1/*
2 * Copyright 2015-2021 Arm Limited
3 * SPDX-License-Identifier: Apache-2.0 OR MIT
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18/*
19 * At your option, you may choose to accept this material under either:
20 * 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
21 * 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
22 */
23
24#ifndef SPIRV_CROSS_HPP
25#define SPIRV_CROSS_HPP
26
27#include "spirv.hpp"
28#include "spirv_cfg.hpp"
29#include "spirv_cross_parsed_ir.hpp"
30
31namespace SPIRV_CROSS_NAMESPACE
32{
33struct Resource
34{
35 // Resources are identified with their SPIR-V ID.
36 // This is the ID of the OpVariable.
37 ID id;
38
39 // The type ID of the variable which includes arrays and all type modifications.
40 // This type ID is not suitable for parsing OpMemberDecoration of a struct and other decorations in general
41 // since these modifications typically happen on the base_type_id.
42 TypeID type_id;
43
44 // The base type of the declared resource.
45 // This type is the base type which ignores pointers and arrays of the type_id.
46 // This is mostly useful to parse decorations of the underlying type.
47 // base_type_id can also be obtained with get_type(get_type(type_id).self).
48 TypeID base_type_id;
49
50 // The declared name (OpName) of the resource.
51 // For Buffer blocks, the name actually reflects the externally
52 // visible Block name.
53 //
54 // This name can be retrieved again by using either
55 // get_name(id) or get_name(base_type_id) depending if it's a buffer block or not.
56 //
57 // This name can be an empty string in which case get_fallback_name(id) can be
58 // used which obtains a suitable fallback identifier for an ID.
59 std::string name;
60};
61
62struct BuiltInResource
63{
64 // This is mostly here to support reflection of builtins such as Position/PointSize/CullDistance/ClipDistance.
65 // This needs to be different from Resource since we can collect builtins from blocks.
66 // A builtin present here does not necessarily mean it's considered an active builtin,
67 // since variable ID "activeness" is only tracked on OpVariable level, not Block members.
68 // For that, update_active_builtins() -> has_active_builtin() can be used to further refine the reflection.
69 spv::BuiltIn builtin;
70
71 // This is the actual value type of the builtin.
72 // Typically float4, float, array<float, N> for the gl_PerVertex builtins.
73 // If the builtin is a control point, the control point array type will be stripped away here as appropriate.
74 TypeID value_type_id;
75
76 // This refers to the base resource which contains the builtin.
77 // If resource is a Block, it can hold multiple builtins, or it might not be a block.
78 // For advanced reflection scenarios, all information in builtin/value_type_id can be deduced,
79 // it's just more convenient this way.
80 Resource resource;
81};
82
83struct ShaderResources
84{
85 SmallVector<Resource> uniform_buffers;
86 SmallVector<Resource> storage_buffers;
87 SmallVector<Resource> stage_inputs;
88 SmallVector<Resource> stage_outputs;
89 SmallVector<Resource> subpass_inputs;
90 SmallVector<Resource> storage_images;
91 SmallVector<Resource> sampled_images;
92 SmallVector<Resource> atomic_counters;
93 SmallVector<Resource> acceleration_structures;
94
95 // There can only be one push constant block,
96 // but keep the vector in case this restriction is lifted in the future.
97 SmallVector<Resource> push_constant_buffers;
98
99 // For Vulkan GLSL and HLSL source,
100 // these correspond to separate texture2D and samplers respectively.
101 SmallVector<Resource> separate_images;
102 SmallVector<Resource> separate_samplers;
103
104 SmallVector<BuiltInResource> builtin_inputs;
105 SmallVector<BuiltInResource> builtin_outputs;
106};
107
108struct CombinedImageSampler
109{
110 // The ID of the sampler2D variable.
111 VariableID combined_id;
112 // The ID of the texture2D variable.
113 VariableID image_id;
114 // The ID of the sampler variable.
115 VariableID sampler_id;
116};
117
118struct SpecializationConstant
119{
120 // The ID of the specialization constant.
121 ConstantID id;
122 // The constant ID of the constant, used in Vulkan during pipeline creation.
123 uint32_t constant_id;
124};
125
126struct BufferRange
127{
128 unsigned index;
129 size_t offset;
130 size_t range;
131};
132
133enum BufferPackingStandard
134{
135 BufferPackingStd140,
136 BufferPackingStd430,
137 BufferPackingStd140EnhancedLayout,
138 BufferPackingStd430EnhancedLayout,
139 BufferPackingHLSLCbuffer,
140 BufferPackingHLSLCbufferPackOffset,
141 BufferPackingScalar,
142 BufferPackingScalarEnhancedLayout
143};
144
145struct EntryPoint
146{
147 std::string name;
148 spv::ExecutionModel execution_model;
149};
150
151class Compiler
152{
153public:
154 friend class CFG;
155 friend class DominatorBuilder;
156
157 // The constructor takes a buffer of SPIR-V words and parses it.
158 // It will create its own parser, parse the SPIR-V and move the parsed IR
159 // as if you had called the constructors taking ParsedIR directly.
160 explicit Compiler(std::vector<uint32_t> ir);
161 Compiler(const uint32_t *ir, size_t word_count);
162
163 // This is more modular. We can also consume a ParsedIR structure directly, either as a move, or copy.
164 // With copy, we can reuse the same parsed IR for multiple Compiler instances.
165 explicit Compiler(const ParsedIR &ir);
166 explicit Compiler(ParsedIR &&ir);
167
168 virtual ~Compiler() = default;
169
170 // After parsing, API users can modify the SPIR-V via reflection and call this
171 // to disassemble the SPIR-V into the desired langauage.
172 // Sub-classes actually implement this.
173 virtual std::string compile();
174
175 // Gets the identifier (OpName) of an ID. If not defined, an empty string will be returned.
176 const std::string &get_name(ID id) const;
177
178 // Applies a decoration to an ID. Effectively injects OpDecorate.
179 void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0);
180 void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument);
181
182 // Overrides the identifier OpName of an ID.
183 // Identifiers beginning with underscores or identifiers which contain double underscores
184 // are reserved by the implementation.
185 void set_name(ID id, const std::string &name);
186
187 // Gets a bitmask for the decorations which are applied to ID.
188 // I.e. (1ull << spv::DecorationFoo) | (1ull << spv::DecorationBar)
189 const Bitset &get_decoration_bitset(ID id) const;
190
191 // Returns whether the decoration has been applied to the ID.
192 bool has_decoration(ID id, spv::Decoration decoration) const;
193
194 // Gets the value for decorations which take arguments.
195 // If the decoration is a boolean (i.e. spv::DecorationNonWritable),
196 // 1 will be returned.
197 // If decoration doesn't exist or decoration is not recognized,
198 // 0 will be returned.
199 uint32_t get_decoration(ID id, spv::Decoration decoration) const;
200 const std::string &get_decoration_string(ID id, spv::Decoration decoration) const;
201
202 // Removes the decoration for an ID.
203 void unset_decoration(ID id, spv::Decoration decoration);
204
205 // Gets the SPIR-V type associated with ID.
206 // Mostly used with Resource::type_id and Resource::base_type_id to parse the underlying type of a resource.
207 const SPIRType &get_type(TypeID id) const;
208
209 // Gets the SPIR-V type of a variable.
210 const SPIRType &get_type_from_variable(VariableID id) const;
211
212 // Gets the underlying storage class for an OpVariable.
213 spv::StorageClass get_storage_class(VariableID id) const;
214
215 // If get_name() is an empty string, get the fallback name which will be used
216 // instead in the disassembled source.
217 virtual const std::string get_fallback_name(ID id) const;
218
219 // If get_name() of a Block struct is an empty string, get the fallback name.
220 // This needs to be per-variable as multiple variables can use the same block type.
221 virtual const std::string get_block_fallback_name(VariableID id) const;
222
223 // Given an OpTypeStruct in ID, obtain the identifier for member number "index".
224 // This may be an empty string.
225 const std::string &get_member_name(TypeID id, uint32_t index) const;
226
227 // Given an OpTypeStruct in ID, obtain the OpMemberDecoration for member number "index".
228 uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
229 const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const;
230
231 // Sets the member identifier for OpTypeStruct ID, member number "index".
232 void set_member_name(TypeID id, uint32_t index, const std::string &name);
233
234 // Returns the qualified member identifier for OpTypeStruct ID, member number "index",
235 // or an empty string if no qualified alias exists
236 const std::string &get_member_qualified_name(TypeID type_id, uint32_t index) const;
237
238 // Gets the decoration mask for a member of a struct, similar to get_decoration_mask.
239 const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const;
240
241 // Returns whether the decoration has been applied to a member of a struct.
242 bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const;
243
244 // Similar to set_decoration, but for struct members.
245 void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0);
246 void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration,
247 const std::string &argument);
248
249 // Unsets a member decoration, similar to unset_decoration.
250 void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration);
251
252 // Gets the fallback name for a member, similar to get_fallback_name.
253 virtual const std::string get_fallback_member_name(uint32_t index) const
254 {
255 return join("_", index);
256 }
257
258 // Returns a vector of which members of a struct are potentially in use by a
259 // SPIR-V shader. The granularity of this analysis is per-member of a struct.
260 // This can be used for Buffer (UBO), BufferBlock/StorageBuffer (SSBO) and PushConstant blocks.
261 // ID is the Resource::id obtained from get_shader_resources().
262 SmallVector<BufferRange> get_active_buffer_ranges(VariableID id) const;
263
264 // Returns the effective size of a buffer block.
265 size_t get_declared_struct_size(const SPIRType &struct_type) const;
266
267 // Returns the effective size of a buffer block, with a given array size
268 // for a runtime array.
269 // SSBOs are typically declared as runtime arrays. get_declared_struct_size() will return 0 for the size.
270 // This is not very helpful for applications which might need to know the array stride of its last member.
271 // This can be done through the API, but it is not very intuitive how to accomplish this, so here we provide a helper function
272 // to query the size of the buffer, assuming that the last member has a certain size.
273 // If the buffer does not contain a runtime array, array_size is ignored, and the function will behave as
274 // get_declared_struct_size().
275 // To get the array stride of the last member, something like:
276 // get_declared_struct_size_runtime_array(type, 1) - get_declared_struct_size_runtime_array(type, 0) will work.
277 size_t get_declared_struct_size_runtime_array(const SPIRType &struct_type, size_t array_size) const;
278
279 // Returns the effective size of a buffer block struct member.
280 size_t get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const;
281
282 // Returns a set of all global variables which are statically accessed
283 // by the control flow graph from the current entry point.
284 // Only variables which change the interface for a shader are returned, that is,
285 // variables with storage class of Input, Output, Uniform, UniformConstant, PushConstant and AtomicCounter
286 // storage classes are returned.
287 //
288 // To use the returned set as the filter for which variables are used during compilation,
289 // this set can be moved to set_enabled_interface_variables().
290 std::unordered_set<VariableID> get_active_interface_variables() const;
291
292 // Sets the interface variables which are used during compilation.
293 // By default, all variables are used.
294 // Once set, compile() will only consider the set in active_variables.
295 void set_enabled_interface_variables(std::unordered_set<VariableID> active_variables);
296
297 // Query shader resources, use ids with reflection interface to modify or query binding points, etc.
298 ShaderResources get_shader_resources() const;
299
300 // Query shader resources, but only return the variables which are part of active_variables.
301 // E.g.: get_shader_resources(get_active_variables()) to only return the variables which are statically
302 // accessed.
303 ShaderResources get_shader_resources(const std::unordered_set<VariableID> &active_variables) const;
304
305 // Remapped variables are considered built-in variables and a backend will
306 // not emit a declaration for this variable.
307 // This is mostly useful for making use of builtins which are dependent on extensions.
308 void set_remapped_variable_state(VariableID id, bool remap_enable);
309 bool get_remapped_variable_state(VariableID id) const;
310
311 // For subpassInput variables which are remapped to plain variables,
312 // the number of components in the remapped
313 // variable must be specified as the backing type of subpass inputs are opaque.
314 void set_subpass_input_remapped_components(VariableID id, uint32_t components);
315 uint32_t get_subpass_input_remapped_components(VariableID id) const;
316
317 // All operations work on the current entry point.
318 // Entry points can be swapped out with set_entry_point().
319 // Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point.
320 // Resource reflection also depends on the entry point.
321 // By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module.
322
323 // Some shader languages restrict the names that can be given to entry points, and the
324 // corresponding backend will automatically rename an entry point name, during the call
325 // to compile() if it is illegal. For example, the common entry point name main() is
326 // illegal in MSL, and is renamed to an alternate name by the MSL backend.
327 // Given the original entry point name contained in the SPIR-V, this function returns
328 // the name, as updated by the backend during the call to compile(). If the name is not
329 // illegal, and has not been renamed, or if this function is called before compile(),
330 // this function will simply return the same name.
331
332 // New variants of entry point query and reflection.
333 // Names for entry points in the SPIR-V module may alias if they belong to different execution models.
334 // To disambiguate, we must pass along with the entry point names the execution model.
335 SmallVector<EntryPoint> get_entry_points_and_stages() const;
336 void set_entry_point(const std::string &entry, spv::ExecutionModel execution_model);
337
338 // Renames an entry point from old_name to new_name.
339 // If old_name is currently selected as the current entry point, it will continue to be the current entry point,
340 // albeit with a new name.
341 // get_entry_points() is essentially invalidated at this point.
342 void rename_entry_point(const std::string &old_name, const std::string &new_name,
343 spv::ExecutionModel execution_model);
344 const SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model) const;
345 SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model);
346 const std::string &get_cleansed_entry_point_name(const std::string &name,
347 spv::ExecutionModel execution_model) const;
348
349 // Traverses all reachable opcodes and sets active_builtins to a bitmask of all builtin variables which are accessed in the shader.
350 void update_active_builtins();
351 bool has_active_builtin(spv::BuiltIn builtin, spv::StorageClass storage) const;
352
353 // Query and modify OpExecutionMode.
354 const Bitset &get_execution_mode_bitset() const;
355
356 void unset_execution_mode(spv::ExecutionMode mode);
357 void set_execution_mode(spv::ExecutionMode mode, uint32_t arg0 = 0, uint32_t arg1 = 0, uint32_t arg2 = 0);
358
359 // Gets argument for an execution mode (LocalSize, Invocations, OutputVertices).
360 // For LocalSize or LocalSizeId, the index argument is used to select the dimension (X = 0, Y = 1, Z = 2).
361 // For execution modes which do not have arguments, 0 is returned.
362 // LocalSizeId query returns an ID. If LocalSizeId execution mode is not used, it returns 0.
363 // LocalSize always returns a literal. If execution mode is LocalSizeId,
364 // the literal (spec constant or not) is still returned.
365 uint32_t get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index = 0) const;
366 spv::ExecutionModel get_execution_model() const;
367
368 bool is_tessellation_shader() const;
369
370 // In SPIR-V, the compute work group size can be represented by a constant vector, in which case
371 // the LocalSize execution mode is ignored.
372 //
373 // This constant vector can be a constant vector, specialization constant vector, or partly specialized constant vector.
374 // To modify and query work group dimensions which are specialization constants, SPIRConstant values must be modified
375 // directly via get_constant() rather than using LocalSize directly. This function will return which constants should be modified.
376 //
377 // To modify dimensions which are *not* specialization constants, set_execution_mode should be used directly.
378 // Arguments to set_execution_mode which are specialization constants are effectively ignored during compilation.
379 // NOTE: This is somewhat different from how SPIR-V works. In SPIR-V, the constant vector will completely replace LocalSize,
380 // while in this interface, LocalSize is only ignored for specialization constants.
381 //
382 // The specialization constant will be written to x, y and z arguments.
383 // If the component is not a specialization constant, a zeroed out struct will be written.
384 // The return value is the constant ID of the builtin WorkGroupSize, but this is not expected to be useful
385 // for most use cases.
386 // If LocalSizeId is used, there is no uvec3 value representing the workgroup size, so the return value is 0,
387 // but x, y and z are written as normal if the components are specialization constants.
388 uint32_t get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y,
389 SpecializationConstant &z) const;
390
391 // Analyzes all OpImageFetch (texelFetch) opcodes and checks if there are instances where
392 // said instruction is used without a combined image sampler.
393 // GLSL targets do not support the use of texelFetch without a sampler.
394 // To workaround this, we must inject a dummy sampler which can be used to form a sampler2D at the call-site of
395 // texelFetch as necessary.
396 //
397 // This must be called before build_combined_image_samplers().
398 // build_combined_image_samplers() may refer to the ID returned by this method if the returned ID is non-zero.
399 // The return value will be the ID of a sampler object if a dummy sampler is necessary, or 0 if no sampler object
400 // is required.
401 //
402 // If the returned ID is non-zero, it can be decorated with set/bindings as desired before calling compile().
403 // Calling this function also invalidates get_active_interface_variables(), so this should be called
404 // before that function.
405 VariableID build_dummy_sampler_for_combined_images();
406
407 // Analyzes all separate image and samplers used from the currently selected entry point,
408 // and re-routes them all to a combined image sampler instead.
409 // This is required to "support" separate image samplers in targets which do not natively support
410 // this feature, like GLSL/ESSL.
411 //
412 // This must be called before compile() if such remapping is desired.
413 // This call will add new sampled images to the SPIR-V,
414 // so it will appear in reflection if get_shader_resources() is called after build_combined_image_samplers.
415 //
416 // If any image/sampler remapping was found, no separate image/samplers will appear in the decompiled output,
417 // but will still appear in reflection.
418 //
419 // The resulting samplers will be void of any decorations like name, descriptor sets and binding points,
420 // so this can be added before compile() if desired.
421 //
422 // Combined image samplers originating from this set are always considered active variables.
423 // Arrays of separate samplers are not supported, but arrays of separate images are supported.
424 // Array of images + sampler -> Array of combined image samplers.
425 void build_combined_image_samplers();
426
427 // Gets a remapping for the combined image samplers.
428 const SmallVector<CombinedImageSampler> &get_combined_image_samplers() const
429 {
430 return combined_image_samplers;
431 }
432
433 // Set a new variable type remap callback.
434 // The type remapping is designed to allow global interface variable to assume more special types.
435 // A typical example here is to remap sampler2D into samplerExternalOES, which currently isn't supported
436 // directly by SPIR-V.
437 //
438 // In compile() while emitting code,
439 // for every variable that is declared, including function parameters, the callback will be called
440 // and the API user has a chance to change the textual representation of the type used to declare the variable.
441 // The API user can detect special patterns in names to guide the remapping.
442 void set_variable_type_remap_callback(VariableTypeRemapCallback cb)
443 {
444 variable_remap_callback = std::move(cb);
445 }
446
447 // API for querying which specialization constants exist.
448 // To modify a specialization constant before compile(), use get_constant(constant.id),
449 // then update constants directly in the SPIRConstant data structure.
450 // For composite types, the subconstants can be iterated over and modified.
451 // constant_type is the SPIRType for the specialization constant,
452 // which can be queried to determine which fields in the unions should be poked at.
453 SmallVector<SpecializationConstant> get_specialization_constants() const;
454 SPIRConstant &get_constant(ConstantID id);
455 const SPIRConstant &get_constant(ConstantID id) const;
456
457 uint32_t get_current_id_bound() const
458 {
459 return uint32_t(ir.ids.size());
460 }
461
462 // API for querying buffer objects.
463 // The type passed in here should be the base type of a resource, i.e.
464 // get_type(resource.base_type_id)
465 // as decorations are set in the basic Block type.
466 // The type passed in here must have these decorations set, or an exception is raised.
467 // Only UBOs and SSBOs or sub-structs which are part of these buffer types will have these decorations set.
468 uint32_t type_struct_member_offset(const SPIRType &type, uint32_t index) const;
469 uint32_t type_struct_member_array_stride(const SPIRType &type, uint32_t index) const;
470 uint32_t type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const;
471
472 // Gets the offset in SPIR-V words (uint32_t) for a decoration which was originally declared in the SPIR-V binary.
473 // The offset will point to one or more uint32_t literals which can be modified in-place before using the SPIR-V binary.
474 // Note that adding or removing decorations using the reflection API will not change the behavior of this function.
475 // If the decoration was declared, sets the word_offset to an offset into the provided SPIR-V binary buffer and returns true,
476 // otherwise, returns false.
477 // If the decoration does not have any value attached to it (e.g. DecorationRelaxedPrecision), this function will also return false.
478 bool get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const;
479
480 // HLSL counter buffer reflection interface.
481 // Append/Consume/Increment/Decrement in HLSL is implemented as two "neighbor" buffer objects where
482 // one buffer implements the storage, and a single buffer containing just a lone "int" implements the counter.
483 // To SPIR-V these will be exposed as two separate buffers, but glslang HLSL frontend emits a special indentifier
484 // which lets us link the two buffers together.
485
486 // Queries if a variable ID is a counter buffer which "belongs" to a regular buffer object.
487
488 // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
489 // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
490 // only return true if OpSource was reported HLSL.
491 // To rely on this functionality, ensure that the SPIR-V module is not stripped.
492
493 bool buffer_is_hlsl_counter_buffer(VariableID id) const;
494
495 // Queries if a buffer object has a neighbor "counter" buffer.
496 // If so, the ID of that counter buffer will be returned in counter_id.
497 // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
498 // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
499 // only return true if OpSource was reported HLSL.
500 // To rely on this functionality, ensure that the SPIR-V module is not stripped.
501 bool buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const;
502
503 // Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module.
504 const SmallVector<spv::Capability> &get_declared_capabilities() const;
505
506 // Gets the list of all SPIR-V extensions which were declared in the SPIR-V module.
507 const SmallVector<std::string> &get_declared_extensions() const;
508
509 // When declaring buffer blocks in GLSL, the name declared in the GLSL source
510 // might not be the same as the name declared in the SPIR-V module due to naming conflicts.
511 // In this case, SPIRV-Cross needs to find a fallback-name, and it might only
512 // be possible to know this name after compiling to GLSL.
513 // This is particularly important for HLSL input and UAVs which tends to reuse the same block type
514 // for multiple distinct blocks. For these cases it is not possible to modify the name of the type itself
515 // because it might be unique. Instead, you can use this interface to check after compilation which
516 // name was actually used if your input SPIR-V tends to have this problem.
517 // For other names like remapped names for variables, etc, it's generally enough to query the name of the variables
518 // after compiling, block names are an exception to this rule.
519 // ID is the name of a variable as returned by Resource::id, and must be a variable with a Block-like type.
520 //
521 // This also applies to HLSL cbuffers.
522 std::string get_remapped_declared_block_name(VariableID id) const;
523
524 // For buffer block variables, get the decorations for that variable.
525 // Sometimes, decorations for buffer blocks are found in member decorations instead
526 // of direct decorations on the variable itself.
527 // The most common use here is to check if a buffer is readonly or writeonly.
528 Bitset get_buffer_block_flags(VariableID id) const;
529
530 // Returns whether the position output is invariant
531 bool is_position_invariant() const
532 {
533 return position_invariant;
534 }
535
536protected:
537 const uint32_t *stream(const Instruction &instr) const
538 {
539 // If we're not going to use any arguments, just return nullptr.
540 // We want to avoid case where we return an out of range pointer
541 // that trips debug assertions on some platforms.
542 if (!instr.length)
543 return nullptr;
544
545 if (instr.is_embedded())
546 {
547 auto &embedded = static_cast<const EmbeddedInstruction &>(instr);
548 assert(embedded.ops.size() == instr.length);
549 return embedded.ops.data();
550 }
551 else
552 {
553 if (instr.offset + instr.length > ir.spirv.size())
554 SPIRV_CROSS_THROW("Compiler::stream() out of range.");
555 return &ir.spirv[instr.offset];
556 }
557 }
558
559 ParsedIR ir;
560 // Marks variables which have global scope and variables which can alias with other variables
561 // (SSBO, image load store, etc)
562 SmallVector<uint32_t> global_variables;
563 SmallVector<uint32_t> aliased_variables;
564
565 SPIRFunction *current_function = nullptr;
566 SPIRBlock *current_block = nullptr;
567 uint32_t current_loop_level = 0;
568 std::unordered_set<VariableID> active_interface_variables;
569 bool check_active_interface_variables = false;
570
571 void add_loop_level();
572
573 void set_initializers(SPIRExpression &e)
574 {
575 e.emitted_loop_level = current_loop_level;
576 }
577
578 template <typename T>
579 void set_initializers(const T &)
580 {
581 }
582
583 // If our IDs are out of range here as part of opcodes, throw instead of
584 // undefined behavior.
585 template <typename T, typename... P>
586 T &set(uint32_t id, P &&... args)
587 {
588 ir.add_typed_id(static_cast<Types>(T::type), id);
589 auto &var = variant_set<T>(ir.ids[id], std::forward<P>(args)...);
590 var.self = id;
591 set_initializers(var);
592 return var;
593 }
594
595 template <typename T>
596 T &get(uint32_t id)
597 {
598 return variant_get<T>(ir.ids[id]);
599 }
600
601 template <typename T>
602 T *maybe_get(uint32_t id)
603 {
604 if (id >= ir.ids.size())
605 return nullptr;
606 else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
607 return &get<T>(id);
608 else
609 return nullptr;
610 }
611
612 template <typename T>
613 const T &get(uint32_t id) const
614 {
615 return variant_get<T>(ir.ids[id]);
616 }
617
618 template <typename T>
619 const T *maybe_get(uint32_t id) const
620 {
621 if (id >= ir.ids.size())
622 return nullptr;
623 else if (ir.ids[id].get_type() == static_cast<Types>(T::type))
624 return &get<T>(id);
625 else
626 return nullptr;
627 }
628
629 // Gets the id of SPIR-V type underlying the given type_id, which might be a pointer.
630 uint32_t get_pointee_type_id(uint32_t type_id) const;
631
632 // Gets the SPIR-V type underlying the given type, which might be a pointer.
633 const SPIRType &get_pointee_type(const SPIRType &type) const;
634
635 // Gets the SPIR-V type underlying the given type_id, which might be a pointer.
636 const SPIRType &get_pointee_type(uint32_t type_id) const;
637
638 // Gets the ID of the SPIR-V type underlying a variable.
639 uint32_t get_variable_data_type_id(const SPIRVariable &var) const;
640
641 // Gets the SPIR-V type underlying a variable.
642 SPIRType &get_variable_data_type(const SPIRVariable &var);
643
644 // Gets the SPIR-V type underlying a variable.
645 const SPIRType &get_variable_data_type(const SPIRVariable &var) const;
646
647 // Gets the SPIR-V element type underlying an array variable.
648 SPIRType &get_variable_element_type(const SPIRVariable &var);
649
650 // Gets the SPIR-V element type underlying an array variable.
651 const SPIRType &get_variable_element_type(const SPIRVariable &var) const;
652
653 // Sets the qualified member identifier for OpTypeStruct ID, member number "index".
654 void set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name);
655 void set_qualified_name(uint32_t id, const std::string &name);
656
657 // Returns if the given type refers to a sampled image.
658 bool is_sampled_image_type(const SPIRType &type);
659
660 const SPIREntryPoint &get_entry_point() const;
661 SPIREntryPoint &get_entry_point();
662 static bool is_tessellation_shader(spv::ExecutionModel model);
663
664 virtual std::string to_name(uint32_t id, bool allow_alias = true) const;
665 bool is_builtin_variable(const SPIRVariable &var) const;
666 bool is_builtin_type(const SPIRType &type) const;
667 bool is_hidden_variable(const SPIRVariable &var, bool include_builtins = false) const;
668 bool is_immutable(uint32_t id) const;
669 bool is_member_builtin(const SPIRType &type, uint32_t index, spv::BuiltIn *builtin) const;
670 bool is_scalar(const SPIRType &type) const;
671 bool is_vector(const SPIRType &type) const;
672 bool is_matrix(const SPIRType &type) const;
673 bool is_array(const SPIRType &type) const;
674 uint32_t expression_type_id(uint32_t id) const;
675 const SPIRType &expression_type(uint32_t id) const;
676 bool expression_is_lvalue(uint32_t id) const;
677 bool variable_storage_is_aliased(const SPIRVariable &var);
678 SPIRVariable *maybe_get_backing_variable(uint32_t chain);
679
680 void register_read(uint32_t expr, uint32_t chain, bool forwarded);
681 void register_write(uint32_t chain);
682
683 inline bool is_continue(uint32_t next) const
684 {
685 return (ir.block_meta[next] & ParsedIR::BLOCK_META_CONTINUE_BIT) != 0;
686 }
687
688 inline bool is_single_block_loop(uint32_t next) const
689 {
690 auto &block = get<SPIRBlock>(next);
691 return block.merge == SPIRBlock::MergeLoop && block.continue_block == ID(next);
692 }
693
694 inline bool is_break(uint32_t next) const
695 {
696 return (ir.block_meta[next] &
697 (ParsedIR::BLOCK_META_LOOP_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
698 }
699
700 inline bool is_loop_break(uint32_t next) const
701 {
702 return (ir.block_meta[next] & ParsedIR::BLOCK_META_LOOP_MERGE_BIT) != 0;
703 }
704
705 inline bool is_conditional(uint32_t next) const
706 {
707 return (ir.block_meta[next] &
708 (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0;
709 }
710
711 // Dependency tracking for temporaries read from variables.
712 void flush_dependees(SPIRVariable &var);
713 void flush_all_active_variables();
714 void flush_control_dependent_expressions(uint32_t block);
715 void flush_all_atomic_capable_variables();
716 void flush_all_aliased_variables();
717 void register_global_read_dependencies(const SPIRBlock &func, uint32_t id);
718 void register_global_read_dependencies(const SPIRFunction &func, uint32_t id);
719 std::unordered_set<uint32_t> invalid_expressions;
720
721 void update_name_cache(std::unordered_set<std::string> &cache, std::string &name);
722
723 // A variant which takes two sets of names. The secondary is only used to verify there are no collisions,
724 // but the set is not updated when we have found a new name.
725 // Used primarily when adding block interface names.
726 void update_name_cache(std::unordered_set<std::string> &cache_primary,
727 const std::unordered_set<std::string> &cache_secondary, std::string &name);
728
729 bool function_is_pure(const SPIRFunction &func);
730 bool block_is_pure(const SPIRBlock &block);
731
732 bool execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const;
733 bool execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const;
734 bool execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const;
735 SPIRBlock::ContinueBlockType continue_block_type(const SPIRBlock &continue_block) const;
736
737 void force_recompile();
738 void force_recompile_guarantee_forward_progress();
739 void clear_force_recompile();
740 bool is_forcing_recompilation() const;
741 bool is_force_recompile = false;
742 bool is_force_recompile_forward_progress = false;
743
744 bool block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const;
745
746 bool types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const;
747 void inherit_expression_dependencies(uint32_t dst, uint32_t source);
748 void add_implied_read_expression(SPIRExpression &e, uint32_t source);
749 void add_implied_read_expression(SPIRAccessChain &e, uint32_t source);
750
751 // For proper multiple entry point support, allow querying if an Input or Output
752 // variable is part of that entry points interface.
753 bool interface_variable_exists_in_entry_point(uint32_t id) const;
754
755 SmallVector<CombinedImageSampler> combined_image_samplers;
756
757 void remap_variable_type_name(const SPIRType &type, const std::string &var_name, std::string &type_name) const
758 {
759 if (variable_remap_callback)
760 variable_remap_callback(type, var_name, type_name);
761 }
762
763 void set_ir(const ParsedIR &parsed);
764 void set_ir(ParsedIR &&parsed);
765 void parse_fixup();
766
767 // Used internally to implement various traversals for queries.
768 struct OpcodeHandler
769 {
770 virtual ~OpcodeHandler() = default;
771
772 // Return true if traversal should continue.
773 // If false, traversal will end immediately.
774 virtual bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) = 0;
775 virtual bool handle_terminator(const SPIRBlock &)
776 {
777 return true;
778 }
779
780 virtual bool follow_function_call(const SPIRFunction &)
781 {
782 return true;
783 }
784
785 virtual void set_current_block(const SPIRBlock &)
786 {
787 }
788
789 // Called after returning from a function or when entering a block,
790 // can be called multiple times per block,
791 // while set_current_block is only called on block entry.
792 virtual void rearm_current_block(const SPIRBlock &)
793 {
794 }
795
796 virtual bool begin_function_scope(const uint32_t *, uint32_t)
797 {
798 return true;
799 }
800
801 virtual bool end_function_scope(const uint32_t *, uint32_t)
802 {
803 return true;
804 }
805 };
806
807 struct BufferAccessHandler : OpcodeHandler
808 {
809 BufferAccessHandler(const Compiler &compiler_, SmallVector<BufferRange> &ranges_, uint32_t id_)
810 : compiler(compiler_)
811 , ranges(ranges_)
812 , id(id_)
813 {
814 }
815
816 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
817
818 const Compiler &compiler;
819 SmallVector<BufferRange> &ranges;
820 uint32_t id;
821
822 std::unordered_set<uint32_t> seen;
823 };
824
825 struct InterfaceVariableAccessHandler : OpcodeHandler
826 {
827 InterfaceVariableAccessHandler(const Compiler &compiler_, std::unordered_set<VariableID> &variables_)
828 : compiler(compiler_)
829 , variables(variables_)
830 {
831 }
832
833 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
834
835 const Compiler &compiler;
836 std::unordered_set<VariableID> &variables;
837 };
838
839 struct CombinedImageSamplerHandler : OpcodeHandler
840 {
841 CombinedImageSamplerHandler(Compiler &compiler_)
842 : compiler(compiler_)
843 {
844 }
845 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
846 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
847 bool end_function_scope(const uint32_t *args, uint32_t length) override;
848
849 Compiler &compiler;
850
851 // Each function in the call stack needs its own remapping for parameters so we can deduce which global variable each texture/sampler the parameter is statically bound to.
852 std::stack<std::unordered_map<uint32_t, uint32_t>> parameter_remapping;
853 std::stack<SPIRFunction *> functions;
854
855 uint32_t remap_parameter(uint32_t id);
856 void push_remap_parameters(const SPIRFunction &func, const uint32_t *args, uint32_t length);
857 void pop_remap_parameters();
858 void register_combined_image_sampler(SPIRFunction &caller, VariableID combined_id, VariableID texture_id,
859 VariableID sampler_id, bool depth);
860 };
861
862 struct DummySamplerForCombinedImageHandler : OpcodeHandler
863 {
864 DummySamplerForCombinedImageHandler(Compiler &compiler_)
865 : compiler(compiler_)
866 {
867 }
868 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
869
870 Compiler &compiler;
871 bool need_dummy_sampler = false;
872 };
873
874 struct ActiveBuiltinHandler : OpcodeHandler
875 {
876 ActiveBuiltinHandler(Compiler &compiler_)
877 : compiler(compiler_)
878 {
879 }
880
881 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
882 Compiler &compiler;
883
884 void handle_builtin(const SPIRType &type, spv::BuiltIn builtin, const Bitset &decoration_flags);
885 void add_if_builtin(uint32_t id);
886 void add_if_builtin_or_block(uint32_t id);
887 void add_if_builtin(uint32_t id, bool allow_blocks);
888 };
889
890 bool traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const;
891 bool traverse_all_reachable_opcodes(const SPIRFunction &block, OpcodeHandler &handler) const;
892 // This must be an ordered data structure so we always pick the same type aliases.
893 SmallVector<uint32_t> global_struct_cache;
894
895 ShaderResources get_shader_resources(const std::unordered_set<VariableID> *active_variables) const;
896
897 VariableTypeRemapCallback variable_remap_callback;
898
899 bool get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type);
900
901 std::unordered_set<uint32_t> forced_temporaries;
902 std::unordered_set<uint32_t> forwarded_temporaries;
903 std::unordered_set<uint32_t> suppressed_usage_tracking;
904 std::unordered_set<uint32_t> hoisted_temporaries;
905 std::unordered_set<uint32_t> forced_invariant_temporaries;
906
907 Bitset active_input_builtins;
908 Bitset active_output_builtins;
909 uint32_t clip_distance_count = 0;
910 uint32_t cull_distance_count = 0;
911 bool position_invariant = false;
912
913 void analyze_parameter_preservation(
914 SPIRFunction &entry, const CFG &cfg,
915 const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &variable_to_blocks,
916 const std::unordered_map<uint32_t, std::unordered_set<uint32_t>> &complete_write_blocks);
917
918 // If a variable ID or parameter ID is found in this set, a sampler is actually a shadow/comparison sampler.
919 // SPIR-V does not support this distinction, so we must keep track of this information outside the type system.
920 // There might be unrelated IDs found in this set which do not correspond to actual variables.
921 // This set should only be queried for the existence of samplers which are already known to be variables or parameter IDs.
922 // Similar is implemented for images, as well as if subpass inputs are needed.
923 std::unordered_set<uint32_t> comparison_ids;
924 bool need_subpass_input = false;
925
926 // In certain backends, we will need to use a dummy sampler to be able to emit code.
927 // GLSL does not support texelFetch on texture2D objects, but SPIR-V does,
928 // so we need to workaround by having the application inject a dummy sampler.
929 uint32_t dummy_sampler_id = 0;
930
931 void analyze_image_and_sampler_usage();
932
933 struct CombinedImageSamplerDrefHandler : OpcodeHandler
934 {
935 CombinedImageSamplerDrefHandler(Compiler &compiler_)
936 : compiler(compiler_)
937 {
938 }
939 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
940
941 Compiler &compiler;
942 std::unordered_set<uint32_t> dref_combined_samplers;
943 };
944
945 struct CombinedImageSamplerUsageHandler : OpcodeHandler
946 {
947 CombinedImageSamplerUsageHandler(Compiler &compiler_,
948 const std::unordered_set<uint32_t> &dref_combined_samplers_)
949 : compiler(compiler_)
950 , dref_combined_samplers(dref_combined_samplers_)
951 {
952 }
953
954 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
955 bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override;
956 Compiler &compiler;
957 const std::unordered_set<uint32_t> &dref_combined_samplers;
958
959 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> dependency_hierarchy;
960 std::unordered_set<uint32_t> comparison_ids;
961
962 void add_hierarchy_to_comparison_ids(uint32_t ids);
963 bool need_subpass_input = false;
964 void add_dependency(uint32_t dst, uint32_t src);
965 };
966
967 void build_function_control_flow_graphs_and_analyze();
968 std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
969 const CFG &get_cfg_for_current_function() const;
970 const CFG &get_cfg_for_function(uint32_t id) const;
971
972 struct CFGBuilder : OpcodeHandler
973 {
974 explicit CFGBuilder(Compiler &compiler_);
975
976 bool follow_function_call(const SPIRFunction &func) override;
977 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
978 Compiler &compiler;
979 std::unordered_map<uint32_t, std::unique_ptr<CFG>> function_cfgs;
980 };
981
982 struct AnalyzeVariableScopeAccessHandler : OpcodeHandler
983 {
984 AnalyzeVariableScopeAccessHandler(Compiler &compiler_, SPIRFunction &entry_);
985
986 bool follow_function_call(const SPIRFunction &) override;
987 void set_current_block(const SPIRBlock &block) override;
988
989 void notify_variable_access(uint32_t id, uint32_t block);
990 bool id_is_phi_variable(uint32_t id) const;
991 bool id_is_potential_temporary(uint32_t id) const;
992 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
993 bool handle_terminator(const SPIRBlock &block) override;
994
995 Compiler &compiler;
996 SPIRFunction &entry;
997 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_variables_to_block;
998 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> accessed_temporaries_to_block;
999 std::unordered_map<uint32_t, uint32_t> result_id_to_type;
1000 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> complete_write_variables_to_block;
1001 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> partial_write_variables_to_block;
1002 std::unordered_set<uint32_t> access_chain_expressions;
1003 // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
1004 std::unordered_map<uint32_t, std::unordered_set<uint32_t>> access_chain_children;
1005 const SPIRBlock *current_block = nullptr;
1006 };
1007
1008 struct StaticExpressionAccessHandler : OpcodeHandler
1009 {
1010 StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_);
1011 bool follow_function_call(const SPIRFunction &) override;
1012 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1013
1014 Compiler &compiler;
1015 uint32_t variable_id;
1016 uint32_t static_expression = 0;
1017 uint32_t write_count = 0;
1018 };
1019
1020 struct PhysicalBlockMeta
1021 {
1022 uint32_t alignment = 0;
1023 };
1024
1025 struct PhysicalStorageBufferPointerHandler : OpcodeHandler
1026 {
1027 explicit PhysicalStorageBufferPointerHandler(Compiler &compiler_);
1028 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1029 Compiler &compiler;
1030
1031 std::unordered_set<uint32_t> non_block_types;
1032 std::unordered_map<uint32_t, PhysicalBlockMeta> physical_block_type_meta;
1033 std::unordered_map<uint32_t, PhysicalBlockMeta *> access_chain_to_physical_block;
1034
1035 void mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length);
1036 PhysicalBlockMeta *find_block_meta(uint32_t id) const;
1037 bool type_is_bda_block_entry(uint32_t type_id) const;
1038 void setup_meta_chain(uint32_t type_id, uint32_t var_id);
1039 uint32_t get_minimum_scalar_alignment(const SPIRType &type) const;
1040 void analyze_non_block_types_from_block(const SPIRType &type);
1041 uint32_t get_base_non_block_type_id(uint32_t type_id) const;
1042 };
1043 void analyze_non_block_pointer_types();
1044 SmallVector<uint32_t> physical_storage_non_block_pointer_types;
1045 std::unordered_map<uint32_t, PhysicalBlockMeta> physical_storage_type_to_alignment;
1046
1047 void analyze_variable_scope(SPIRFunction &function, AnalyzeVariableScopeAccessHandler &handler);
1048 void find_function_local_luts(SPIRFunction &function, const AnalyzeVariableScopeAccessHandler &handler,
1049 bool single_function);
1050 bool may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var);
1051
1052 // Finds all resources that are written to from inside the critical section, if present.
1053 // The critical section is delimited by OpBeginInvocationInterlockEXT and
1054 // OpEndInvocationInterlockEXT instructions. In MSL and HLSL, any resources written
1055 // while inside the critical section must be placed in a raster order group.
1056 struct InterlockedResourceAccessHandler : OpcodeHandler
1057 {
1058 InterlockedResourceAccessHandler(Compiler &compiler_, uint32_t entry_point_id)
1059 : compiler(compiler_)
1060 {
1061 call_stack.push_back(entry_point_id);
1062 }
1063
1064 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1065 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
1066 bool end_function_scope(const uint32_t *args, uint32_t length) override;
1067
1068 Compiler &compiler;
1069 bool in_crit_sec = false;
1070
1071 uint32_t interlock_function_id = 0;
1072 bool split_function_case = false;
1073 bool control_flow_interlock = false;
1074 bool use_critical_section = false;
1075 bool call_stack_is_interlocked = false;
1076 SmallVector<uint32_t> call_stack;
1077
1078 void access_potential_resource(uint32_t id);
1079 };
1080
1081 struct InterlockedResourceAccessPrepassHandler : OpcodeHandler
1082 {
1083 InterlockedResourceAccessPrepassHandler(Compiler &compiler_, uint32_t entry_point_id)
1084 : compiler(compiler_)
1085 {
1086 call_stack.push_back(entry_point_id);
1087 }
1088
1089 void rearm_current_block(const SPIRBlock &block) override;
1090 bool handle(spv::Op op, const uint32_t *args, uint32_t length) override;
1091 bool begin_function_scope(const uint32_t *args, uint32_t length) override;
1092 bool end_function_scope(const uint32_t *args, uint32_t length) override;
1093
1094 Compiler &compiler;
1095 uint32_t interlock_function_id = 0;
1096 uint32_t current_block_id = 0;
1097 bool split_function_case = false;
1098 bool control_flow_interlock = false;
1099 SmallVector<uint32_t> call_stack;
1100 };
1101
1102 void analyze_interlocked_resource_usage();
1103 // The set of all resources written while inside the critical section, if present.
1104 std::unordered_set<uint32_t> interlocked_resources;
1105 bool interlocked_is_complex = false;
1106
1107 void make_constant_null(uint32_t id, uint32_t type);
1108
1109 std::unordered_map<uint32_t, std::string> declared_block_names;
1110
1111 bool instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, const uint32_t *args,
1112 uint32_t length);
1113
1114 Bitset combined_decoration_for_member(const SPIRType &type, uint32_t index) const;
1115 static bool is_desktop_only_format(spv::ImageFormat format);
1116
1117 bool is_depth_image(const SPIRType &type, uint32_t id) const;
1118
1119 void set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value = 0);
1120 uint32_t get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
1121 bool has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const;
1122 void unset_extended_decoration(uint32_t id, ExtendedDecorations decoration);
1123
1124 void set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration,
1125 uint32_t value = 0);
1126 uint32_t get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
1127 bool has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const;
1128 void unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration);
1129
1130 bool type_is_array_of_pointers(const SPIRType &type) const;
1131 bool type_is_top_level_physical_pointer(const SPIRType &type) const;
1132 bool type_is_block_like(const SPIRType &type) const;
1133 bool type_is_opaque_value(const SPIRType &type) const;
1134
1135 bool reflection_ssbo_instance_name_is_significant() const;
1136 std::string get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const;
1137
1138 bool flush_phi_required(BlockID from, BlockID to) const;
1139
1140 uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const;
1141 uint32_t evaluate_constant_u32(uint32_t id) const;
1142
1143 bool is_vertex_like_shader() const;
1144
1145 // Get the correct case list for the OpSwitch, since it can be either a
1146 // 32 bit wide condition or a 64 bit, but the type is not embedded in the
1147 // instruction itself.
1148 const SmallVector<SPIRBlock::Case> &get_case_list(const SPIRBlock &block) const;
1149
1150private:
1151 // Used only to implement the old deprecated get_entry_point() interface.
1152 const SPIREntryPoint &get_first_entry_point(const std::string &name) const;
1153 SPIREntryPoint &get_first_entry_point(const std::string &name);
1154};
1155} // namespace SPIRV_CROSS_NAMESPACE
1156
1157#endif
1158