.8b, v16.8h\n"
7143 "ldrb w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
7144 "sqxtn2 v16.16b, v17.8h\n"
7145 "sqxtn v17.8b, v18.8h\n"
7146 "sqxtn2 v17.16b, v19.8h\n"
7147 "sqxtn v18.8b, v20.8h\n"
7148 "sqxtn2 v18.16b, v21.8h\n"
7149 "sqxtn v19.8b, v22.8h\n"
7150 "sqxtn2 v19.16b, v23.8h\n"
7151
7152 "dup v14.16b, w2\n" // clamp_min
7153 "dup v15.16b, w3\n" // clamp_max
7154
7155 // Compute how much of the 8x8 block of destination 8bit values that
7156 // we have computed, fit in the destination matrix. Typically, all of
7157 // it fits, but when the destination matrix shape is not a multiple
7158 // of 8x8, there are some 8x8 blocks along the boundaries that do
7159 // not fit entirely.
7160 "sub w1, %w[dst_rows], %w[row]\n"
7161 // Apply the clamp_min bound
7162 "smax v16.16b, v16.16b, v14.16b\n"
7163 "sub w2, %w[dst_cols], %w[col]\n"
7164 "smax v17.16b, v17.16b, v14.16b\n"
7165 "mov w3, #8\n"
7166 "smax v18.16b, v18.16b, v14.16b\n"
7167 "cmp w1, #8\n"
7168 "smax v19.16b, v19.16b, v14.16b\n"
7169 // Compute w1 = how many rows of the 8x8 block fit
7170 "csel w1, w1, w3, le\n"
7171 // Apply the clamp_max bound
7172 "smin v16.16b, v16.16b, v15.16b\n"
7173 "cmp w2, #8\n"
7174 "smin v17.16b, v17.16b, v15.16b\n"
7175 // Compute w2 = how many cols of the 8x8 block fit
7176 "csel w2, w2, w3, le\n"
7177 "smin v18.16b, v18.16b, v15.16b\n"
7178 "smin v19.16b, v19.16b, v15.16b\n"
7179
7180 // Make it so that all of the final 8bit values are stored in the
7181 // first 64bits of 128bit NEON registers, so they can be stored
7182 // by 64bit st1 store instructions with byte alignment.
7183 "dup d20, v16.d[1]\n"
7184 "dup d21, v17.d[1]\n"
7185 "dup d22, v18.d[1]\n"
7186 "dup d23, v19.d[1]\n"
7187
7188 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
7189 "cmp w1, w3\n"
7190 "ccmp w2, w3, 0, eq\n"
7191 // Yes, all of the 8x8 block fits, go to fast path.
7192 "beq 130f\n"
7193 // Not all of the 8x8 block fits.
7194 // Set (x3 address, x4 stride) to write to dst_tmp_buf
7195 "mov x3, %[dst_tmp_buf]\n"
7196 "mov x4, #8\n"
7197 "b 131f\n"
7198 "130:\n"
7199 // Yes, all of the 8x8 block fits.
7200 // Set (x3 address, x4 stride) to write directly to destination matrix.
7201 "mov x3, %[dst_ptr]\n"
7202 "mov x4, x11\n"
7203 "131:\n"
7204
7205 // Write our 8bit values to the destination described by
7206 // (x3 address, x4 stride).
7207 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7208 "st1 {v16.8b}, [x3], x4\n"
7209 RUY_MAKE_ZERO(v16)
7210 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7211 "st1 {v20.8b}, [x3], x4\n"
7212 RUY_MAKE_ZERO(v20)
7213 // For the next block: perform the first few multiply-adds on the data
7214 // that we have already loaded.
7215 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
7216 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7217 "st1 {v17.8b}, [x3], x4\n"
7218 RUY_MAKE_ZERO(v17)
7219 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
7220 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7221 "st1 {v21.8b}, [x3], x4\n"
7222 RUY_MAKE_ZERO(v21)
7223 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7224 "st1 {v18.8b}, [x3], x4\n"
7225 RUY_MAKE_ZERO(v18)
7226 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7227 "st1 {v22.8b}, [x3], x4\n"
7228 RUY_MAKE_ZERO(v22)
7229 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
7230 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7231 "st1 {v19.8b}, [x3], x4\n"
7232 RUY_MAKE_ZERO(v19)
7233 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
7234 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7235 "st1 {v23.8b}, [x3], x4\n"
7236 RUY_MAKE_ZERO(v23)
7237
7238 // If all of the 8x8 block fits, we just finished writing it to the
7239 // destination, so we skip the next part.
7240 "beq 141f\n"
7241 // Not all of the 8x8 block fits in the destination matrix. We just
7242 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
7243 // it to copy into the destination matrix the part that fits.
7244 "mov x3, %[dst_tmp_buf]\n"
7245 "mov x4, %[dst_ptr]\n"
7246 "mov w6, #0\n"
7247 "150:\n"
7248 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7249 "mov w5, #0\n"
7250 "151:\n"
7251 "ldrb w7, [x3, w5, uxtw]\n"
7252 "strb w7, [x4, w5, uxtw]\n"
7253 "add w5, w5, #1\n"
7254 "cmp w5, w1\n"
7255 "blt 151b\n"
7256 "add w6, w6, #1\n"
7257 "add x3, x3, #8\n"
7258 "add x4, x4, x11\n"
7259 "cmp w6, w2\n"
7260 "blt 150b\n"
7261 "141:\n"
7262 "add %[dst_ptr], %[dst_ptr], #8\n"
7263
7264 // At this point we have completely finished writing values to the
7265 // destination matrix for the current block.
7266
7267 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
7268
7269 RUY_STR(RUY_ASM_LABEL_STORE_INT16) ":\n"
7270
7271 // Add the destination zero point
7272 "dup v14.8h, v13.h[4]\n"
7273 "saddw v16.4s, v16.4s, v14.4h\n"
7274 "saddw v17.4s, v17.4s, v14.4h\n"
7275 "saddw v18.4s, v18.4s, v14.4h\n"
7276 "saddw v19.4s, v19.4s, v14.4h\n"
7277 "saddw v20.4s, v20.4s, v14.4h\n"
7278 "saddw v21.4s, v21.4s, v14.4h\n"
7279 "saddw v22.4s, v22.4s, v14.4h\n"
7280 "saddw v23.4s, v23.4s, v14.4h\n"
7281 "saddw v24.4s, v24.4s, v14.4h\n"
7282 "saddw v25.4s, v25.4s, v14.4h\n"
7283 "saddw v26.4s, v26.4s, v14.4h\n"
7284 "saddw v27.4s, v27.4s, v14.4h\n"
7285 "saddw v28.4s, v28.4s, v14.4h\n"
7286 "saddw v29.4s, v29.4s, v14.4h\n"
7287 "saddw v30.4s, v30.4s, v14.4h\n"
7288 "saddw v31.4s, v31.4s, v14.4h\n"
7289
7290 // Cast-and-saturate from int32 to int16
7291 "sqxtn v16.4h, v16.4s\n"
7292 "sqxtn2 v16.8h, v17.4s\n"
7293 "sqxtn v17.4h, v18.4s\n"
7294 "sqxtn2 v17.8h, v19.4s\n"
7295 "sqxtn v18.4h, v20.4s\n"
7296 "sqxtn2 v18.8h, v21.4s\n"
7297 "sqxtn v19.4h, v22.4s\n"
7298 "sqxtn2 v19.8h, v23.4s\n"
7299 "sqxtn v20.4h, v24.4s\n"
7300 "sqxtn2 v20.8h, v25.4s\n"
7301 "sqxtn v21.4h, v26.4s\n"
7302 "sqxtn2 v21.8h, v27.4s\n"
7303 "sqxtn v22.4h, v28.4s\n"
7304 "sqxtn2 v22.8h, v29.4s\n"
7305 "sqxtn v23.4h, v30.4s\n"
7306 "sqxtn2 v23.8h, v31.4s\n"
7307
7308 // At this point, v24 -- v31 aren't used anymore for the current block,
7309 // so we can start clearing these accumulators for the next block
7310 // (next iteration of the main loop).
7311 RUY_MAKE_ZERO(v24)
7312 RUY_MAKE_ZERO(v25)
7313 RUY_MAKE_ZERO(v26)
7314 RUY_MAKE_ZERO(v27)
7315 RUY_MAKE_ZERO(v28)
7316 RUY_MAKE_ZERO(v29)
7317 RUY_MAKE_ZERO(v30)
7318 RUY_MAKE_ZERO(v31)
7319
7320 // Load the clamp_min, clamp_max bounds
7321 "ldrsh w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
7322 "ldrsh w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
7323 "dup v14.8h, w2\n" // clamp_min
7324 "dup v15.8h, w3\n" // clamp_max
7325
7326 // Apply the clamp_min bound
7327 "smax v16.8h, v16.8h, v14.8h\n"
7328 "smax v17.8h, v17.8h, v14.8h\n"
7329 "smax v18.8h, v18.8h, v14.8h\n"
7330 "smax v19.8h, v19.8h, v14.8h\n"
7331 "smax v20.8h, v20.8h, v14.8h\n"
7332 "smax v21.8h, v21.8h, v14.8h\n"
7333 "smax v22.8h, v22.8h, v14.8h\n"
7334 "smax v23.8h, v23.8h, v14.8h\n"
7335 // Apply the clamp_max bound
7336 "smin v16.8h, v16.8h, v15.8h\n"
7337 "smin v17.8h, v17.8h, v15.8h\n"
7338 "smin v18.8h, v18.8h, v15.8h\n"
7339 "smin v19.8h, v19.8h, v15.8h\n"
7340 "smin v20.8h, v20.8h, v15.8h\n"
7341 "smin v21.8h, v21.8h, v15.8h\n"
7342 "smin v22.8h, v22.8h, v15.8h\n"
7343 "smin v23.8h, v23.8h, v15.8h\n"
7344
7345 // Compute how much of the 8x8 block of destination 16bit values that
7346 // we have computed, fit in the destination matrix. Typically, all of
7347 // it fits, but when the destination matrix shape is not a multiple
7348 // of 8x8, there are some 8x8 blocks along the boundaries that do
7349 // not fit entirely.
7350 "sub w1, %w[dst_rows], %w[row]\n"
7351 "sub w2, %w[dst_cols], %w[col]\n"
7352 "mov w3, #8\n"
7353 "cmp w1, #8\n"
7354 // Compute w1 = how many rows of the 8x8 block fit
7355 "csel w1, w1, w3, le\n"
7356 "cmp w2, #8\n"
7357 // Compute w1 = how many rows of the 8x8 block fit
7358 "csel w2, w2, w3, le\n"
7359
7360 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
7361 "cmp w1, w3\n"
7362 "ccmp w2, w3, 0, eq\n"
7363 // Yes, all of the 8x8 block fits, go to fast path.
7364 "beq 230f\n"
7365 // Not all of the 8x8 block fits.
7366 // Set (x3 address, x4 stride) to write to dst_tmp_buf
7367 "mov x3, %[dst_tmp_buf]\n"
7368 "mov x4, #16\n"
7369 "b 231f\n"
7370 "230:\n"
7371 // Yes, all of the 8x8 block fits.
7372 // Set (x3 address, x4 stride) to write directly to destination matrix.
7373 "mov x3, %[dst_ptr]\n"
7374 "mov x4, x11\n"
7375 "231:\n"
7376
7377 // Write our 8bit values to the destination described by
7378 // (x3 address, x4 stride).
7379 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7380 "st1 {v16.8h}, [x3], x4\n"
7381 RUY_MAKE_ZERO(v16)
7382 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7383 "st1 {v17.8h}, [x3], x4\n"
7384 RUY_MAKE_ZERO(v17)
7385 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7386 "st1 {v18.8h}, [x3], x4\n"
7387 RUY_MAKE_ZERO(v18)
7388 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7389 "st1 {v19.8h}, [x3], x4\n"
7390 RUY_MAKE_ZERO(v19)
7391 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7392 "st1 {v20.8h}, [x3], x4\n"
7393 RUY_MAKE_ZERO(v20)
7394 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7395 "st1 {v21.8h}, [x3], x4\n"
7396 RUY_MAKE_ZERO(v21)
7397 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7398 "st1 {v22.8h}, [x3], x4\n"
7399 RUY_MAKE_ZERO(v22)
7400 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
7401 "st1 {v23.8h}, [x3], x4\n"
7402 RUY_MAKE_ZERO(v23)
7403
7404 // For the next block: perform the first few multiply-adds on the data
7405 // that we have already loaded.
7406 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
7407 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
7408 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
7409 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
7410
7411 // If all of the 8x8 block fits, we just finished writing it to the
7412 // destination, so we skip the next part.
7413 "beq 241f\n"
7414 // Not all of the 8x8 block fits in the destination matrix. We just
7415 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
7416 // it to copy into the destination matrix the part that fits.
7417 "mov x3, %[dst_tmp_buf]\n"
7418 "mov x4, %[dst_ptr]\n"
7419 "mov w6, #0\n"
7420 "250:\n"
7421 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7422 "mov w5, #0\n"
7423 "251:\n"
7424 "ldrsh w7, [x3, x5, lsl #1]\n"
7425 "strh w7, [x4, x5, lsl #1]\n"
7426 "add w5, w5, #1\n"
7427 "cmp w5, w1\n"
7428 "blt 251b\n"
7429 "add w6, w6, #1\n"
7430 "add x3, x3, #16\n"
7431 "add x4, x4, x11\n"
7432 "cmp w6, w2\n"
7433 "blt 250b\n"
7434 "241:\n"
7435 "add %[dst_ptr], %[dst_ptr], #16\n"
7436 // At this point we have completely finished writing values to the
7437 // destination matrix for the current block.
7438
7439 "b " RUY_STR(RUY_ASM_LABEL_AFTER_STORE) "f\n"
7440
7441 RUY_STR(RUY_ASM_LABEL_STORE_INT32) ":\n"
7442
7443 "ld1 {v0.8b}, [%[lhs_ptr]], #8\n"
7444 "ldr x1, [%[lhs_ptr]], #8\n"
7445 "ld1 {v1.8b}, [%[lhs_ptr]], #8\n"
7446 "ldr x2, [%[lhs_ptr]], #8\n"
7447 "ld1 {v2.8b}, [%[rhs_ptr]], #8\n"
7448 "ldr x5, [%[rhs_ptr]], #8\n"
7449 "ld1 {v3.8b}, [%[rhs_ptr]], #8\n"
7450 "ldr x6, [%[rhs_ptr]], #8\n"
7451 "ins v0.d[1], x1\n"
7452 "ins v1.d[1], x2\n"
7453 "ins v2.d[1], x5\n"
7454 "ins v3.d[1], x6\n"
7455
7456 // Since the store type is the same as the accum type, no need for
7457 // downcast. There's also no need for clamp by min/max.
7458
7459 // Compute how much of the 8x8 block of destination 32it values that
7460 // we have computed, fit in the destination matrix. Typically, all of
7461 // it fits, but when the destination matrix shape is not a multiple
7462 // of 8x8, there are some 8x8 blocks along the boundaries that do
7463 // not fit entirely.
7464 "sub w1, %w[dst_rows], %w[row]\n"
7465 "sub w2, %w[dst_cols], %w[col]\n"
7466 "mov w3, #8\n"
7467 "cmp w1, #8\n"
7468 // Compute w1 = how many rows of the 8x8 block fit
7469 "csel w1, w1, w3, le\n"
7470 "cmp w2, #8\n"
7471 // Compute w1 = how many rows of the 8x8 block fit
7472 "csel w2, w2, w3, le\n"
7473
7474 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
7475 "cmp w1, w3\n"
7476 "ccmp w2, w3, 0, eq\n"
7477 // Yes, all of the 8x8 block fits, go to fast path.
7478 "beq 330f\n"
7479 // Not all of the 8x8 block fits.
7480 // Write to dst_tmp_buf
7481 "mov x3, %[dst_tmp_buf]\n"
7482 "st1 {v16.4s}, [x3], #16\n"
7483 RUY_MAKE_ZERO(v16)
7484 "st1 {v17.4s}, [x3], #16\n"
7485 RUY_MAKE_ZERO(v17)
7486 "st1 {v18.4s}, [x3], #16\n"
7487 RUY_MAKE_ZERO(v18)
7488 "st1 {v19.4s}, [x3], #16\n"
7489 RUY_MAKE_ZERO(v19)
7490 "st1 {v20.4s}, [x3], #16\n"
7491 RUY_MAKE_ZERO(v20)
7492 "st1 {v21.4s}, [x3], #16\n"
7493 RUY_MAKE_ZERO(v21)
7494 "st1 {v22.4s}, [x3], #16\n"
7495 RUY_MAKE_ZERO(v22)
7496 "st1 {v23.4s}, [x3], #16\n"
7497 RUY_MAKE_ZERO(v23)
7498 "st1 {v24.4s}, [x3], #16\n"
7499 RUY_MAKE_ZERO(v24)
7500 "st1 {v25.4s}, [x3], #16\n"
7501 RUY_MAKE_ZERO(v25)
7502 "st1 {v26.4s}, [x3], #16\n"
7503 RUY_MAKE_ZERO(v26)
7504 "st1 {v27.4s}, [x3], #16\n"
7505 RUY_MAKE_ZERO(v27)
7506 "st1 {v28.4s}, [x3], #16\n"
7507 RUY_MAKE_ZERO(v28)
7508 "st1 {v29.4s}, [x3], #16\n"
7509 RUY_MAKE_ZERO(v29)
7510 "st1 {v30.4s}, [x3], #16\n"
7511 RUY_MAKE_ZERO(v30)
7512 "st1 {v31.4s}, [x3], #16\n"
7513 RUY_MAKE_ZERO(v31)
7514
7515 "b 331f\n"
7516
7517 "330:\n"
7518 // Yes, all of the 8x8 block fits.
7519 "mov x4, %[dst_ptr]\n"
7520 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7521 "st1 {v16.4s, v17.4s}, [x4], x11\n"
7522 RUY_MAKE_ZERO(v16)
7523 RUY_MAKE_ZERO(v17)
7524 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7525 "st1 {v18.4s, v19.4s}, [x4], x11\n"
7526 RUY_MAKE_ZERO(v18)
7527 RUY_MAKE_ZERO(v19)
7528 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7529 "st1 {v20.4s, v21.4s}, [x4], x11\n"
7530 RUY_MAKE_ZERO(v20)
7531 RUY_MAKE_ZERO(v21)
7532 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7533 "st1 {v22.4s, v23.4s}, [x4], x11\n"
7534 RUY_MAKE_ZERO(v22)
7535 RUY_MAKE_ZERO(v23)
7536 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7537 "st1 {v24.4s, v25.4s}, [x4], x11\n"
7538 RUY_MAKE_ZERO(v24)
7539 RUY_MAKE_ZERO(v25)
7540 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7541 "st1 {v26.4s, v27.4s}, [x4], x11\n"
7542 RUY_MAKE_ZERO(v26)
7543 RUY_MAKE_ZERO(v27)
7544 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7545 "st1 {v28.4s, v29.4s}, [x4], x11\n"
7546 RUY_MAKE_ZERO(v28)
7547 RUY_MAKE_ZERO(v29)
7548 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7549 "st1 {v30.4s, v31.4s}, [x4], x11\n"
7550 RUY_MAKE_ZERO(v30)
7551 RUY_MAKE_ZERO(v31)
7552
7553 "331:\n"
7554
7555 // For the next block: perform the first few multiply-adds on the data
7556 // that we have already loaded.
7557 ".word 0x4f82e010 // sdot v16.4s, v0.16b, v2.4b[0]\n"
7558 ".word 0x4fa2e012 // sdot v18.4s, v0.16b, v2.4b[1]\n"
7559 ".word 0x4f82e814 // sdot v20.4s, v0.16b, v2.4b[2]\n"
7560 ".word 0x4fa2e816 // sdot v22.4s, v0.16b, v2.4b[3]\n"
7561
7562 // If all of the 8x8 block fits, we just finished writing it to the
7563 // destination, so we skip the next part.
7564 "beq 341f\n"
7565
7566 // Not all of the 8x8 block fits in the destination matrix. We just
7567 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
7568 // it to copy into the destination matrix the part that fits.
7569 "mov x3, %[dst_tmp_buf]\n"
7570 "mov x4, %[dst_ptr]\n"
7571 "mov w6, #0\n"
7572 "350:\n"
7573 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
7574 "mov w5, #0\n"
7575 "351:\n"
7576 "ldr w7, [x3, x5, lsl #2]\n"
7577 "str w7, [x4, x5, lsl #2]\n"
7578 "add w5, w5, #1\n"
7579 "cmp w5, w1\n"
7580 "blt 351b\n"
7581 "add w6, w6, #1\n"
7582 "add x3, x3, #32\n"
7583 "add x4, x4, x11\n"
7584 "cmp w6, w2\n"
7585 "blt 350b\n"
7586 "341:\n"
7587 "add %[dst_ptr], %[dst_ptr], #32\n"
7588 // At this point we have completely finished writing values to the
7589 // destination matrix for the current block.
7590
7591 RUY_STR(RUY_ASM_LABEL_AFTER_STORE) ":\n"
7592
7593 // Reload some params --- we had used x5 -- x7 for a few other things
7594 // since the last time we had loaded them.
7595 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
7596 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
7597
7598 // Move to the next block of the destination matrix, for the next iter
7599 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
7600 // been updated earlier.
7601 // Have we reached the end row?
7602 "cmp %w[row], w7\n"
7603 "beq 20f\n" // yes, end row.
7604 // Not end row. Move to the next row.
7605 "add %w[row], %w[row], #8\n"
7606 "b 21f\n"
7607 "20:\n"
7608 // Was already at end row.
7609 "mov %w[row], w6\n" // Move back to first row.
7610 "add %w[col], %w[col], #8\n" // Move to the next column.
7611 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #3\n"
7612 "mov %[dst_ptr], %[dst_col_ptr]\n"
7613 "21:\n"
7614
7615 // Main loop exit condition: have we hit the end column?
7616 "cmp %w[col], w8\n"
7617 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
7618 "ble 1b\n"
7619
7620 // clang-format on
7621
7622 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
7623 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
7624 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
7625 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
7626 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf),
7627 [dst_type_id] "r"(params.dst_type_id)
7628 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
7629 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
7630 "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25",
7631 "v26", "v27", "v28", "v29", "v30", "v31");
7632}
7633#undef RUY_OFFSET_BIAS
7634#undef RUY_OFFSET_LHS_SUMS
7635#undef RUY_OFFSET_RHS_SUMS
7636#undef RUY_OFFSET_LHS_BASE_PTR
7637#undef RUY_OFFSET_MULTIPLIER_FIXEDPOINT
7638#undef RUY_OFFSET_MULTIPLIER_EXPONENT
7639#undef RUY_OFFSET_RHS_BASE_PTR
7640#undef RUY_OFFSET_DST_BASE_PTR
7641#undef RUY_OFFSET_LHS_ZERO_POINT
7642#undef RUY_OFFSET_RHS_ZERO_POINT
7643#undef RUY_OFFSET_DST_ZERO_POINT
7644#undef RUY_OFFSET_PROD_ZP_DEPTH
7645#undef RUY_OFFSET_START_ROW
7646#undef RUY_OFFSET_START_COL
7647#undef RUY_OFFSET_LAST_ROW
7648#undef RUY_OFFSET_LAST_COL
7649#undef RUY_OFFSET_DST_ROWS
7650#undef RUY_OFFSET_DST_COLS
7651#undef RUY_OFFSET_LHS_STRIDE
7652#undef RUY_OFFSET_RHS_STRIDE
7653#undef RUY_OFFSET_DST_STRIDE
7654#undef RUY_OFFSET_DEPTH
7655#undef RUY_OFFSET_CLAMP_MIN
7656#undef RUY_OFFSET_CLAMP_MAX
7657#undef RUY_OFFSET_FLAGS
7658
7659#define RUY_OFFSET_LHS_BASE_PTR 0
7660#define RUY_OFFSET_RHS_BASE_PTR 8
7661#define RUY_OFFSET_DST_BASE_PTR 16
7662#define RUY_OFFSET_BIAS 24
7663#define RUY_OFFSET_START_ROW 32
7664#define RUY_OFFSET_START_COL 36
7665#define RUY_OFFSET_LAST_ROW 40
7666#define RUY_OFFSET_LAST_COL 44
7667#define RUY_OFFSET_LHS_STRIDE 56
7668#define RUY_OFFSET_RHS_STRIDE 60
7669#define RUY_OFFSET_DST_STRIDE 64
7670#define RUY_OFFSET_DEPTH 68
7671#define RUY_OFFSET_CLAMP_MIN 72
7672#define RUY_OFFSET_CLAMP_MAX 76
7673#define RUY_OFFSET_FLAGS 80
7674
7675template <typename Params>
7676void CheckOffsetsInKernelParamsFloat(const Params&) {
7677 static_assert(offsetof(Params, lhs_base_ptr) == RUY_OFFSET_LHS_BASE_PTR, "");
7678 static_assert(offsetof(Params, rhs_base_ptr) == RUY_OFFSET_RHS_BASE_PTR, "");
7679 static_assert(offsetof(Params, dst_base_ptr) == RUY_OFFSET_DST_BASE_PTR, "");
7680 static_assert(offsetof(Params, bias) == RUY_OFFSET_BIAS, "");
7681 static_assert(offsetof(Params, start_row) == RUY_OFFSET_START_ROW, "");
7682 static_assert(offsetof(Params, start_col) == RUY_OFFSET_START_COL, "");
7683 static_assert(offsetof(Params, last_row) == RUY_OFFSET_LAST_ROW, "");
7684 static_assert(offsetof(Params, last_col) == RUY_OFFSET_LAST_COL, "");
7685 static_assert(offsetof(Params, lhs_stride) == RUY_OFFSET_LHS_STRIDE, "");
7686 static_assert(offsetof(Params, rhs_stride) == RUY_OFFSET_RHS_STRIDE, "");
7687 static_assert(offsetof(Params, dst_stride) == RUY_OFFSET_DST_STRIDE, "");
7688 static_assert(offsetof(Params, depth) == RUY_OFFSET_DEPTH, "");
7689 static_assert(offsetof(Params, clamp_min) == RUY_OFFSET_CLAMP_MIN, "");
7690 static_assert(offsetof(Params, clamp_max) == RUY_OFFSET_CLAMP_MAX, "");
7691 static_assert(offsetof(Params, flags) == RUY_OFFSET_FLAGS, "");
7692}
7693
7694// Just a plain float kernel; good enough for out-of-order cores.
7695// The closest to it in the gemmlowp collection would be
7696// NEON_64bit_GEMM_Float32_WithScalar,
7697// https://github.com/google/gemmlowp/blob/36212ad3651871bc3e9a599f1a6d5324778aea25/standalone/neon-gemm-kernel-benchmark.cc#L3925
7698//
7699// Besides ruy-ification, the main nuance here is that we stick to a 8x8
7700// width instead of the wider 12x8 that the register space permits and that
7701// the aforementioned gemmlowp kernel uses. Ruy likes powers of two for now
7702// and we don't have evidence that going beyond 8x8 is needed.
7703void KernelFloatNeon(const KernelParamsFloat<8, 8>& params) {
7704 CheckOffsetsInKernelParamsFloat(params);
7705 profiler::ScopeLabel label("Kernel (kNeon)");
7706
7707 const float* lhs_col_ptr = params.lhs_base_ptr;
7708 const float* rhs_col_ptr = params.rhs_base_ptr;
7709 const float* lhs_ptr = lhs_col_ptr;
7710 const float* rhs_ptr = rhs_col_ptr;
7711 float* dst_col_ptr = params.dst_base_ptr;
7712 float* dst_ptr = dst_col_ptr;
7713 int row = params.start_row;
7714 int col = params.start_col;
7715
7716 // The asm kernel below has the following NEON register allocation:
7717 //
7718 // v16 -- v31 are accumulators.
7719 // During accumulation, v0 -- v15 are used to load data from LHS and RHS.
7720 // At least v0 and v1 are used to load a 8x1 block of LHS, and v2 and
7721 // v3 are used to load a 1x8 block of RHS, like this:
7722 //
7723 // RHS 1x8 block
7724 // /-----------------------------------------|
7725 // |v2.s[0] ... v2.s[3] v3.s[0] ... v3.s[3]|
7726 // \-----------------------------------------/
7727 // LHS 8x1 block
7728 // /---------------------\ /-----------------------------------------|
7729 // | v0.s[0] | |v16.s[0] ... v30.s[0]|
7730 // | ... | | ... ... |
7731 // | v0.s[3] | |v16.s[3] ... v30.s[3]|
7732 // | v1.s[0] | |v17.s[0] ... v31.s[0]|
7733 // | ... | | ... ... |
7734 // | v1.s[3] | |v17.s[3] ... v31.s[3]|
7735 // \---------------------/ \-----------------------------------------/
7736 // accumulators 8x8 block
7737 //
7738 // In the RUY_OPT_MAX_STREAMING part of the kernel, this elementary step
7739 // is repeated 4 times, using 4x more registers for LHS and RHS, so that
7740 // is where instead of using v0 -- v3 for LHS and RHS, we use v0 -- v15.
7741 //
7742 // Outside of the RUY_OPT_MAX_STREAMING part of the kernel, v4 -- v7 are
7743 // unused, and v8 -- v15 are used for floading parameters used for the
7744 // post-accumulation part of the kernel.
7745 asm volatile(
7746#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
7747
7748 // clang-format off
7749
7750 // Load some parameters into registers.
7751 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
7752 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
7753 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
7754 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
7755 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
7756 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
7757 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
7758 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
7759
7760 // Load the first 32 bytes of LHS and RHS data.
7761 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
7762 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
7763 "ld1 {v2.4s}, [%[rhs_ptr]], #16\n"
7764 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
7765
7766 // Clear accumulators.
7767 RUY_MAKE_ZERO(v16)
7768 RUY_MAKE_ZERO(v17)
7769 RUY_MAKE_ZERO(v18)
7770 RUY_MAKE_ZERO(v19)
7771 RUY_MAKE_ZERO(v20)
7772 RUY_MAKE_ZERO(v21)
7773 RUY_MAKE_ZERO(v22)
7774 RUY_MAKE_ZERO(v23)
7775 RUY_MAKE_ZERO(v24)
7776 RUY_MAKE_ZERO(v25)
7777 RUY_MAKE_ZERO(v26)
7778 RUY_MAKE_ZERO(v27)
7779 RUY_MAKE_ZERO(v28)
7780 RUY_MAKE_ZERO(v29)
7781 RUY_MAKE_ZERO(v30)
7782 RUY_MAKE_ZERO(v31)
7783
7784 // w1 is the number of levels of depth that we have already loaded
7785 // LHS and RHS data for. Corresponding to the initial ld1 instructions
7786 // above, this is currently 1.
7787 "mov w1, #1\n"
7788
7789 // Main loop of the whole GEMM, over rows and columns of the
7790 // destination matrix.
7791 "1:\n"
7792
7793 "fmla v16.4s, v0.4s, v2.s[0]\n"
7794 "fmla v18.4s, v0.4s, v2.s[1]\n"
7795 "fmla v20.4s, v0.4s, v2.s[2]\n"
7796 "fmla v22.4s, v0.4s, v2.s[3]\n"
7797
7798#if RUY_OPT(MAX_STREAMING)
7799 "cmp w12, #8\n"
7800 "blt 78f\n"
7801 "and w2, w12, #-4\n"
7802
7803 "ld1 {v4.4s}, [%[lhs_ptr]], #16\n"
7804 "ld1 {v5.4s}, [%[lhs_ptr]], #16\n"
7805 "ld1 {v6.4s}, [%[rhs_ptr]], #16\n"
7806 "ld1 {v7.4s}, [%[rhs_ptr]], #16\n"
7807
7808 "ld1 {v8.4s}, [%[lhs_ptr]], #16\n"
7809 "ld1 {v9.4s}, [%[lhs_ptr]], #16\n"
7810 "ld1 {v10.4s}, [%[rhs_ptr]], #16\n"
7811 "ld1 {v11.4s}, [%[rhs_ptr]], #16\n"
7812
7813 "ld1 {v12.4s}, [%[lhs_ptr]], #16\n"
7814 "ld1 {v13.4s}, [%[lhs_ptr]], #16\n"
7815 "ld1 {v14.4s}, [%[rhs_ptr]], #16\n"
7816 "ld1 {v15.4s}, [%[rhs_ptr]], #16\n"
7817 "mov w1, #4\n"
7818
7819 "80:\n"
7820
7821 "add %[lhs_ptr], %[lhs_ptr], #128\n"
7822 "add %[rhs_ptr], %[rhs_ptr], #128\n"
7823
7824 "fmla v24.4s, v0.4s, v3.s[0]\n"
7825 "fmla v26.4s, v0.4s, v3.s[1]\n"
7826 "fmla v28.4s, v0.4s, v3.s[2]\n"
7827 "fmla v30.4s, v0.4s, v3.s[3]\n"
7828 "ldr q0, [%[lhs_ptr], #-128]\n"
7829 "fmla v25.4s, v1.4s, v3.s[0]\n"
7830 "fmla v27.4s, v1.4s, v3.s[1]\n"
7831 "fmla v29.4s, v1.4s, v3.s[2]\n"
7832 "fmla v31.4s, v1.4s, v3.s[3]\n"
7833 "ldr q3, [%[rhs_ptr], #-112]\n"
7834 "fmla v17.4s, v1.4s, v2.s[0]\n"
7835 "fmla v19.4s, v1.4s, v2.s[1]\n"
7836 "fmla v21.4s, v1.4s, v2.s[2]\n"
7837 "fmla v23.4s, v1.4s, v2.s[3]\n"
7838 "ldr q1, [%[lhs_ptr], #-112]\n"
7839 "fmla v16.4s, v4.4s, v6.s[0]\n"
7840 "fmla v18.4s, v4.4s, v6.s[1]\n"
7841 "ldr q2, [%[rhs_ptr], #-128]\n"
7842 "fmla v20.4s, v4.4s, v6.s[2]\n"
7843 "fmla v22.4s, v4.4s, v6.s[3]\n"
7844
7845 "fmla v24.4s, v4.4s, v7.s[0]\n"
7846 "fmla v26.4s, v4.4s, v7.s[1]\n"
7847 "fmla v28.4s, v4.4s, v7.s[2]\n"
7848 "fmla v30.4s, v4.4s, v7.s[3]\n"
7849 "ldr q4, [%[lhs_ptr], #-96]\n"
7850 "fmla v25.4s, v5.4s, v7.s[0]\n"
7851 "fmla v27.4s, v5.4s, v7.s[1]\n"
7852 "fmla v29.4s, v5.4s, v7.s[2]\n"
7853 "fmla v31.4s, v5.4s, v7.s[3]\n"
7854 "ldr q7, [%[rhs_ptr], #-80]\n"
7855 "fmla v17.4s, v5.4s, v6.s[0]\n"
7856 "fmla v19.4s, v5.4s, v6.s[1]\n"
7857 "fmla v21.4s, v5.4s, v6.s[2]\n"
7858 "fmla v23.4s, v5.4s, v6.s[3]\n"
7859 "ldr q5, [%[lhs_ptr], #-80]\n"
7860 "fmla v16.4s, v8.4s, v10.s[0]\n"
7861 "fmla v18.4s, v8.4s, v10.s[1]\n"
7862 "ldr q6, [%[rhs_ptr], #-96]\n"
7863 "fmla v20.4s, v8.4s, v10.s[2]\n"
7864 "fmla v22.4s, v8.4s, v10.s[3]\n"
7865
7866 "fmla v24.4s, v8.4s, v11.s[0]\n"
7867 "fmla v26.4s, v8.4s, v11.s[1]\n"
7868 "fmla v28.4s, v8.4s, v11.s[2]\n"
7869 "fmla v30.4s, v8.4s, v11.s[3]\n"
7870 "ldr q8, [%[lhs_ptr], #-64]\n"
7871 "fmla v25.4s, v9.4s, v11.s[0]\n"
7872 "fmla v27.4s, v9.4s, v11.s[1]\n"
7873 "fmla v29.4s, v9.4s, v11.s[2]\n"
7874 "fmla v31.4s, v9.4s, v11.s[3]\n"
7875 "ldr q11, [%[rhs_ptr], #-48]\n"
7876 "fmla v17.4s, v9.4s, v10.s[0]\n"
7877 "fmla v19.4s, v9.4s, v10.s[1]\n"
7878 "fmla v21.4s, v9.4s, v10.s[2]\n"
7879 "fmla v23.4s, v9.4s, v10.s[3]\n"
7880 "ldr q9, [%[lhs_ptr], #-48]\n"
7881 "fmla v16.4s, v12.4s, v14.s[0]\n"
7882 "fmla v18.4s, v12.4s, v14.s[1]\n"
7883 "ldr q10, [%[rhs_ptr], #-64]\n"
7884 "fmla v20.4s, v12.4s, v14.s[2]\n"
7885 "fmla v22.4s, v12.4s, v14.s[3]\n"
7886
7887 "fmla v24.4s, v12.4s, v15.s[0]\n"
7888 "fmla v26.4s, v12.4s, v15.s[1]\n"
7889 "fmla v28.4s, v12.4s, v15.s[2]\n"
7890 "fmla v30.4s, v12.4s, v15.s[3]\n"
7891 "ldr q12, [%[lhs_ptr], #-32]\n"
7892 "fmla v25.4s, v13.4s, v15.s[0]\n"
7893 "fmla v27.4s, v13.4s, v15.s[1]\n"
7894 "fmla v29.4s, v13.4s, v15.s[2]\n"
7895 "fmla v31.4s, v13.4s, v15.s[3]\n"
7896 "ldr q15, [%[rhs_ptr], #-16]\n"
7897 "fmla v17.4s, v13.4s, v14.s[0]\n"
7898 "fmla v19.4s, v13.4s, v14.s[1]\n"
7899 "fmla v21.4s, v13.4s, v14.s[2]\n"
7900 "fmla v23.4s, v13.4s, v14.s[3]\n"
7901 "ldr q13, [%[lhs_ptr], #-16]\n"
7902 "fmla v16.4s, v0.4s, v2.s[0]\n"
7903 "fmla v18.4s, v0.4s, v2.s[1]\n"
7904 "ldr q14, [%[rhs_ptr], #-32]\n"
7905 "fmla v20.4s, v0.4s, v2.s[2]\n"
7906 "fmla v22.4s, v0.4s, v2.s[3]\n"
7907
7908 "add w1, w1, #4\n"
7909 "cmp w1, w2\n"
7910 "blt 80b\n"
7911
7912 "fmla v16.4s, v4.4s, v6.s[0]\n"
7913 "fmla v18.4s, v4.4s, v6.s[1]\n"
7914 "fmla v20.4s, v4.4s, v6.s[2]\n"
7915 "fmla v22.4s, v4.4s, v6.s[3]\n"
7916 "fmla v24.4s, v4.4s, v7.s[0]\n"
7917 "fmla v26.4s, v4.4s, v7.s[1]\n"
7918 "fmla v28.4s, v4.4s, v7.s[2]\n"
7919 "fmla v30.4s, v4.4s, v7.s[3]\n"
7920 "fmla v25.4s, v5.4s, v7.s[0]\n"
7921 "fmla v27.4s, v5.4s, v7.s[1]\n"
7922 "fmla v29.4s, v5.4s, v7.s[2]\n"
7923 "fmla v31.4s, v5.4s, v7.s[3]\n"
7924 "fmla v17.4s, v5.4s, v6.s[0]\n"
7925 "fmla v19.4s, v5.4s, v6.s[1]\n"
7926 "fmla v21.4s, v5.4s, v6.s[2]\n"
7927 "fmla v23.4s, v5.4s, v6.s[3]\n"
7928
7929 "fmla v16.4s, v8.4s, v10.s[0]\n"
7930 "fmla v18.4s, v8.4s, v10.s[1]\n"
7931 "fmla v20.4s, v8.4s, v10.s[2]\n"
7932 "fmla v22.4s, v8.4s, v10.s[3]\n"
7933 "fmla v24.4s, v8.4s, v11.s[0]\n"
7934 "fmla v26.4s, v8.4s, v11.s[1]\n"
7935 "fmla v28.4s, v8.4s, v11.s[2]\n"
7936 "fmla v30.4s, v8.4s, v11.s[3]\n"
7937 "fmla v25.4s, v9.4s, v11.s[0]\n"
7938 "fmla v27.4s, v9.4s, v11.s[1]\n"
7939 "fmla v29.4s, v9.4s, v11.s[2]\n"
7940 "fmla v31.4s, v9.4s, v11.s[3]\n"
7941 "fmla v17.4s, v9.4s, v10.s[0]\n"
7942 "fmla v19.4s, v9.4s, v10.s[1]\n"
7943 "fmla v21.4s, v9.4s, v10.s[2]\n"
7944 "fmla v23.4s, v9.4s, v10.s[3]\n"
7945
7946 "fmla v16.4s, v12.4s, v14.s[0]\n"
7947 "fmla v18.4s, v12.4s, v14.s[1]\n"
7948 "fmla v20.4s, v12.4s, v14.s[2]\n"
7949 "fmla v22.4s, v12.4s, v14.s[3]\n"
7950 "fmla v24.4s, v12.4s, v15.s[0]\n"
7951 "fmla v26.4s, v12.4s, v15.s[1]\n"
7952 "fmla v28.4s, v12.4s, v15.s[2]\n"
7953 "fmla v30.4s, v12.4s, v15.s[3]\n"
7954 "fmla v25.4s, v13.4s, v15.s[0]\n"
7955 "fmla v27.4s, v13.4s, v15.s[1]\n"
7956 "fmla v29.4s, v13.4s, v15.s[2]\n"
7957 "fmla v31.4s, v13.4s, v15.s[3]\n"
7958 "fmla v17.4s, v13.4s, v14.s[0]\n"
7959 "fmla v19.4s, v13.4s, v14.s[1]\n"
7960 "fmla v21.4s, v13.4s, v14.s[2]\n"
7961 "fmla v23.4s, v13.4s, v14.s[3]\n"
7962
7963 "78:\n"
7964#endif
7965
7966 // Accumulation loop
7967 "cmp w1, w12\n"
7968 "beq 79f\n"
7969
7970 "2:\n"
7971 "fmla v24.4s, v0.4s, v3.s[0]\n"
7972 "fmla v26.4s, v0.4s, v3.s[1]\n"
7973 "ld1 {v4.4s}, [%[rhs_ptr]], #16\n"
7974 "fmla v28.4s, v0.4s, v3.s[2]\n"
7975 "fmla v30.4s, v0.4s, v3.s[3]\n"
7976 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
7977 "fmla v25.4s, v1.4s, v3.s[0]\n"
7978 "fmla v27.4s, v1.4s, v3.s[1]\n"
7979 "add w1, w1, #1\n"
7980 "fmla v29.4s, v1.4s, v3.s[2]\n"
7981 "fmla v31.4s, v1.4s, v3.s[3]\n"
7982 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
7983 "fmla v17.4s, v1.4s, v2.s[0]\n"
7984 "fmla v19.4s, v1.4s, v2.s[1]\n"
7985 "cmp w1, w12\n"
7986 "fmla v21.4s, v1.4s, v2.s[2]\n"
7987 "fmla v23.4s, v1.4s, v2.s[3]\n"
7988 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
7989 "fmla v16.4s, v0.4s, v4.s[0]\n"
7990 "fmla v18.4s, v0.4s, v4.s[1]\n"
7991 "mov v2.16b, v4.16b\n"
7992 "fmla v20.4s, v0.4s, v4.s[2]\n"
7993 "fmla v22.4s, v0.4s, v4.s[3]\n"
7994 "blt 2b\n"
7995
7996 "79:\n"
7997
7998 // End of the inner loop on depth. Now perform the remaining
7999 // multiply-adds of the last level of depth, for which the LHS
8000 // and RHS data is already loaded.
8001
8002 "fmla v24.4s, v0.4s, v3.s[0]\n"
8003 "fmla v26.4s, v0.4s, v3.s[1]\n"
8004 "fmla v28.4s, v0.4s, v3.s[2]\n"
8005 "fmla v30.4s, v0.4s, v3.s[3]\n"
8006 "fmla v25.4s, v1.4s, v3.s[0]\n"
8007 "fmla v27.4s, v1.4s, v3.s[1]\n"
8008 "fmla v29.4s, v1.4s, v3.s[2]\n"
8009 "fmla v31.4s, v1.4s, v3.s[3]\n"
8010 "fmla v17.4s, v1.4s, v2.s[0]\n"
8011 "fmla v19.4s, v1.4s, v2.s[1]\n"
8012 "fmla v21.4s, v1.4s, v2.s[2]\n"
8013 "fmla v23.4s, v1.4s, v2.s[3]\n"
8014
8015 // End of accumulation. The registers v16 -- v31 contain the final
8016 // int32 accumulator values of the current 8x8 destination block.
8017 // We now have to compute the final 8-bit values from these int32
8018 // accumulators, and advance to the next 8x8 block. We intertwine
8019 // these two aspects whenever possible for optimal pipelining, both
8020 // at the data flow level (prefetch data for next block as early as
8021 // possible) and instruction pipelining level (some of the next-block
8022 // work can dual-issue with some of the final work on the current
8023 // block).
8024
8025 // Logic to advance to the next block in preparation for the next
8026 // iteration of the main loop. For now, we only want to compute
8027 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
8028 // not yet ready to update the values of row and col, as we still need
8029 // the current values for the rest of the work on the current block.
8030
8031 "cmp %w[row], w7\n" // Have we finished the last row?
8032 "bge 4f\n" // If finished last row, go to 4
8033 // Not finished last row: then advance to next row.
8034 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #3\n"
8035 "b 5f\n"
8036 "4:\n" // Finished last row...
8037 "mov %[lhs_col_ptr], x5\n" // Go back to first row
8038 // Now we need to advance to the next column. If we already
8039 // finished the last column, then in principle we are done, however
8040 // we can't just return here, as we need to allow the end work of the
8041 // current block to complete. The good news is that at this point it
8042 // doesn't matter what data we load for the next column, since
8043 // we will exit from the main loop below before actually storing
8044 // anything computed from that data.
8045 "cmp %w[col], w8\n" // Have we finished the last column?
8046 "bge 5f\n" // If yes, just carry on without updating the column pointer.
8047 // Not finished last column: then advance to next column.
8048 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #3\n"
8049 "5:\n"
8050
8051 // Set the LHS and RHS data pointers to the start of the columns just
8052 // computed.
8053 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
8054 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
8055
8056 // Load some parameters needed for the end work on current block.
8057 "ldrb w4, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
8058 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
8059
8060 // Determine the channel index.
8061 "tst w4, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
8062 "csel w3, %w[row], %w[col], eq\n"
8063
8064 // Offset the bias pointer as needed given the current row, col.
8065 "add x5, x1, x3, lsl #2\n"
8066
8067 // If there is no bias, use no offset, just address the passed zero
8068 // data.
8069 "tst w4, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
8070 "csel x1, x1, x5, eq\n"
8071
8072 // Load 8 bias values.
8073 "ld1 {v14.4s}, [x1], #16\n"
8074 "ld1 {v15.4s}, [x1]\n"
8075
8076 // Now that we know what LHS and RHS data the next iteration of the
8077 // main loop will need to load, we start loading the first 32 bytes of
8078 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
8079 // in the rest of the work on the current block.
8080 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
8081 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
8082 "ld1 {v2.4s}, [%[rhs_ptr]], #16\n"
8083 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
8084
8085 // Perform the bias-addition.
8086 // Jump based on channel dimension.
8087 "tst w4, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
8088 "bne 6f\n"
8089 // Case where channels are rows
8090 "fadd v16.4s, v16.4s, v14.4s\n"
8091 "fadd v17.4s, v17.4s, v15.4s\n"
8092 "fadd v18.4s, v18.4s, v14.4s\n"
8093 "fadd v19.4s, v19.4s, v15.4s\n"
8094 "fadd v20.4s, v20.4s, v14.4s\n"
8095 "fadd v21.4s, v21.4s, v15.4s\n"
8096 "fadd v22.4s, v22.4s, v14.4s\n"
8097 "fadd v23.4s, v23.4s, v15.4s\n"
8098 "fadd v24.4s, v24.4s, v14.4s\n"
8099 "fadd v25.4s, v25.4s, v15.4s\n"
8100 "fadd v26.4s, v26.4s, v14.4s\n"
8101 "fadd v27.4s, v27.4s, v15.4s\n"
8102 "fadd v28.4s, v28.4s, v14.4s\n"
8103 "fadd v29.4s, v29.4s, v15.4s\n"
8104 "fadd v30.4s, v30.4s, v14.4s\n"
8105 "fadd v31.4s, v31.4s, v15.4s\n"
8106 "b 7f\n"
8107
8108 "6:\n"
8109 // Case where channels are columns
8110 "dup v8.4s, v14.s[0]\n"
8111 "dup v9.4s, v14.s[1]\n"
8112 "dup v10.4s, v14.s[2]\n"
8113 "dup v11.4s, v14.s[3]\n"
8114 "dup v12.4s, v15.s[0]\n"
8115 "dup v13.4s, v15.s[1]\n"
8116 "dup v14.4s, v15.s[2]\n"
8117 "dup v15.4s, v15.s[3]\n"
8118 "fadd v16.4s, v16.4s, v8.4s\n"
8119 "fadd v17.4s, v17.4s, v8.4s\n"
8120 "fadd v18.4s, v18.4s, v9.4s\n"
8121 "fadd v19.4s, v19.4s, v9.4s\n"
8122 "fadd v20.4s, v20.4s, v10.4s\n"
8123 "fadd v21.4s, v21.4s, v10.4s\n"
8124 "fadd v22.4s, v22.4s, v11.4s\n"
8125 "fadd v23.4s, v23.4s, v11.4s\n"
8126 "fadd v24.4s, v24.4s, v12.4s\n"
8127 "fadd v25.4s, v25.4s, v12.4s\n"
8128 "fadd v26.4s, v26.4s, v13.4s\n"
8129 "fadd v27.4s, v27.4s, v13.4s\n"
8130 "fadd v28.4s, v28.4s, v14.4s\n"
8131 "fadd v29.4s, v29.4s, v14.4s\n"
8132 "fadd v30.4s, v30.4s, v15.4s\n"
8133 "fadd v31.4s, v31.4s, v15.4s\n"
8134 "7:\n"
8135
8136 // Load the clamp_min, clamp_max bounds
8137 "ldr w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
8138 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
8139 "dup v14.4s, w2\n" // clamp_min
8140 "dup v15.4s, w3\n" // clamp_max
8141
8142 // Apply the clamp_min bound
8143 "fmax v16.4s, v16.4s, v14.4s\n"
8144 "fmax v17.4s, v17.4s, v14.4s\n"
8145 "fmax v18.4s, v18.4s, v14.4s\n"
8146 "fmax v19.4s, v19.4s, v14.4s\n"
8147 "fmax v20.4s, v20.4s, v14.4s\n"
8148 "fmax v21.4s, v21.4s, v14.4s\n"
8149 "fmax v22.4s, v22.4s, v14.4s\n"
8150 "fmax v23.4s, v23.4s, v14.4s\n"
8151 "fmax v24.4s, v24.4s, v14.4s\n"
8152 "fmax v25.4s, v25.4s, v14.4s\n"
8153 "fmax v26.4s, v26.4s, v14.4s\n"
8154 "fmax v27.4s, v27.4s, v14.4s\n"
8155 "fmax v28.4s, v28.4s, v14.4s\n"
8156 "fmax v29.4s, v29.4s, v14.4s\n"
8157 "fmax v30.4s, v30.4s, v14.4s\n"
8158 "fmax v31.4s, v31.4s, v14.4s\n"
8159
8160 // Apply the clamp_max bound
8161 "fmin v16.4s, v16.4s, v15.4s\n"
8162 "fmin v17.4s, v17.4s, v15.4s\n"
8163 "fmin v18.4s, v18.4s, v15.4s\n"
8164 "fmin v19.4s, v19.4s, v15.4s\n"
8165 "fmin v20.4s, v20.4s, v15.4s\n"
8166 "fmin v21.4s, v21.4s, v15.4s\n"
8167 "fmin v22.4s, v22.4s, v15.4s\n"
8168 "fmin v23.4s, v23.4s, v15.4s\n"
8169 "fmin v24.4s, v24.4s, v15.4s\n"
8170 "fmin v25.4s, v25.4s, v15.4s\n"
8171 "fmin v26.4s, v26.4s, v15.4s\n"
8172 "fmin v27.4s, v27.4s, v15.4s\n"
8173 "fmin v28.4s, v28.4s, v15.4s\n"
8174 "fmin v29.4s, v29.4s, v15.4s\n"
8175 "fmin v30.4s, v30.4s, v15.4s\n"
8176 "fmin v31.4s, v31.4s, v15.4s\n"
8177
8178 // Compute how much of the 8x8 block of destination 8bit values that
8179 // we have computed, fit in the destination matrix. Typically, all of
8180 // it fits, but when the destination matrix shape is not a multiple
8181 // of 8x8, there are some 8x8 blocks along the boundaries that do
8182 // not fit entirely.
8183 "sub w1, %w[dst_rows], %w[row]\n"
8184 "sub w2, %w[dst_cols], %w[col]\n"
8185 "mov w3, #8\n"
8186 "cmp w1, #8\n"
8187 // Compute w1 = how many rows of the 8x8 block fit
8188 "csel w1, w1, w3, le\n"
8189 "cmp w2, #8\n"
8190 // Compute w2 = how many cols of the 8x8 block fit
8191 "csel w2, w2, w3, le\n"
8192
8193 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
8194 "cmp w1, w3\n"
8195 "ccmp w2, w3, 0, eq\n"
8196 // Yes, all of the 8x8 block fits, go to fast path.
8197 "beq 30f\n"
8198 // Not all of the 8x8 block fits.
8199 // Set (x3 address, x4 stride) to write to dst_tmp_buf
8200 "mov x3, %[dst_tmp_buf]\n"
8201 "mov x4, #32\n"
8202 "b 31f\n"
8203 "30:\n"
8204 // Yes, all of the 8x8 block fits.
8205 // Set (x3 address, x4 stride) to write directly to destination matrix.
8206 "mov x3, %[dst_ptr]\n"
8207 "mov x4, x11\n"
8208 "31:\n"
8209
8210 // Write our 8bit values to the destination described by
8211 // (x3 address, x4 stride).
8212 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8213 "str q16, [x3, #0]\n"
8214 "str q17, [x3, #16]\n"
8215 "add x3, x3, x4\n"
8216 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8217 RUY_MAKE_ZERO(v16)
8218 RUY_MAKE_ZERO(v17)
8219 "str q18, [x3, #0]\n"
8220 "str q19, [x3, #16]\n"
8221 "add x3, x3, x4\n"
8222 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8223 RUY_MAKE_ZERO(v18)
8224 RUY_MAKE_ZERO(v19)
8225 "str q20, [x3, #0]\n"
8226 "str q21, [x3, #16]\n"
8227 "add x3, x3, x4\n"
8228 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8229 RUY_MAKE_ZERO(v20)
8230 RUY_MAKE_ZERO(v21)
8231 "str q22, [x3, #0]\n"
8232 "str q23, [x3, #16]\n"
8233 "add x3, x3, x4\n"
8234 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8235 RUY_MAKE_ZERO(v22)
8236 RUY_MAKE_ZERO(v23)
8237 "str q24, [x3, #0]\n"
8238 "str q25, [x3, #16]\n"
8239 "add x3, x3, x4\n"
8240 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8241 RUY_MAKE_ZERO(v24)
8242 RUY_MAKE_ZERO(v25)
8243 "str q26, [x3, #0]\n"
8244 "str q27, [x3, #16]\n"
8245 "add x3, x3, x4\n"
8246 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8247 RUY_MAKE_ZERO(v26)
8248 RUY_MAKE_ZERO(v27)
8249 "str q28, [x3, #0]\n"
8250 "str q29, [x3, #16]\n"
8251 "add x3, x3, x4\n"
8252 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8253 RUY_MAKE_ZERO(v28)
8254 RUY_MAKE_ZERO(v29)
8255 "str q30, [x3, #0]\n"
8256 "str q31, [x3, #16]\n"
8257 RUY_MAKE_ZERO(v30)
8258 RUY_MAKE_ZERO(v31)
8259
8260 // If all of the 8x8 block fits, we just finished writing it to the
8261 // destination, so we skip the next part.
8262 "beq 41f\n"
8263 // Not all of the 8x8 block fits in the destination matrix. We just
8264 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
8265 // it to copy into the destination matrix the part that fits.
8266 "mov x3, %[dst_tmp_buf]\n"
8267 "mov x4, %[dst_ptr]\n"
8268 "mov w6, #0\n"
8269 "50:\n"
8270 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
8271 "mov w5, #0\n"
8272 "51:\n"
8273 "ldr w7, [x3, x5, lsl #2]\n"
8274 "str w7, [x4, x5, lsl #2]\n"
8275 "add w5, w5, #1\n"
8276 "cmp w5, w1\n"
8277 "blt 51b\n"
8278 "add w6, w6, #1\n"
8279 "add x3, x3, #32\n"
8280 "add x4, x4, x11\n"
8281 "cmp w6, w2\n"
8282 "blt 50b\n"
8283 "41:\n"
8284 "add %[dst_ptr], %[dst_ptr], #32\n"
8285 // At this point we have completely finished writing values to the
8286 // destination matrix for the current block.
8287
8288 // Reload some params --- we had used x5 -- x7 for a few other things
8289 // since the last time we had loaded them.
8290 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
8291 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
8292 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
8293
8294 // Move to the next block of the destination matrix, for the next iter
8295 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
8296 // been updated earlier.
8297 // Have we reached the end row?
8298 "cmp %w[row], w7\n"
8299 "beq 20f\n" // yes, end row.
8300 // Not end row. Move to the next row.
8301 "add %w[row], %w[row], #8\n"
8302 "b 21f\n"
8303 "20:\n"
8304 // Was already at end row.
8305 "mov %w[row], w6\n" // Move back to first row.
8306 "add %w[col], %w[col], #8\n" // Move to the next column.
8307 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #3\n"
8308 "mov %[dst_ptr], %[dst_col_ptr]\n"
8309 "21:\n"
8310
8311 // Main loop exit condition: have we hit the end column?
8312 "cmp %w[col], w8\n"
8313
8314 // w1 is the number of levels of depth that we have already loaded
8315 // LHS and RHS data for. Corresponding to the initial ld1 instructions
8316 // above, this is currently 1.
8317 "mov w1, #1\n"
8318
8319 "ble 1b\n"
8320
8321 // clang-format on
8322
8323 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
8324 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
8325 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
8326 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
8327 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf)
8328 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
8329 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
8330 "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25",
8331 "v26", "v27", "v28", "v29", "v30", "v31");
8332}
8333
8334// A fork of the standard float kernel where we omit the manual loop unrolling
8335// to recover performance on the X1. For now, the X1 core is the only CPU that
8336// uses this kernel.
8337void KernelFloatNeonX1(const KernelParamsFloat<8, 8>& params) {
8338 CheckOffsetsInKernelParamsFloat(params);
8339 profiler::ScopeLabel label("Kernel (kNeon) X1");
8340
8341 const float* lhs_col_ptr = params.lhs_base_ptr;
8342 const float* rhs_col_ptr = params.rhs_base_ptr;
8343 const float* lhs_ptr = lhs_col_ptr;
8344 const float* rhs_ptr = rhs_col_ptr;
8345 float* dst_col_ptr = params.dst_base_ptr;
8346 float* dst_ptr = dst_col_ptr;
8347 int row = params.start_row;
8348 int col = params.start_col;
8349
8350 // The asm kernel below has the following NEON register allocation:
8351 //
8352 // v16 -- v31 are accumulators.
8353 // During accumulation, v0 -- v15 are used to load data from LHS and RHS.
8354 // At least v0 and v1 are used to load a 8x1 block of LHS, and v2 and
8355 // v3 are used to load a 1x8 block of RHS, like this:
8356 //
8357 // RHS 1x8 block
8358 // /-----------------------------------------|
8359 // |v2.s[0] ... v2.s[3] v3.s[0] ... v3.s[3]|
8360 // \-----------------------------------------/
8361 // LHS 8x1 block
8362 // /---------------------\ /-----------------------------------------|
8363 // | v0.s[0] | |v16.s[0] ... v30.s[0]|
8364 // | ... | | ... ... |
8365 // | v0.s[3] | |v16.s[3] ... v30.s[3]|
8366 // | v1.s[0] | |v17.s[0] ... v31.s[0]|
8367 // | ... | | ... ... |
8368 // | v1.s[3] | |v17.s[3] ... v31.s[3]|
8369 // \---------------------/ \-----------------------------------------/
8370 // accumulators 8x8 block
8371 //
8372 // In the RUY_OPT_MAX_STREAMING part of the kernel, this elementary step
8373 // is repeated 4 times, using 4x more registers for LHS and RHS, so that
8374 // is where instead of using v0 -- v3 for LHS and RHS, we use v0 -- v15.
8375 //
8376 // Outside of the RUY_OPT_MAX_STREAMING part of the kernel, v4 -- v7 are
8377 // unused, and v8 -- v15 are used for floading parameters used for the
8378 // post-accumulation part of the kernel.
8379 asm volatile(
8380#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
8381
8382 // clang-format off
8383
8384 // Load some parameters into registers.
8385 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
8386 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
8387 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
8388 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
8389 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
8390 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
8391 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
8392 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
8393
8394 // Load the first 32 bytes of LHS and RHS data.
8395 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
8396 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
8397 "ld1 {v2.4s}, [%[rhs_ptr]], #16\n"
8398 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
8399
8400 // Clear accumulators.
8401 RUY_MAKE_ZERO(v16)
8402 RUY_MAKE_ZERO(v17)
8403 RUY_MAKE_ZERO(v18)
8404 RUY_MAKE_ZERO(v19)
8405 RUY_MAKE_ZERO(v20)
8406 RUY_MAKE_ZERO(v21)
8407 RUY_MAKE_ZERO(v22)
8408 RUY_MAKE_ZERO(v23)
8409 RUY_MAKE_ZERO(v24)
8410 RUY_MAKE_ZERO(v25)
8411 RUY_MAKE_ZERO(v26)
8412 RUY_MAKE_ZERO(v27)
8413 RUY_MAKE_ZERO(v28)
8414 RUY_MAKE_ZERO(v29)
8415 RUY_MAKE_ZERO(v30)
8416 RUY_MAKE_ZERO(v31)
8417
8418 // w1 is the number of levels of depth that we have already loaded
8419 // LHS and RHS data for. Corresponding to the initial ld1 instructions
8420 // above, this is currently 1.
8421 "mov w1, #1\n"
8422
8423 // Main loop of the whole GEMM, over rows and columns of the
8424 // destination matrix.
8425 "1:\n"
8426
8427 "fmla v16.4s, v0.4s, v2.s[0]\n"
8428 "fmla v18.4s, v0.4s, v2.s[1]\n"
8429 "fmla v20.4s, v0.4s, v2.s[2]\n"
8430 "fmla v22.4s, v0.4s, v2.s[3]\n"
8431
8432 // Accumulation loop
8433 "cmp w1, w12\n"
8434 "beq 79f\n"
8435
8436 "2:\n"
8437 "fmla v24.4s, v0.4s, v3.s[0]\n"
8438 "fmla v26.4s, v0.4s, v3.s[1]\n"
8439 "ld1 {v4.4s}, [%[rhs_ptr]], #16\n"
8440 "fmla v28.4s, v0.4s, v3.s[2]\n"
8441 "fmla v30.4s, v0.4s, v3.s[3]\n"
8442 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
8443 "fmla v25.4s, v1.4s, v3.s[0]\n"
8444 "fmla v27.4s, v1.4s, v3.s[1]\n"
8445 "add w1, w1, #1\n"
8446 "fmla v29.4s, v1.4s, v3.s[2]\n"
8447 "fmla v31.4s, v1.4s, v3.s[3]\n"
8448 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
8449 "fmla v17.4s, v1.4s, v2.s[0]\n"
8450 "fmla v19.4s, v1.4s, v2.s[1]\n"
8451 "cmp w1, w12\n"
8452 "fmla v21.4s, v1.4s, v2.s[2]\n"
8453 "fmla v23.4s, v1.4s, v2.s[3]\n"
8454 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
8455 "fmla v16.4s, v0.4s, v4.s[0]\n"
8456 "fmla v18.4s, v0.4s, v4.s[1]\n"
8457 "mov v2.16b, v4.16b\n"
8458 "fmla v20.4s, v0.4s, v4.s[2]\n"
8459 "fmla v22.4s, v0.4s, v4.s[3]\n"
8460 "blt 2b\n"
8461
8462 "79:\n"
8463
8464 // End of the inner loop on depth. Now perform the remaining
8465 // multiply-adds of the last level of depth, for which the LHS
8466 // and RHS data is already loaded.
8467
8468 "fmla v24.4s, v0.4s, v3.s[0]\n"
8469 "fmla v26.4s, v0.4s, v3.s[1]\n"
8470 "fmla v28.4s, v0.4s, v3.s[2]\n"
8471 "fmla v30.4s, v0.4s, v3.s[3]\n"
8472 "fmla v25.4s, v1.4s, v3.s[0]\n"
8473 "fmla v27.4s, v1.4s, v3.s[1]\n"
8474 "fmla v29.4s, v1.4s, v3.s[2]\n"
8475 "fmla v31.4s, v1.4s, v3.s[3]\n"
8476 "fmla v17.4s, v1.4s, v2.s[0]\n"
8477 "fmla v19.4s, v1.4s, v2.s[1]\n"
8478 "fmla v21.4s, v1.4s, v2.s[2]\n"
8479 "fmla v23.4s, v1.4s, v2.s[3]\n"
8480
8481 // End of accumulation. The registers v16 -- v31 contain the final
8482 // int32 accumulator values of the current 8x8 destination block.
8483 // We now have to compute the final 8-bit values from these int32
8484 // accumulators, and advance to the next 8x8 block. We intertwine
8485 // these two aspects whenever possible for optimal pipelining, both
8486 // at the data flow level (prefetch data for next block as early as
8487 // possible) and instruction pipelining level (some of the next-block
8488 // work can dual-issue with some of the final work on the current
8489 // block).
8490
8491 // Logic to advance to the next block in preparation for the next
8492 // iteration of the main loop. For now, we only want to compute
8493 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
8494 // not yet ready to update the values of row and col, as we still need
8495 // the current values for the rest of the work on the current block.
8496
8497 "cmp %w[row], w7\n" // Have we finished the last row?
8498 "bge 4f\n" // If finished last row, go to 4
8499 // Not finished last row: then advance to next row.
8500 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #3\n"
8501 "b 5f\n"
8502 "4:\n" // Finished last row...
8503 "mov %[lhs_col_ptr], x5\n" // Go back to first row
8504 // Now we need to advance to the next column. If we already
8505 // finished the last column, then in principle we are done, however
8506 // we can't just return here, as we need to allow the end work of the
8507 // current block to complete. The good news is that at this point it
8508 // doesn't matter what data we load for the next column, since
8509 // we will exit from the main loop below before actually storing
8510 // anything computed from that data.
8511 "cmp %w[col], w8\n" // Have we finished the last column?
8512 "bge 5f\n" // If yes, just carry on without updating the column pointer.
8513 // Not finished last column: then advance to next column.
8514 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #3\n"
8515 "5:\n"
8516
8517 // Set the LHS and RHS data pointers to the start of the columns just
8518 // computed.
8519 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
8520 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
8521
8522 // Load some parameters needed for the end work on current block.
8523 "ldrb w4, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
8524 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
8525
8526 // Determine the channel index.
8527 "tst w4, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
8528 "csel w3, %w[row], %w[col], eq\n"
8529
8530 // Offset the bias pointer as needed given the current row, col.
8531 "add x5, x1, x3, lsl #2\n"
8532
8533 // If there is no bias, use no offset, just address the passed zero
8534 // data.
8535 "tst w4, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
8536 "csel x1, x1, x5, eq\n"
8537
8538 // Load 8 bias values.
8539 "ld1 {v14.4s}, [x1], #16\n"
8540 "ld1 {v15.4s}, [x1]\n"
8541
8542 // Now that we know what LHS and RHS data the next iteration of the
8543 // main loop will need to load, we start loading the first 32 bytes of
8544 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
8545 // in the rest of the work on the current block.
8546 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
8547 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
8548 "ld1 {v2.4s}, [%[rhs_ptr]], #16\n"
8549 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
8550
8551 // Perform the bias-addition.
8552 // Jump based on channel dimension.
8553 "tst w4, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
8554 "bne 6f\n"
8555 // Case where channels are rows
8556 "fadd v16.4s, v16.4s, v14.4s\n"
8557 "fadd v17.4s, v17.4s, v15.4s\n"
8558 "fadd v18.4s, v18.4s, v14.4s\n"
8559 "fadd v19.4s, v19.4s, v15.4s\n"
8560 "fadd v20.4s, v20.4s, v14.4s\n"
8561 "fadd v21.4s, v21.4s, v15.4s\n"
8562 "fadd v22.4s, v22.4s, v14.4s\n"
8563 "fadd v23.4s, v23.4s, v15.4s\n"
8564 "fadd v24.4s, v24.4s, v14.4s\n"
8565 "fadd v25.4s, v25.4s, v15.4s\n"
8566 "fadd v26.4s, v26.4s, v14.4s\n"
8567 "fadd v27.4s, v27.4s, v15.4s\n"
8568 "fadd v28.4s, v28.4s, v14.4s\n"
8569 "fadd v29.4s, v29.4s, v15.4s\n"
8570 "fadd v30.4s, v30.4s, v14.4s\n"
8571 "fadd v31.4s, v31.4s, v15.4s\n"
8572 "b 7f\n"
8573
8574 "6:\n"
8575 // Case where channels are columns
8576 "dup v8.4s, v14.s[0]\n"
8577 "dup v9.4s, v14.s[1]\n"
8578 "dup v10.4s, v14.s[2]\n"
8579 "dup v11.4s, v14.s[3]\n"
8580 "dup v12.4s, v15.s[0]\n"
8581 "dup v13.4s, v15.s[1]\n"
8582 "dup v14.4s, v15.s[2]\n"
8583 "dup v15.4s, v15.s[3]\n"
8584 "fadd v16.4s, v16.4s, v8.4s\n"
8585 "fadd v17.4s, v17.4s, v8.4s\n"
8586 "fadd v18.4s, v18.4s, v9.4s\n"
8587 "fadd v19.4s, v19.4s, v9.4s\n"
8588 "fadd v20.4s, v20.4s, v10.4s\n"
8589 "fadd v21.4s, v21.4s, v10.4s\n"
8590 "fadd v22.4s, v22.4s, v11.4s\n"
8591 "fadd v23.4s, v23.4s, v11.4s\n"
8592 "fadd v24.4s, v24.4s, v12.4s\n"
8593 "fadd v25.4s, v25.4s, v12.4s\n"
8594 "fadd v26.4s, v26.4s, v13.4s\n"
8595 "fadd v27.4s, v27.4s, v13.4s\n"
8596 "fadd v28.4s, v28.4s, v14.4s\n"
8597 "fadd v29.4s, v29.4s, v14.4s\n"
8598 "fadd v30.4s, v30.4s, v15.4s\n"
8599 "fadd v31.4s, v31.4s, v15.4s\n"
8600 "7:\n"
8601
8602 // Load the clamp_min, clamp_max bounds
8603 "ldr w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
8604 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
8605 "dup v14.4s, w2\n" // clamp_min
8606 "dup v15.4s, w3\n" // clamp_max
8607
8608 // Apply the clamp_min bound
8609 "fmax v16.4s, v16.4s, v14.4s\n"
8610 "fmax v17.4s, v17.4s, v14.4s\n"
8611 "fmax v18.4s, v18.4s, v14.4s\n"
8612 "fmax v19.4s, v19.4s, v14.4s\n"
8613 "fmax v20.4s, v20.4s, v14.4s\n"
8614 "fmax v21.4s, v21.4s, v14.4s\n"
8615 "fmax v22.4s, v22.4s, v14.4s\n"
8616 "fmax v23.4s, v23.4s, v14.4s\n"
8617 "fmax v24.4s, v24.4s, v14.4s\n"
8618 "fmax v25.4s, v25.4s, v14.4s\n"
8619 "fmax v26.4s, v26.4s, v14.4s\n"
8620 "fmax v27.4s, v27.4s, v14.4s\n"
8621 "fmax v28.4s, v28.4s, v14.4s\n"
8622 "fmax v29.4s, v29.4s, v14.4s\n"
8623 "fmax v30.4s, v30.4s, v14.4s\n"
8624 "fmax v31.4s, v31.4s, v14.4s\n"
8625
8626 // Apply the clamp_max bound
8627 "fmin v16.4s, v16.4s, v15.4s\n"
8628 "fmin v17.4s, v17.4s, v15.4s\n"
8629 "fmin v18.4s, v18.4s, v15.4s\n"
8630 "fmin v19.4s, v19.4s, v15.4s\n"
8631 "fmin v20.4s, v20.4s, v15.4s\n"
8632 "fmin v21.4s, v21.4s, v15.4s\n"
8633 "fmin v22.4s, v22.4s, v15.4s\n"
8634 "fmin v23.4s, v23.4s, v15.4s\n"
8635 "fmin v24.4s, v24.4s, v15.4s\n"
8636 "fmin v25.4s, v25.4s, v15.4s\n"
8637 "fmin v26.4s, v26.4s, v15.4s\n"
8638 "fmin v27.4s, v27.4s, v15.4s\n"
8639 "fmin v28.4s, v28.4s, v15.4s\n"
8640 "fmin v29.4s, v29.4s, v15.4s\n"
8641 "fmin v30.4s, v30.4s, v15.4s\n"
8642 "fmin v31.4s, v31.4s, v15.4s\n"
8643
8644 // Compute how much of the 8x8 block of destination 8bit values that
8645 // we have computed, fit in the destination matrix. Typically, all of
8646 // it fits, but when the destination matrix shape is not a multiple
8647 // of 8x8, there are some 8x8 blocks along the boundaries that do
8648 // not fit entirely.
8649 "sub w1, %w[dst_rows], %w[row]\n"
8650 "sub w2, %w[dst_cols], %w[col]\n"
8651 "mov w3, #8\n"
8652 "cmp w1, #8\n"
8653 // Compute w1 = how many rows of the 8x8 block fit
8654 "csel w1, w1, w3, le\n"
8655 "cmp w2, #8\n"
8656 // Compute w2 = how many cols of the 8x8 block fit
8657 "csel w2, w2, w3, le\n"
8658
8659 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
8660 "cmp w1, w3\n"
8661 "ccmp w2, w3, 0, eq\n"
8662 // Yes, all of the 8x8 block fits, go to fast path.
8663 "beq 30f\n"
8664 // Not all of the 8x8 block fits.
8665 // Set (x3 address, x4 stride) to write to dst_tmp_buf
8666 "mov x3, %[dst_tmp_buf]\n"
8667 "mov x4, #32\n"
8668 "b 31f\n"
8669 "30:\n"
8670 // Yes, all of the 8x8 block fits.
8671 // Set (x3 address, x4 stride) to write directly to destination matrix.
8672 "mov x3, %[dst_ptr]\n"
8673 "mov x4, x11\n"
8674 "31:\n"
8675
8676 // Write our 8bit values to the destination described by
8677 // (x3 address, x4 stride).
8678 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8679 "str q16, [x3, #0]\n"
8680 "str q17, [x3, #16]\n"
8681 "add x3, x3, x4\n"
8682 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8683 RUY_MAKE_ZERO(v16)
8684 RUY_MAKE_ZERO(v17)
8685 "str q18, [x3, #0]\n"
8686 "str q19, [x3, #16]\n"
8687 "add x3, x3, x4\n"
8688 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8689 RUY_MAKE_ZERO(v18)
8690 RUY_MAKE_ZERO(v19)
8691 "str q20, [x3, #0]\n"
8692 "str q21, [x3, #16]\n"
8693 "add x3, x3, x4\n"
8694 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8695 RUY_MAKE_ZERO(v20)
8696 RUY_MAKE_ZERO(v21)
8697 "str q22, [x3, #0]\n"
8698 "str q23, [x3, #16]\n"
8699 "add x3, x3, x4\n"
8700 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8701 RUY_MAKE_ZERO(v22)
8702 RUY_MAKE_ZERO(v23)
8703 "str q24, [x3, #0]\n"
8704 "str q25, [x3, #16]\n"
8705 "add x3, x3, x4\n"
8706 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8707 RUY_MAKE_ZERO(v24)
8708 RUY_MAKE_ZERO(v25)
8709 "str q26, [x3, #0]\n"
8710 "str q27, [x3, #16]\n"
8711 "add x3, x3, x4\n"
8712 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8713 RUY_MAKE_ZERO(v26)
8714 RUY_MAKE_ZERO(v27)
8715 "str q28, [x3, #0]\n"
8716 "str q29, [x3, #16]\n"
8717 "add x3, x3, x4\n"
8718 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
8719 RUY_MAKE_ZERO(v28)
8720 RUY_MAKE_ZERO(v29)
8721 "str q30, [x3, #0]\n"
8722 "str q31, [x3, #16]\n"
8723 RUY_MAKE_ZERO(v30)
8724 RUY_MAKE_ZERO(v31)
8725
8726 // If all of the 8x8 block fits, we just finished writing it to the
8727 // destination, so we skip the next part.
8728 "beq 41f\n"
8729 // Not all of the 8x8 block fits in the destination matrix. We just
8730 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
8731 // it to copy into the destination matrix the part that fits.
8732 "mov x3, %[dst_tmp_buf]\n"
8733 "mov x4, %[dst_ptr]\n"
8734 "mov w6, #0\n"
8735 "50:\n"
8736 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
8737 "mov w5, #0\n"
8738 "51:\n"
8739 "ldr w7, [x3, x5, lsl #2]\n"
8740 "str w7, [x4, x5, lsl #2]\n"
8741 "add w5, w5, #1\n"
8742 "cmp w5, w1\n"
8743 "blt 51b\n"
8744 "add w6, w6, #1\n"
8745 "add x3, x3, #32\n"
8746 "add x4, x4, x11\n"
8747 "cmp w6, w2\n"
8748 "blt 50b\n"
8749 "41:\n"
8750 "add %[dst_ptr], %[dst_ptr], #32\n"
8751 // At this point we have completely finished writing values to the
8752 // destination matrix for the current block.
8753
8754 // Reload some params --- we had used x5 -- x7 for a few other things
8755 // since the last time we had loaded them.
8756 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
8757 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
8758 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
8759
8760 // Move to the next block of the destination matrix, for the next iter
8761 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
8762 // been updated earlier.
8763 // Have we reached the end row?
8764 "cmp %w[row], w7\n"
8765 "beq 20f\n" // yes, end row.
8766 // Not end row. Move to the next row.
8767 "add %w[row], %w[row], #8\n"
8768 "b 21f\n"
8769 "20:\n"
8770 // Was already at end row.
8771 "mov %w[row], w6\n" // Move back to first row.
8772 "add %w[col], %w[col], #8\n" // Move to the next column.
8773 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #3\n"
8774 "mov %[dst_ptr], %[dst_col_ptr]\n"
8775 "21:\n"
8776
8777 // Main loop exit condition: have we hit the end column?
8778 "cmp %w[col], w8\n"
8779
8780 // w1 is the number of levels of depth that we have already loaded
8781 // LHS and RHS data for. Corresponding to the initial ld1 instructions
8782 // above, this is currently 1.
8783 "mov w1, #1\n"
8784
8785 "ble 1b\n"
8786
8787 // clang-format on
8788
8789 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
8790 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
8791 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
8792 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
8793 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf)
8794 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
8795 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
8796 "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25",
8797 "v26", "v27", "v28", "v29", "v30", "v31");
8798}
8799
8800// Variant of KernelFloatNeon tuned for in-order CPUs that do not
8801// support dotprod (while dotprod by itself is not relevant to floating-point,
8802// this additional bit of information that we have about the target happens to
8803// be useful here).
8804//
8805// So a typical target CPU here would be ARM Cortex-A53 or the original
8806// Cortex-A55.
8807//
8808// This kernel is similar to and inspired by gemmlowp's
8809// NEON_64bit_GEMM_Float32_WithScalar_A53.
8810// which was contributed by David Mansell with very helpful
8811// comments. Specifically, see this comment about tuning for Cortex-A53:
8812// https://github.com/google/gemmlowp/blob/36212ad3651871bc3e9a599f1a6d5324778aea25/standalone/neon-gemm-kernel-benchmark.cc#L4215
8813void KernelFloatNeonA55ish(const KernelParamsFloat<8, 8>& params) {
8814 profiler::ScopeLabel label("Kernel (kNeon, optimized for in-order cores)");
8815
8816 CheckOffsetsInKernelParamsFloat(params);
8817
8818 const float* lhs_col_ptr = params.lhs_base_ptr;
8819 const float* rhs_col_ptr = params.rhs_base_ptr;
8820 const float* lhs_ptr = lhs_col_ptr;
8821 const float* rhs_ptr = rhs_col_ptr;
8822 float* dst_col_ptr = params.dst_base_ptr;
8823 float* dst_ptr = dst_col_ptr;
8824 int row = params.start_row;
8825 int col = params.start_col;
8826
8827 // The asm kernel below has the following NEON register allocation:
8828 //
8829 // v16 -- v31 are accumulators.
8830 // During accumulation, v0 -- v3 are used to load data from LHS and RHS.
8831 //
8832 // RHS 1x8 block
8833 // /-----------------------------------------|
8834 // |v2.s[0] ... v2.s[3] v3.s[0] ... v3.s[3]|
8835 // \-----------------------------------------/
8836 // LHS 8x1 block
8837 // /---------------------\ /-----------------------------------------|
8838 // | v0.s[0] | |v16.s[0] ... v30.s[0]|
8839 // | ... | | ... ... |
8840 // | v0.s[3] | |v16.s[3] ... v30.s[3]|
8841 // | v1.s[0] | |v17.s[0] ... v31.s[0]|
8842 // | ... | | ... ... |
8843 // | v1.s[3] | |v17.s[3] ... v31.s[3]|
8844 // \---------------------/ \-----------------------------------------/
8845 // accumulators 8x8 block
8846 //
8847 // There is no RUY_OPT_MAX_STREAMING 4x-unrolled part in this kernel because
8848 // we did not observe a benefit of such partial unrolling on in-order CPUs.
8849 //
8850 // v4 -- v7 are unused, and v8 -- v15 are used for floading parameters used
8851 // for the post-accumulation part of the kernel.
8852 asm volatile(
8853#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
8854
8855 // clang-format off
8856
8857 // Load some parameters into registers.
8858 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
8859 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
8860 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
8861 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
8862 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
8863 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
8864 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
8865 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
8866
8867
8868 // Clear accumulators.
8869 RUY_MAKE_ZERO(v16)
8870 // Load the first 32 bytes of LHS and RHS data.
8871 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
8872 RUY_MAKE_ZERO(v17)
8873 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
8874 RUY_MAKE_ZERO(v18)
8875 "ld1 {v2.4s}, [%[rhs_ptr]], #16\n"
8876 RUY_MAKE_ZERO(v19)
8877 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
8878 RUY_MAKE_ZERO(v20)
8879 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #64]\n")
8880 RUY_MAKE_ZERO(v21)
8881 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #64]\n")
8882 RUY_MAKE_ZERO(v22)
8883 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #128]\n")
8884 RUY_MAKE_ZERO(v23)
8885 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #128]\n")
8886 RUY_MAKE_ZERO(v24)
8887 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #192]\n")
8888 RUY_MAKE_ZERO(v25)
8889 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #192]\n")
8890 RUY_MAKE_ZERO(v26)
8891 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #256]\n")
8892 RUY_MAKE_ZERO(v27)
8893 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #256]\n")
8894 RUY_MAKE_ZERO(v28)
8895 RUY_MAKE_ZERO(v29)
8896 RUY_MAKE_ZERO(v30)
8897 RUY_MAKE_ZERO(v31)
8898
8899 // w1 is the number of levels of depth that remain to load
8900 // LHS and RHS data for. Corresponding to the initial ld1 instructions
8901 // above, this is currently depth - 1.
8902 "sub w1, w12, #1\n"
8903
8904 // Main loop of the whole GEMM, over rows and columns of the
8905 // destination matrix.
8906 "1:\n"
8907
8908 "cmp w1, #0\n"
8909 "fmla v16.4s, v0.4s, v2.s[0]\n"
8910 "fmla v18.4s, v0.4s, v2.s[1]\n"
8911 "fmla v20.4s, v0.4s, v2.s[2]\n"
8912 "fmla v22.4s, v0.4s, v2.s[3]\n"
8913
8914 // Accumulation loop
8915 "beq 79f\n"
8916
8917 "2:\n"
8918
8919 "fmla v24.4s, v0.4s, v3.s[0]\n"
8920 "ldr x2, [%[lhs_ptr], #8]\n"
8921 "fmla v26.4s, v0.4s, v3.s[1]\n"
8922 "ldr x3, [%[lhs_ptr], #24]\n"
8923 "fmla v28.4s, v0.4s, v3.s[2]\n"
8924 "ldr x5, [%[rhs_ptr], #24]\n"
8925 "fmla v30.4s, v0.4s, v3.s[3]\n"
8926 "ldr x4, [%[rhs_ptr], #8]\n"
8927 "fmla v25.4s, v1.4s, v3.s[0]\n"
8928 "subs w1, w1, #1\n"
8929 "ldr d0, [%[lhs_ptr]], #32\n"
8930 "fmla v27.4s, v1.4s, v3.s[1]\n"
8931 "fmla v29.4s, v1.4s, v3.s[2]\n"
8932 "fmla v31.4s, v1.4s, v3.s[3]\n"
8933 "ins v0.d[1], x2\n"
8934 "ldr d3, [%[rhs_ptr], #16]\n"
8935 "fmla v17.4s, v1.4s, v2.s[0]\n"
8936 "fmla v19.4s, v1.4s, v2.s[1]\n"
8937 "ins v3.d[1], x5\n"
8938 "ldr d4, [%[rhs_ptr]], #32\n"
8939 "fmla v21.4s, v1.4s, v2.s[2]\n"
8940 "fmla v23.4s, v1.4s, v2.s[3]\n"
8941 "fmla v16.4s, v0.4s, v4.s[0]\n"
8942 "ins v4.d[1], x4\n"
8943 "ldr d1, [%[lhs_ptr], #-16]\n"
8944 "fmla v18.4s, v0.4s, v4.s[1]\n"
8945 "fmla v20.4s, v0.4s, v4.s[2]\n"
8946 "ins v1.d[1], x3\n"
8947 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #256]\n")
8948 "mov v2.16b, v4.16b\n"
8949 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #256]\n")
8950 "fmla v22.4s, v0.4s, v4.s[3]\n"
8951 "bne 2b\n"
8952
8953 "79:\n"
8954
8955 // End of the inner loop on depth. Now perform the remaining
8956 // multiply-adds of the last level of depth, for which the LHS
8957 // and RHS data is already loaded.
8958
8959 "fmla v24.4s, v0.4s, v3.s[0]\n"
8960 "fmla v26.4s, v0.4s, v3.s[1]\n"
8961 "fmla v28.4s, v0.4s, v3.s[2]\n"
8962 "fmla v30.4s, v0.4s, v3.s[3]\n"
8963 "fmla v25.4s, v1.4s, v3.s[0]\n"
8964 "fmla v27.4s, v1.4s, v3.s[1]\n"
8965 "fmla v29.4s, v1.4s, v3.s[2]\n"
8966 "fmla v31.4s, v1.4s, v3.s[3]\n"
8967 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
8968 "fmla v17.4s, v1.4s, v2.s[0]\n"
8969 "fmla v19.4s, v1.4s, v2.s[1]\n"
8970 "fmla v21.4s, v1.4s, v2.s[2]\n"
8971 "fmla v23.4s, v1.4s, v2.s[3]\n"
8972
8973 // End of accumulation. The registers v16 -- v31 contain the final
8974 // int32 accumulator values of the current 8x8 destination block.
8975 // We now have to compute the final 8-bit values from these int32
8976 // accumulators, and advance to the next 8x8 block. We intertwine
8977 // these two aspects whenever possible for optimal pipelining, both
8978 // at the data flow level (prefetch data for next block as early as
8979 // possible) and instruction pipelining level (some of the next-block
8980 // work can dual-issue with some of the final work on the current
8981 // block).
8982
8983 // Logic to advance to the next block in preparation for the next
8984 // iteration of the main loop. For now, we only want to compute
8985 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
8986 // not yet ready to update the values of row and col, as we still need
8987 // the current values for the rest of the work on the current block.
8988
8989 "cmp %w[row], w7\n" // Have we finished the last row?
8990 "bge 4f\n" // If finished last row, go to 4
8991 // Not finished last row: then advance to next row.
8992 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #3\n"
8993 "b 5f\n"
8994 "4:\n" // Finished last row...
8995 "mov %[lhs_col_ptr], x5\n" // Go back to first row
8996 // Now we need to advance to the next column. If we already
8997 // finished the last column, then in principle we are done, however
8998 // we can't just return here, as we need to allow the end work of the
8999 // current block to complete. The good news is that at this point it
9000 // doesn't matter what data we load for the next column, since
9001 // we will exit from the main loop below before actually storing
9002 // anything computed from that data.
9003 "cmp %w[col], w8\n" // Have we finished the last column?
9004 "bge 5f\n" // If yes, just carry on without updating the column pointer.
9005 // Not finished last column: then advance to next column.
9006 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #3\n"
9007 "5:\n"
9008
9009 // Set the LHS and RHS data pointers to the start of the columns just
9010 // computed.
9011 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
9012 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
9013
9014 // Load some parameters needed for the end work on current block.
9015 "ldrb w4, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
9016 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
9017
9018 // Determine the channel index.
9019 "tst w4, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
9020 "csel w3, %w[row], %w[col], eq\n"
9021
9022 // Offset the bias pointer as needed given the current row, col.
9023 "add x5, x1, x3, lsl #2\n"
9024
9025 // If there is no bias, use no offset, just address the passed zero
9026 // data.
9027
9028 "tst w4, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
9029 "csel x1, x1, x5, eq\n"
9030
9031 // Load 8 bias values.
9032 "ld1 {v14.4s}, [x1], #16\n"
9033 "ld1 {v15.4s}, [x1]\n"
9034
9035 // Now that we know what LHS and RHS data the next iteration of the
9036 // main loop will need to load, we start loading the first 32 bytes of
9037 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
9038 // in the rest of the work on the current block.
9039 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
9040 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
9041 "ld1 {v2.4s}, [%[rhs_ptr]], #16\n"
9042 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
9043
9044 // Perform the bias-addition.
9045 // Jump based on channel dimension.
9046 "tst w4, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
9047 "bne 6f\n"
9048 // Case where channels are rows
9049 "fadd v16.4s, v16.4s, v14.4s\n"
9050 "fadd v17.4s, v17.4s, v15.4s\n"
9051 "fadd v18.4s, v18.4s, v14.4s\n"
9052 "fadd v19.4s, v19.4s, v15.4s\n"
9053 "fadd v20.4s, v20.4s, v14.4s\n"
9054 "fadd v21.4s, v21.4s, v15.4s\n"
9055 "fadd v22.4s, v22.4s, v14.4s\n"
9056 "fadd v23.4s, v23.4s, v15.4s\n"
9057 "fadd v24.4s, v24.4s, v14.4s\n"
9058 "fadd v25.4s, v25.4s, v15.4s\n"
9059 "fadd v26.4s, v26.4s, v14.4s\n"
9060 "fadd v27.4s, v27.4s, v15.4s\n"
9061 "fadd v28.4s, v28.4s, v14.4s\n"
9062 "fadd v29.4s, v29.4s, v15.4s\n"
9063 "fadd v30.4s, v30.4s, v14.4s\n"
9064 "fadd v31.4s, v31.4s, v15.4s\n"
9065 "b 7f\n"
9066
9067 "6:\n"
9068 // Case where channels are columns
9069 "dup v8.4s, v14.s[0]\n"
9070 "dup v9.4s, v14.s[1]\n"
9071 "fadd v16.4s, v16.4s, v8.4s\n"
9072 "dup v10.4s, v14.s[2]\n"
9073 "fadd v17.4s, v17.4s, v8.4s\n"
9074 "dup v11.4s, v14.s[3]\n"
9075 "fadd v18.4s, v18.4s, v9.4s\n"
9076 "dup v12.4s, v15.s[0]\n"
9077 "fadd v19.4s, v19.4s, v9.4s\n"
9078 "dup v13.4s, v15.s[1]\n"
9079 "fadd v20.4s, v20.4s, v10.4s\n"
9080 "dup v14.4s, v15.s[2]\n"
9081 "fadd v21.4s, v21.4s, v10.4s\n"
9082 "dup v15.4s, v15.s[3]\n"
9083 "fadd v22.4s, v22.4s, v11.4s\n"
9084 "fadd v23.4s, v23.4s, v11.4s\n"
9085 "fadd v24.4s, v24.4s, v12.4s\n"
9086 "fadd v25.4s, v25.4s, v12.4s\n"
9087 "fadd v26.4s, v26.4s, v13.4s\n"
9088 "fadd v27.4s, v27.4s, v13.4s\n"
9089 "fadd v28.4s, v28.4s, v14.4s\n"
9090 "fadd v29.4s, v29.4s, v14.4s\n"
9091 "fadd v30.4s, v30.4s, v15.4s\n"
9092 "fadd v31.4s, v31.4s, v15.4s\n"
9093 "7:\n"
9094
9095 // Load the clamp_min, clamp_max bounds
9096 "ldr w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
9097 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
9098 "dup v14.4s, w2\n" // clamp_min
9099 "dup v15.4s, w3\n" // clamp_max
9100
9101 // Apply the clamp_min bound
9102 "fmax v16.4s, v16.4s, v14.4s\n"
9103 "fmax v17.4s, v17.4s, v14.4s\n"
9104 "fmax v18.4s, v18.4s, v14.4s\n"
9105 "fmax v19.4s, v19.4s, v14.4s\n"
9106 "fmax v20.4s, v20.4s, v14.4s\n"
9107 "fmax v21.4s, v21.4s, v14.4s\n"
9108 "fmax v22.4s, v22.4s, v14.4s\n"
9109 "fmax v23.4s, v23.4s, v14.4s\n"
9110 "fmax v24.4s, v24.4s, v14.4s\n"
9111 "fmax v25.4s, v25.4s, v14.4s\n"
9112 "fmax v26.4s, v26.4s, v14.4s\n"
9113 "fmax v27.4s, v27.4s, v14.4s\n"
9114 "fmax v28.4s, v28.4s, v14.4s\n"
9115 "fmax v29.4s, v29.4s, v14.4s\n"
9116 "fmax v30.4s, v30.4s, v14.4s\n"
9117 "fmax v31.4s, v31.4s, v14.4s\n"
9118
9119 // Apply the clamp_max bound
9120 "fmin v16.4s, v16.4s, v15.4s\n"
9121 "fmin v17.4s, v17.4s, v15.4s\n"
9122 "fmin v18.4s, v18.4s, v15.4s\n"
9123 "fmin v19.4s, v19.4s, v15.4s\n"
9124 "fmin v20.4s, v20.4s, v15.4s\n"
9125 "fmin v21.4s, v21.4s, v15.4s\n"
9126 "fmin v22.4s, v22.4s, v15.4s\n"
9127 "fmin v23.4s, v23.4s, v15.4s\n"
9128 "fmin v24.4s, v24.4s, v15.4s\n"
9129 "fmin v25.4s, v25.4s, v15.4s\n"
9130 "fmin v26.4s, v26.4s, v15.4s\n"
9131 "fmin v27.4s, v27.4s, v15.4s\n"
9132 "fmin v28.4s, v28.4s, v15.4s\n"
9133 "fmin v29.4s, v29.4s, v15.4s\n"
9134 "fmin v30.4s, v30.4s, v15.4s\n"
9135 "fmin v31.4s, v31.4s, v15.4s\n"
9136
9137 // Compute how much of the 8x8 block of destination 8bit values that
9138 // we have computed, fit in the destination matrix. Typically, all of
9139 // it fits, but when the destination matrix shape is not a multiple
9140 // of 8x8, there are some 8x8 blocks along the boundaries that do
9141 // not fit entirely.
9142 "sub w1, %w[dst_rows], %w[row]\n"
9143 "sub w2, %w[dst_cols], %w[col]\n"
9144 "mov w3, #8\n"
9145 "cmp w1, #8\n"
9146 // Compute w1 = how many rows of the 8x8 block fit
9147 "csel w1, w1, w3, le\n"
9148 "cmp w2, #8\n"
9149 // Compute w2 = how many cols of the 8x8 block fit
9150 "csel w2, w2, w3, le\n"
9151
9152 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
9153 "cmp w1, w3\n"
9154 "ccmp w2, w3, 0, eq\n"
9155 // Yes, all of the 8x8 block fits, go to fast path.
9156 "beq 30f\n"
9157 // Not all of the 8x8 block fits.
9158 // Set (x3 address, x4 stride) to write to dst_tmp_buf
9159 "mov x3, %[dst_tmp_buf]\n"
9160 "mov x4, #32\n"
9161 "b 31f\n"
9162 "30:\n"
9163 // Yes, all of the 8x8 block fits.
9164 // Set (x3 address, x4 stride) to write directly to destination matrix.
9165 "mov x3, %[dst_ptr]\n"
9166 "mov x4, x11\n"
9167 "31:\n"
9168
9169 // Write our 8bit values to the destination described by
9170 // (x3 address, x4 stride).
9171 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9172 "str q16, [x3, #0]\n"
9173 "str q17, [x3, #16]\n"
9174 "add x3, x3, x4\n"
9175 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9176 RUY_MAKE_ZERO(v16)
9177 RUY_MAKE_ZERO(v17)
9178 "str q18, [x3, #0]\n"
9179 "str q19, [x3, #16]\n"
9180 "add x3, x3, x4\n"
9181 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9182 RUY_MAKE_ZERO(v18)
9183 RUY_MAKE_ZERO(v19)
9184 "str q20, [x3, #0]\n"
9185 "str q21, [x3, #16]\n"
9186 "add x3, x3, x4\n"
9187 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9188 RUY_MAKE_ZERO(v20)
9189 RUY_MAKE_ZERO(v21)
9190 "str q22, [x3, #0]\n"
9191 "str q23, [x3, #16]\n"
9192 "add x3, x3, x4\n"
9193 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9194 RUY_MAKE_ZERO(v22)
9195 RUY_MAKE_ZERO(v23)
9196 "str q24, [x3, #0]\n"
9197 "str q25, [x3, #16]\n"
9198 "add x3, x3, x4\n"
9199 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9200 RUY_MAKE_ZERO(v24)
9201 RUY_MAKE_ZERO(v25)
9202 "str q26, [x3, #0]\n"
9203 "str q27, [x3, #16]\n"
9204 "add x3, x3, x4\n"
9205 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9206 RUY_MAKE_ZERO(v26)
9207 RUY_MAKE_ZERO(v27)
9208 "str q28, [x3, #0]\n"
9209 "str q29, [x3, #16]\n"
9210 "add x3, x3, x4\n"
9211 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9212 RUY_MAKE_ZERO(v28)
9213 RUY_MAKE_ZERO(v29)
9214 "str q30, [x3, #0]\n"
9215 "str q31, [x3, #16]\n"
9216 RUY_MAKE_ZERO(v30)
9217 RUY_MAKE_ZERO(v31)
9218
9219 // If all of the 8x8 block fits, we just finished writing it to the
9220 // destination, so we skip the next part.
9221 "beq 41f\n"
9222 // Not all of the 8x8 block fits in the destination matrix. We just
9223 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
9224 // it to copy into the destination matrix the part that fits.
9225 "mov x3, %[dst_tmp_buf]\n"
9226 "mov x4, %[dst_ptr]\n"
9227 "mov w6, #0\n"
9228 "50:\n"
9229 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
9230 "mov w5, #0\n"
9231 "51:\n"
9232 "ldr w7, [x3, x5, lsl #2]\n"
9233 "str w7, [x4, x5, lsl #2]\n"
9234 "add w5, w5, #1\n"
9235 "cmp w5, w1\n"
9236 "blt 51b\n"
9237 "add w6, w6, #1\n"
9238 "add x3, x3, #32\n"
9239 "add x4, x4, x11\n"
9240 "cmp w6, w2\n"
9241 "blt 50b\n"
9242 "41:\n"
9243 "add %[dst_ptr], %[dst_ptr], #32\n"
9244 // At this point we have completely finished writing values to the
9245 // destination matrix for the current block.
9246
9247 // Reload some params --- we had used x5 -- x7 for a few other things
9248 // since the last time we had loaded them.
9249 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
9250 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
9251 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
9252
9253 // Move to the next block of the destination matrix, for the next iter
9254 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
9255 // been updated earlier.
9256 // Have we reached the end row?
9257 "cmp %w[row], w7\n"
9258 "beq 20f\n" // yes, end row.
9259 // Not end row. Move to the next row.
9260 "add %w[row], %w[row], #8\n"
9261 "b 21f\n"
9262 "20:\n"
9263 // Was already at end row.
9264 "mov %w[row], w6\n" // Move back to first row.
9265 "add %w[col], %w[col], #8\n" // Move to the next column.
9266 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #3\n"
9267 "mov %[dst_ptr], %[dst_col_ptr]\n"
9268 "21:\n"
9269
9270 // Main loop exit condition: have we hit the end column?
9271 "cmp %w[col], w8\n"
9272
9273 // w1 is the number of levels of depth that remain to load
9274 // LHS and RHS data for. Corresponding to the initial ld1 instructions
9275 // above, this is currently depth - 1.
9276 "sub w1, w12, #1\n"
9277
9278 "ble 1b\n"
9279
9280 // clang-format on
9281
9282 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
9283 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
9284 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
9285 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
9286 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf)
9287 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
9288 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
9289 "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25",
9290 "v26", "v27", "v28", "v29", "v30", "v31");
9291}
9292
9293// Variant of KernelFloatNeonA55ish tuned for in-order CPUs that do
9294// support dotprod (while dotprod by itself is not relevant to floating-point,
9295// this additional bit of information that we have about the target happens to
9296// be useful here).
9297//
9298// So a typical target CPU here would be ARM Cortex-A55r1.
9299//
9300// This kernel is similar to and inspired by gemmlowp's
9301// NEON_64bit_GEMM_Float32_WithScalar_A55r1.
9302// which was contributed by David Mansell with very helpful
9303// comments. Specifically, see this comment about tuning for Cortex-A55r1:
9304// https://github.com/google/gemmlowp/blob/36212ad3651871bc3e9a599f1a6d5324778aea25/standalone/neon-gemm-kernel-benchmark.cc#L4412
9305void KernelFloatNeonDotprodA55ish(const KernelParamsFloat<8, 8>& params) {
9306 profiler::ScopeLabel label(
9307 "Kernel (kNeonDotprod, optimized for in-order cores)");
9308
9309 CheckOffsetsInKernelParamsFloat(params);
9310
9311 const float* lhs_col_ptr = params.lhs_base_ptr;
9312 const float* rhs_col_ptr = params.rhs_base_ptr;
9313 const float* lhs_ptr = lhs_col_ptr;
9314 const float* rhs_ptr = rhs_col_ptr;
9315 float* dst_col_ptr = params.dst_base_ptr;
9316 float* dst_ptr = dst_col_ptr;
9317 int row = params.start_row;
9318 int col = params.start_col;
9319
9320 // The asm kernel below has the following NEON register allocation:
9321 //
9322 // v16 -- v31 are accumulators.
9323 // During accumulation, v0 -- v3 are used to load data from LHS and RHS.
9324 //
9325 // RHS 1x8 block
9326 // /-----------------------------------------|
9327 // |v2.s[0] ... v2.s[3] v3.s[0] ... v3.s[3]|
9328 // \-----------------------------------------/
9329 // LHS 8x1 block
9330 // /---------------------\ /-----------------------------------------|
9331 // | v0.s[0] | |v16.s[0] ... v30.s[0]|
9332 // | ... | | ... ... |
9333 // | v0.s[3] | |v16.s[3] ... v30.s[3]|
9334 // | v1.s[0] | |v17.s[0] ... v31.s[0]|
9335 // | ... | | ... ... |
9336 // | v1.s[3] | |v17.s[3] ... v31.s[3]|
9337 // \---------------------/ \-----------------------------------------/
9338 // accumulators 8x8 block
9339 //
9340 // There is no RUY_OPT_MAX_STREAMING 4x-unrolled part in this kernel because
9341 // we did not observe a benefit of such partial unrolling on in-order CPUs.
9342 //
9343 // v4 -- v7 are unused, and v8 -- v15 are used for floading parameters used
9344 // for the post-accumulation part of the kernel.
9345 asm volatile(
9346#define RUY_MAKE_ZERO(reg) "movi " #reg ".4s, #0\n"
9347
9348 // clang-format off
9349
9350 // Load some parameters into registers.
9351 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
9352 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
9353 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
9354 "ldr w8, [%[params], #" RUY_STR(RUY_OFFSET_LAST_COL) "]\n"
9355 "ldr w9, [%[params], #" RUY_STR(RUY_OFFSET_LHS_STRIDE) "]\n"
9356 "ldr w10, [%[params], #" RUY_STR(RUY_OFFSET_RHS_STRIDE) "]\n"
9357 "ldr w11, [%[params], #" RUY_STR(RUY_OFFSET_DST_STRIDE) "]\n"
9358 "ldr w12, [%[params], #" RUY_STR(RUY_OFFSET_DEPTH) "]\n"
9359
9360
9361 // Clear accumulators.
9362 RUY_MAKE_ZERO(v16)
9363 // Load the first 32 bytes of LHS and RHS data.
9364 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
9365 RUY_MAKE_ZERO(v17)
9366 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
9367 RUY_MAKE_ZERO(v18)
9368 "ld1 {v2.4s}, [%[rhs_ptr]], #16\n"
9369 RUY_MAKE_ZERO(v19)
9370 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
9371 RUY_MAKE_ZERO(v20)
9372 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #64]\n")
9373 RUY_MAKE_ZERO(v21)
9374 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #64]\n")
9375 RUY_MAKE_ZERO(v22)
9376 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #128]\n")
9377 RUY_MAKE_ZERO(v23)
9378 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #128]\n")
9379 RUY_MAKE_ZERO(v24)
9380 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #192]\n")
9381 RUY_MAKE_ZERO(v25)
9382 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #192]\n")
9383 RUY_MAKE_ZERO(v26)
9384 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #256]\n")
9385 RUY_MAKE_ZERO(v27)
9386 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #256]\n")
9387 RUY_MAKE_ZERO(v28)
9388 RUY_MAKE_ZERO(v29)
9389 RUY_MAKE_ZERO(v30)
9390 RUY_MAKE_ZERO(v31)
9391
9392 // w1 is the number of levels of depth that remain to load
9393 // LHS and RHS data for. Corresponding to the initial ld1 instructions
9394 // above, this is currently depth - 1.
9395 "sub w1, w12, #1\n"
9396
9397 // Main loop of the whole GEMM, over rows and columns of the
9398 // destination matrix.
9399 "1:\n"
9400
9401 "cmp w1, #0\n"
9402 "fmla v16.4s, v0.4s, v2.s[0]\n"
9403 "fmla v18.4s, v0.4s, v2.s[1]\n"
9404 "fmla v20.4s, v0.4s, v2.s[2]\n"
9405 "fmla v22.4s, v0.4s, v2.s[3]\n"
9406
9407 // Accumulation loop
9408 "beq 79f\n"
9409
9410 "2:\n"
9411
9412 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[lhs_ptr], #256]\n")
9413 "fmla v24.4s, v0.4s, v3.s[0]\n"
9414 "ldr x2, [%[lhs_ptr], #8]\n"
9415 "fmla v26.4s, v0.4s, v3.s[1]\n"
9416 "ldr x3, [%[lhs_ptr], #24]\n"
9417 "fmla v28.4s, v0.4s, v3.s[2]\n"
9418 "ldr x5, [%[rhs_ptr], #24]\n"
9419 "fmla v30.4s, v0.4s, v3.s[3]\n"
9420 "ldr d0, [%[lhs_ptr]], #32\n"
9421 "fmla v25.4s, v1.4s, v3.s[0]\n"
9422 "ldr x4, [%[rhs_ptr], #8]\n"
9423 "fmla v27.4s, v1.4s, v3.s[1]\n"
9424 "subs w1, w1, #1\n"
9425 "fmla v29.4s, v1.4s, v3.s[2]\n"
9426 "ins v0.d[1], x2\n"
9427 "fmla v31.4s, v1.4s, v3.s[3]\n"
9428 "ldr d3, [%[rhs_ptr], #16]\n"
9429 "fmla v17.4s, v1.4s, v2.s[0]\n"
9430 "ins v3.d[1], x5\n"
9431 "fmla v19.4s, v1.4s, v2.s[1]\n"
9432 "ldr d4, [%[rhs_ptr]], #32\n"
9433 "fmla v21.4s, v1.4s, v2.s[2]\n"
9434 "ins v4.d[1], x4\n"
9435 "fmla v23.4s, v1.4s, v2.s[3]\n"
9436 RUY_PREFETCH_LOAD("prfm pldl1keep, [%[rhs_ptr], #256]\n")
9437 "fmla v16.4s, v0.4s, v4.s[0]\n"
9438 "ldr d1, [%[lhs_ptr], #-16]\n"
9439 "fmla v18.4s, v0.4s, v4.s[1]\n"
9440 "ins v1.d[1], x3\n"
9441 "fmla v20.4s, v0.4s, v4.s[2]\n"
9442 "mov v2.16b, v4.16b\n"
9443 "fmla v22.4s, v0.4s, v4.s[3]\n"
9444 "bne 2b\n"
9445
9446 "79:\n"
9447
9448 // End of the inner loop on depth. Now perform the remaining
9449 // multiply-adds of the last level of depth, for which the LHS
9450 // and RHS data is already loaded.
9451
9452 "fmla v24.4s, v0.4s, v3.s[0]\n"
9453 "fmla v26.4s, v0.4s, v3.s[1]\n"
9454 "fmla v28.4s, v0.4s, v3.s[2]\n"
9455 "fmla v30.4s, v0.4s, v3.s[3]\n"
9456 "fmla v25.4s, v1.4s, v3.s[0]\n"
9457 "fmla v27.4s, v1.4s, v3.s[1]\n"
9458 "fmla v29.4s, v1.4s, v3.s[2]\n"
9459 "fmla v31.4s, v1.4s, v3.s[3]\n"
9460 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
9461 "fmla v17.4s, v1.4s, v2.s[0]\n"
9462 "fmla v19.4s, v1.4s, v2.s[1]\n"
9463 "fmla v21.4s, v1.4s, v2.s[2]\n"
9464 "fmla v23.4s, v1.4s, v2.s[3]\n"
9465
9466 // End of accumulation. The registers v16 -- v31 contain the final
9467 // int32 accumulator values of the current 8x8 destination block.
9468 // We now have to compute the final 8-bit values from these int32
9469 // accumulators, and advance to the next 8x8 block. We intertwine
9470 // these two aspects whenever possible for optimal pipelining, both
9471 // at the data flow level (prefetch data for next block as early as
9472 // possible) and instruction pipelining level (some of the next-block
9473 // work can dual-issue with some of the final work on the current
9474 // block).
9475
9476 // Logic to advance to the next block in preparation for the next
9477 // iteration of the main loop. For now, we only want to compute
9478 // the LHS and RHS data pointers, lhs_col_ptr and rhs_col_ptr. We are
9479 // not yet ready to update the values of row and col, as we still need
9480 // the current values for the rest of the work on the current block.
9481
9482 "cmp %w[row], w7\n" // Have we finished the last row?
9483 "bge 4f\n" // If finished last row, go to 4
9484 // Not finished last row: then advance to next row.
9485 "add %[lhs_col_ptr], %[lhs_col_ptr], x9, lsl #3\n"
9486 "b 5f\n"
9487 "4:\n" // Finished last row...
9488 "mov %[lhs_col_ptr], x5\n" // Go back to first row
9489 // Now we need to advance to the next column. If we already
9490 // finished the last column, then in principle we are done, however
9491 // we can't just return here, as we need to allow the end work of the
9492 // current block to complete. The good news is that at this point it
9493 // doesn't matter what data we load for the next column, since
9494 // we will exit from the main loop below before actually storing
9495 // anything computed from that data.
9496 "cmp %w[col], w8\n" // Have we finished the last column?
9497 "bge 5f\n" // If yes, just carry on without updating the column pointer.
9498 // Not finished last column: then advance to next column.
9499 "add %[rhs_col_ptr], %[rhs_col_ptr], x10, lsl #3\n"
9500 "5:\n"
9501
9502 // Set the LHS and RHS data pointers to the start of the columns just
9503 // computed.
9504 "mov %[lhs_ptr], %[lhs_col_ptr]\n"
9505 "mov %[rhs_ptr], %[rhs_col_ptr]\n"
9506
9507 // Load some parameters needed for the end work on current block.
9508 "ldrb w4, [%[params], #" RUY_STR(RUY_OFFSET_FLAGS) "]\n"
9509 "ldr x1, [%[params], #" RUY_STR(RUY_OFFSET_BIAS) "]\n"
9510
9511 // Determine the channel index.
9512 "tst w4, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
9513 "csel w3, %w[row], %w[col], eq\n"
9514
9515 // Offset the bias pointer as needed given the current row, col.
9516 "add x5, x1, x3, lsl #2\n"
9517
9518 // If there is no bias, use no offset, just address the passed zero
9519 // data.
9520
9521 "tst w4, #" RUY_STR(RUY_ASM_FLAG_HAS_BIAS) "\n"
9522 "csel x1, x1, x5, eq\n"
9523
9524 // Load 8 bias values.
9525 "ld1 {v14.4s}, [x1], #16\n"
9526 "ld1 {v15.4s}, [x1]\n"
9527
9528 // Now that we know what LHS and RHS data the next iteration of the
9529 // main loop will need to load, we start loading the first 32 bytes of
9530 // each of LHS and RHS, into v0 -- v3, as we don't need v0 -- v3 anymore
9531 // in the rest of the work on the current block.
9532 "ld1 {v0.4s}, [%[lhs_ptr]], #16\n"
9533 "ld1 {v1.4s}, [%[lhs_ptr]], #16\n"
9534 "ld1 {v2.4s}, [%[rhs_ptr]], #16\n"
9535 "ld1 {v3.4s}, [%[rhs_ptr]], #16\n"
9536
9537 // Perform the bias-addition.
9538 // Jump based on channel dimension.
9539 "tst w4, #" RUY_STR(RUY_ASM_FLAG_CHANNEL_DIMENSION_IS_COL) "\n"
9540 "bne 6f\n"
9541 // Case where channels are rows
9542 "fadd v16.4s, v16.4s, v14.4s\n"
9543 "fadd v17.4s, v17.4s, v15.4s\n"
9544 "fadd v18.4s, v18.4s, v14.4s\n"
9545 "fadd v19.4s, v19.4s, v15.4s\n"
9546 "fadd v20.4s, v20.4s, v14.4s\n"
9547 "fadd v21.4s, v21.4s, v15.4s\n"
9548 "fadd v22.4s, v22.4s, v14.4s\n"
9549 "fadd v23.4s, v23.4s, v15.4s\n"
9550 "fadd v24.4s, v24.4s, v14.4s\n"
9551 "fadd v25.4s, v25.4s, v15.4s\n"
9552 "fadd v26.4s, v26.4s, v14.4s\n"
9553 "fadd v27.4s, v27.4s, v15.4s\n"
9554 "fadd v28.4s, v28.4s, v14.4s\n"
9555 "fadd v29.4s, v29.4s, v15.4s\n"
9556 "fadd v30.4s, v30.4s, v14.4s\n"
9557 "fadd v31.4s, v31.4s, v15.4s\n"
9558 "b 7f\n"
9559
9560 "6:\n"
9561 // Case where channels are columns
9562 "dup v8.4s, v14.s[0]\n"
9563 "dup v9.4s, v14.s[1]\n"
9564 "fadd v16.4s, v16.4s, v8.4s\n"
9565 "dup v10.4s, v14.s[2]\n"
9566 "fadd v17.4s, v17.4s, v8.4s\n"
9567 "dup v11.4s, v14.s[3]\n"
9568 "fadd v18.4s, v18.4s, v9.4s\n"
9569 "dup v12.4s, v15.s[0]\n"
9570 "fadd v19.4s, v19.4s, v9.4s\n"
9571 "dup v13.4s, v15.s[1]\n"
9572 "fadd v20.4s, v20.4s, v10.4s\n"
9573 "dup v14.4s, v15.s[2]\n"
9574 "fadd v21.4s, v21.4s, v10.4s\n"
9575 "dup v15.4s, v15.s[3]\n"
9576 "fadd v22.4s, v22.4s, v11.4s\n"
9577 "fadd v23.4s, v23.4s, v11.4s\n"
9578 "fadd v24.4s, v24.4s, v12.4s\n"
9579 "fadd v25.4s, v25.4s, v12.4s\n"
9580 "fadd v26.4s, v26.4s, v13.4s\n"
9581 "fadd v27.4s, v27.4s, v13.4s\n"
9582 "fadd v28.4s, v28.4s, v14.4s\n"
9583 "fadd v29.4s, v29.4s, v14.4s\n"
9584 "fadd v30.4s, v30.4s, v15.4s\n"
9585 "fadd v31.4s, v31.4s, v15.4s\n"
9586 "7:\n"
9587
9588 // Load the clamp_min, clamp_max bounds
9589 "ldr w2, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MIN) "]\n"
9590 "ldr w3, [%[params], #" RUY_STR(RUY_OFFSET_CLAMP_MAX) "]\n"
9591 "dup v14.4s, w2\n" // clamp_min
9592 "dup v15.4s, w3\n" // clamp_max
9593
9594 // Apply the clamp_min bound
9595 "fmax v16.4s, v16.4s, v14.4s\n"
9596 "fmax v17.4s, v17.4s, v14.4s\n"
9597 "fmax v18.4s, v18.4s, v14.4s\n"
9598 "fmax v19.4s, v19.4s, v14.4s\n"
9599 "fmax v20.4s, v20.4s, v14.4s\n"
9600 "fmax v21.4s, v21.4s, v14.4s\n"
9601 "fmax v22.4s, v22.4s, v14.4s\n"
9602 "fmax v23.4s, v23.4s, v14.4s\n"
9603 "fmax v24.4s, v24.4s, v14.4s\n"
9604 "fmax v25.4s, v25.4s, v14.4s\n"
9605 "fmax v26.4s, v26.4s, v14.4s\n"
9606 "fmax v27.4s, v27.4s, v14.4s\n"
9607 "fmax v28.4s, v28.4s, v14.4s\n"
9608 "fmax v29.4s, v29.4s, v14.4s\n"
9609 "fmax v30.4s, v30.4s, v14.4s\n"
9610 "fmax v31.4s, v31.4s, v14.4s\n"
9611
9612 // Apply the clamp_max bound
9613 "fmin v16.4s, v16.4s, v15.4s\n"
9614 "fmin v17.4s, v17.4s, v15.4s\n"
9615 "fmin v18.4s, v18.4s, v15.4s\n"
9616 "fmin v19.4s, v19.4s, v15.4s\n"
9617 "fmin v20.4s, v20.4s, v15.4s\n"
9618 "fmin v21.4s, v21.4s, v15.4s\n"
9619 "fmin v22.4s, v22.4s, v15.4s\n"
9620 "fmin v23.4s, v23.4s, v15.4s\n"
9621 "fmin v24.4s, v24.4s, v15.4s\n"
9622 "fmin v25.4s, v25.4s, v15.4s\n"
9623 "fmin v26.4s, v26.4s, v15.4s\n"
9624 "fmin v27.4s, v27.4s, v15.4s\n"
9625 "fmin v28.4s, v28.4s, v15.4s\n"
9626 "fmin v29.4s, v29.4s, v15.4s\n"
9627 "fmin v30.4s, v30.4s, v15.4s\n"
9628 "fmin v31.4s, v31.4s, v15.4s\n"
9629
9630 // Compute how much of the 8x8 block of destination 8bit values that
9631 // we have computed, fit in the destination matrix. Typically, all of
9632 // it fits, but when the destination matrix shape is not a multiple
9633 // of 8x8, there are some 8x8 blocks along the boundaries that do
9634 // not fit entirely.
9635 "sub w1, %w[dst_rows], %w[row]\n"
9636 "sub w2, %w[dst_cols], %w[col]\n"
9637 "mov w3, #8\n"
9638 "cmp w1, #8\n"
9639 // Compute w1 = how many rows of the 8x8 block fit
9640 "csel w1, w1, w3, le\n"
9641 "cmp w2, #8\n"
9642 // Compute w2 = how many cols of the 8x8 block fit
9643 "csel w2, w2, w3, le\n"
9644
9645 // Test if w1==8 && w2 == 8, i.e. if all of the 8x8 block fits.
9646 "cmp w1, w3\n"
9647 "ccmp w2, w3, 0, eq\n"
9648 // Yes, all of the 8x8 block fits, go to fast path.
9649 "beq 30f\n"
9650 // Not all of the 8x8 block fits.
9651 // Set (x3 address, x4 stride) to write to dst_tmp_buf
9652 "mov x3, %[dst_tmp_buf]\n"
9653 "mov x4, #32\n"
9654 "b 31f\n"
9655 "30:\n"
9656 // Yes, all of the 8x8 block fits.
9657 // Set (x3 address, x4 stride) to write directly to destination matrix.
9658 "mov x3, %[dst_ptr]\n"
9659 "mov x4, x11\n"
9660 "31:\n"
9661
9662 // Write our 8bit values to the destination described by
9663 // (x3 address, x4 stride).
9664 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9665 "str q16, [x3, #0]\n"
9666 "str q17, [x3, #16]\n"
9667 "add x3, x3, x4\n"
9668 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9669 RUY_MAKE_ZERO(v16)
9670 RUY_MAKE_ZERO(v17)
9671 "str q18, [x3, #0]\n"
9672 "str q19, [x3, #16]\n"
9673 "add x3, x3, x4\n"
9674 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9675 RUY_MAKE_ZERO(v18)
9676 RUY_MAKE_ZERO(v19)
9677 "str q20, [x3, #0]\n"
9678 "str q21, [x3, #16]\n"
9679 "add x3, x3, x4\n"
9680 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9681 RUY_MAKE_ZERO(v20)
9682 RUY_MAKE_ZERO(v21)
9683 "str q22, [x3, #0]\n"
9684 "str q23, [x3, #16]\n"
9685 "add x3, x3, x4\n"
9686 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9687 RUY_MAKE_ZERO(v22)
9688 RUY_MAKE_ZERO(v23)
9689 "str q24, [x3, #0]\n"
9690 "str q25, [x3, #16]\n"
9691 "add x3, x3, x4\n"
9692 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9693 RUY_MAKE_ZERO(v24)
9694 RUY_MAKE_ZERO(v25)
9695 "str q26, [x3, #0]\n"
9696 "str q27, [x3, #16]\n"
9697 "add x3, x3, x4\n"
9698 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9699 RUY_MAKE_ZERO(v26)
9700 RUY_MAKE_ZERO(v27)
9701 "str q28, [x3, #0]\n"
9702 "str q29, [x3, #16]\n"
9703 "add x3, x3, x4\n"
9704 RUY_PREFETCH_STORE("prfm pstl1strm, [x3]\n")
9705 RUY_MAKE_ZERO(v28)
9706 RUY_MAKE_ZERO(v29)
9707 "str q30, [x3, #0]\n"
9708 "str q31, [x3, #16]\n"
9709 RUY_MAKE_ZERO(v30)
9710 RUY_MAKE_ZERO(v31)
9711
9712 // If all of the 8x8 block fits, we just finished writing it to the
9713 // destination, so we skip the next part.
9714 "beq 41f\n"
9715 // Not all of the 8x8 block fits in the destination matrix. We just
9716 // wrote it to dst_tmp_buf. Now we perform the slow scalar loop over
9717 // it to copy into the destination matrix the part that fits.
9718 "mov x3, %[dst_tmp_buf]\n"
9719 "mov x4, %[dst_ptr]\n"
9720 "mov w6, #0\n"
9721 "50:\n"
9722 RUY_PREFETCH_STORE("prfm pstl1strm, [x4]\n")
9723 "mov w5, #0\n"
9724 "51:\n"
9725 "ldr w7, [x3, x5, lsl #2]\n"
9726 "str w7, [x4, x5, lsl #2]\n"
9727 "add w5, w5, #1\n"
9728 "cmp w5, w1\n"
9729 "blt 51b\n"
9730 "add w6, w6, #1\n"
9731 "add x3, x3, #32\n"
9732 "add x4, x4, x11\n"
9733 "cmp w6, w2\n"
9734 "blt 50b\n"
9735 "41:\n"
9736 "add %[dst_ptr], %[dst_ptr], #32\n"
9737 // At this point we have completely finished writing values to the
9738 // destination matrix for the current block.
9739
9740 // Reload some params --- we had used x5 -- x7 for a few other things
9741 // since the last time we had loaded them.
9742 "ldr x5, [%[params], #" RUY_STR(RUY_OFFSET_LHS_BASE_PTR) "]\n"
9743 "ldr w6, [%[params], #" RUY_STR(RUY_OFFSET_START_ROW) "]\n"
9744 "ldr w7, [%[params], #" RUY_STR(RUY_OFFSET_LAST_ROW) "]\n"
9745
9746 // Move to the next block of the destination matrix, for the next iter
9747 // of the main loop. Notice that lhs_col_ptr, rhs_col_ptr have already
9748 // been updated earlier.
9749 // Have we reached the end row?
9750 "cmp %w[row], w7\n"
9751 "beq 20f\n" // yes, end row.
9752 // Not end row. Move to the next row.
9753 "add %w[row], %w[row], #8\n"
9754 "b 21f\n"
9755 "20:\n"
9756 // Was already at end row.
9757 "mov %w[row], w6\n" // Move back to first row.
9758 "add %w[col], %w[col], #8\n" // Move to the next column.
9759 "add %[dst_col_ptr], %[dst_col_ptr], x11, lsl #3\n"
9760 "mov %[dst_ptr], %[dst_col_ptr]\n"
9761 "21:\n"
9762
9763 // Main loop exit condition: have we hit the end column?
9764 "cmp %w[col], w8\n"
9765
9766 // w1 is the number of levels of depth that remain to load
9767 // LHS and RHS data for. Corresponding to the initial ld1 instructions
9768 // above, this is currently depth - 1.
9769 "sub w1, w12, #1\n"
9770
9771 "ble 1b\n"
9772
9773 // clang-format on
9774
9775 : [ lhs_col_ptr ] "+r"(lhs_col_ptr), [rhs_col_ptr] "+r"(rhs_col_ptr),
9776 [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
9777 [dst_col_ptr] "+r"(dst_col_ptr), [dst_ptr] "+r"(dst_ptr), [row] "+r"(row), [col] "+r"(col)
9778 : [ params ] "r"(&params), [dst_rows] "r"(params.dst_rows),
9779 [dst_cols] "r"(params.dst_cols), [dst_tmp_buf] "r"(params.dst_tmp_buf)
9780 : "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "cc",
9781 "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12",
9782 "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25",
9783 "v26", "v27", "v28", "v29", "v30", "v31");
9784}
9785#undef RUY_OFFSET_BIAS
9786#undef RUY_OFFSET_FLAGS
9787#undef RUY_OFFSET_LHS_BASE_PTR
9788#undef RUY_OFFSET_CLAMP_MIN
9789#undef RUY_OFFSET_CLAMP_MAX
9790#undef RUY_OFFSET_START_ROW
9791#undef RUY_OFFSET_LAST_ROW
9792#undef RUY_OFFSET_LAST_COL
9793#undef RUY_OFFSET_LHS_STRIDE
9794#undef RUY_OFFSET_RHS_STRIDE
9795#undef RUY_OFFSET_DST_STRIDE
9796#undef RUY_OFFSET_DEPTH
9797#undef RUY_OFFSET_START_COL
9798#undef RUY_OFFSET_RHS_BASE_PTR
9799#undef RUY_OFFSET_DST_BASE_PTR
9800
9801#endif // RUY_PLATFORM_NEON_64 && RUY_OPT(ASM)
9802
9803} // namespace ruy
9804