1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc. All rights reserved.
3// https://developers.google.com/protocol-buffers/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9// * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11// * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15// * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: [email protected] (Kenton Varda)
32// Based on original Protocol Buffers design by
33// Sanjay Ghemawat, Jeff Dean, and others.
34//
35// This header is logically internal, but is made public because it is used
36// from protocol-compiler-generated code, which may reside in other components.
37
38#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
39#define GOOGLE_PROTOBUF_EXTENSION_SET_H__
40
41#include <algorithm>
42#include <cassert>
43#include <map>
44#include <string>
45#include <utility>
46#include <vector>
47
48#include <google/protobuf/stubs/common.h>
49#include <google/protobuf/stubs/logging.h>
50#include <google/protobuf/parse_context.h>
51#include <google/protobuf/io/coded_stream.h>
52#include <google/protobuf/port.h>
53#include <google/protobuf/repeated_field.h>
54#include <google/protobuf/wire_format_lite.h>
55
56#include <google/protobuf/port_def.inc>
57
58#ifdef SWIG
59#error "You cannot SWIG proto headers"
60#endif
61
62namespace google {
63namespace protobuf {
64class Arena;
65class Descriptor; // descriptor.h
66class FieldDescriptor; // descriptor.h
67class DescriptorPool; // descriptor.h
68class MessageLite; // message_lite.h
69class Message; // message.h
70class MessageFactory; // message.h
71class UnknownFieldSet; // unknown_field_set.h
72namespace internal {
73class FieldSkipper; // wire_format_lite.h
74} // namespace internal
75} // namespace protobuf
76} // namespace google
77
78namespace google {
79namespace protobuf {
80namespace internal {
81
82class InternalMetadataWithArenaLite;
83class InternalMetadataWithArena;
84
85// Used to store values of type WireFormatLite::FieldType without having to
86// #include wire_format_lite.h. Also, ensures that we use only one byte to
87// store these values, which is important to keep the layout of
88// ExtensionSet::Extension small.
89typedef uint8 FieldType;
90
91// A function which, given an integer value, returns true if the number
92// matches one of the defined values for the corresponding enum type. This
93// is used with RegisterEnumExtension, below.
94typedef bool EnumValidityFunc(int number);
95
96// Version of the above which takes an argument. This is needed to deal with
97// extensions that are not compiled in.
98typedef bool EnumValidityFuncWithArg(const void* arg, int number);
99
100// Information about a registered extension.
101struct ExtensionInfo {
102 inline ExtensionInfo() {}
103 inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked)
104 : type(type_param),
105 is_repeated(isrepeated),
106 is_packed(ispacked),
107 descriptor(NULL) {}
108
109 FieldType type;
110 bool is_repeated;
111 bool is_packed;
112
113 struct EnumValidityCheck {
114 EnumValidityFuncWithArg* func;
115 const void* arg;
116 };
117
118 struct MessageInfo {
119 const MessageLite* prototype;
120 };
121
122 union {
123 EnumValidityCheck enum_validity_check;
124 MessageInfo message_info;
125 };
126
127 // The descriptor for this extension, if one exists and is known. May be
128 // NULL. Must not be NULL if the descriptor for the extension does not
129 // live in the same pool as the descriptor for the containing type.
130 const FieldDescriptor* descriptor;
131};
132
133// Abstract interface for an object which looks up extension definitions. Used
134// when parsing.
135class PROTOBUF_EXPORT ExtensionFinder {
136 public:
137 virtual ~ExtensionFinder();
138
139 // Find the extension with the given containing type and number.
140 virtual bool Find(int number, ExtensionInfo* output) = 0;
141};
142
143// Implementation of ExtensionFinder which finds extensions defined in .proto
144// files which have been compiled into the binary.
145class PROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
146 public:
147 GeneratedExtensionFinder(const MessageLite* containing_type)
148 : containing_type_(containing_type) {}
149 ~GeneratedExtensionFinder() override {}
150
151 // Returns true and fills in *output if found, otherwise returns false.
152 bool Find(int number, ExtensionInfo* output) override;
153
154 private:
155 const MessageLite* containing_type_;
156};
157
158// A FieldSkipper used for parsing MessageSet.
159class MessageSetFieldSkipper;
160
161// Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
162// finding extensions from a DescriptorPool.
163
164// This is an internal helper class intended for use within the protocol buffer
165// library and generated classes. Clients should not use it directly. Instead,
166// use the generated accessors such as GetExtension() of the class being
167// extended.
168//
169// This class manages extensions for a protocol message object. The
170// message's HasExtension(), GetExtension(), MutableExtension(), and
171// ClearExtension() methods are just thin wrappers around the embedded
172// ExtensionSet. When parsing, if a tag number is encountered which is
173// inside one of the message type's extension ranges, the tag is passed
174// off to the ExtensionSet for parsing. Etc.
175class PROTOBUF_EXPORT ExtensionSet {
176 public:
177 ExtensionSet();
178 explicit ExtensionSet(Arena* arena);
179 ~ExtensionSet();
180
181 // These are called at startup by protocol-compiler-generated code to
182 // register known extensions. The registrations are used by ParseField()
183 // to look up extensions for parsed field numbers. Note that dynamic parsing
184 // does not use ParseField(); only protocol-compiler-generated parsing
185 // methods do.
186 static void RegisterExtension(const MessageLite* containing_type, int number,
187 FieldType type, bool is_repeated,
188 bool is_packed);
189 static void RegisterEnumExtension(const MessageLite* containing_type,
190 int number, FieldType type,
191 bool is_repeated, bool is_packed,
192 EnumValidityFunc* is_valid);
193 static void RegisterMessageExtension(const MessageLite* containing_type,
194 int number, FieldType type,
195 bool is_repeated, bool is_packed,
196 const MessageLite* prototype);
197
198 // =================================================================
199
200 // Add all fields which are currently present to the given vector. This
201 // is useful to implement Reflection::ListFields().
202 void AppendToList(const Descriptor* containing_type,
203 const DescriptorPool* pool,
204 std::vector<const FieldDescriptor*>* output) const;
205
206 // =================================================================
207 // Accessors
208 //
209 // Generated message classes include type-safe templated wrappers around
210 // these methods. Generally you should use those rather than call these
211 // directly, unless you are doing low-level memory management.
212 //
213 // When calling any of these accessors, the extension number requested
214 // MUST exist in the DescriptorPool provided to the constructor. Otherwise,
215 // the method will fail an assert. Normally, though, you would not call
216 // these directly; you would either call the generated accessors of your
217 // message class (e.g. GetExtension()) or you would call the accessors
218 // of the reflection interface. In both cases, it is impossible to
219 // trigger this assert failure: the generated accessors only accept
220 // linked-in extension types as parameters, while the Reflection interface
221 // requires you to provide the FieldDescriptor describing the extension.
222 //
223 // When calling any of these accessors, a protocol-compiler-generated
224 // implementation of the extension corresponding to the number MUST
225 // be linked in, and the FieldDescriptor used to refer to it MUST be
226 // the one generated by that linked-in code. Otherwise, the method will
227 // die on an assert failure. The message objects returned by the message
228 // accessors are guaranteed to be of the correct linked-in type.
229 //
230 // These methods pretty much match Reflection except that:
231 // - They're not virtual.
232 // - They identify fields by number rather than FieldDescriptors.
233 // - They identify enum values using integers rather than descriptors.
234 // - Strings provide Mutable() in addition to Set() accessors.
235
236 bool Has(int number) const;
237 int ExtensionSize(int number) const; // Size of a repeated extension.
238 int NumExtensions() const; // The number of extensions
239 FieldType ExtensionType(int number) const;
240 void ClearExtension(int number);
241
242 // singular fields -------------------------------------------------
243
244 int32 GetInt32(int number, int32 default_value) const;
245 int64 GetInt64(int number, int64 default_value) const;
246 uint32 GetUInt32(int number, uint32 default_value) const;
247 uint64 GetUInt64(int number, uint64 default_value) const;
248 float GetFloat(int number, float default_value) const;
249 double GetDouble(int number, double default_value) const;
250 bool GetBool(int number, bool default_value) const;
251 int GetEnum(int number, int default_value) const;
252 const std::string& GetString(int number,
253 const std::string& default_value) const;
254 const MessageLite& GetMessage(int number,
255 const MessageLite& default_value) const;
256 const MessageLite& GetMessage(int number, const Descriptor* message_type,
257 MessageFactory* factory) const;
258
259 // |descriptor| may be NULL so long as it is known that the descriptor for
260 // the extension lives in the same pool as the descriptor for the containing
261 // type.
262#define desc const FieldDescriptor* descriptor // avoid line wrapping
263 void SetInt32(int number, FieldType type, int32 value, desc);
264 void SetInt64(int number, FieldType type, int64 value, desc);
265 void SetUInt32(int number, FieldType type, uint32 value, desc);
266 void SetUInt64(int number, FieldType type, uint64 value, desc);
267 void SetFloat(int number, FieldType type, float value, desc);
268 void SetDouble(int number, FieldType type, double value, desc);
269 void SetBool(int number, FieldType type, bool value, desc);
270 void SetEnum(int number, FieldType type, int value, desc);
271 void SetString(int number, FieldType type, std::string value, desc);
272 std::string* MutableString(int number, FieldType type, desc);
273 MessageLite* MutableMessage(int number, FieldType type,
274 const MessageLite& prototype, desc);
275 MessageLite* MutableMessage(const FieldDescriptor* decsriptor,
276 MessageFactory* factory);
277 // Adds the given message to the ExtensionSet, taking ownership of the
278 // message object. Existing message with the same number will be deleted.
279 // If "message" is NULL, this is equivalent to "ClearExtension(number)".
280 void SetAllocatedMessage(int number, FieldType type,
281 const FieldDescriptor* descriptor,
282 MessageLite* message);
283 void UnsafeArenaSetAllocatedMessage(int number, FieldType type,
284 const FieldDescriptor* descriptor,
285 MessageLite* message);
286 MessageLite* ReleaseMessage(int number, const MessageLite& prototype);
287 MessageLite* UnsafeArenaReleaseMessage(int number,
288 const MessageLite& prototype);
289
290 MessageLite* ReleaseMessage(const FieldDescriptor* descriptor,
291 MessageFactory* factory);
292 MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor,
293 MessageFactory* factory);
294#undef desc
295 Arena* GetArenaNoVirtual() const { return arena_; }
296
297 // repeated fields -------------------------------------------------
298
299 // Fetches a RepeatedField extension by number; returns |default_value|
300 // if no such extension exists. User should not touch this directly; it is
301 // used by the GetRepeatedExtension() method.
302 const void* GetRawRepeatedField(int number, const void* default_value) const;
303 // Fetches a mutable version of a RepeatedField extension by number,
304 // instantiating one if none exists. Similar to above, user should not use
305 // this directly; it underlies MutableRepeatedExtension().
306 void* MutableRawRepeatedField(int number, FieldType field_type, bool packed,
307 const FieldDescriptor* desc);
308
309 // This is an overload of MutableRawRepeatedField to maintain compatibility
310 // with old code using a previous API. This version of
311 // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension.
312 // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
313 void* MutableRawRepeatedField(int number);
314
315 int32 GetRepeatedInt32(int number, int index) const;
316 int64 GetRepeatedInt64(int number, int index) const;
317 uint32 GetRepeatedUInt32(int number, int index) const;
318 uint64 GetRepeatedUInt64(int number, int index) const;
319 float GetRepeatedFloat(int number, int index) const;
320 double GetRepeatedDouble(int number, int index) const;
321 bool GetRepeatedBool(int number, int index) const;
322 int GetRepeatedEnum(int number, int index) const;
323 const std::string& GetRepeatedString(int number, int index) const;
324 const MessageLite& GetRepeatedMessage(int number, int index) const;
325
326 void SetRepeatedInt32(int number, int index, int32 value);
327 void SetRepeatedInt64(int number, int index, int64 value);
328 void SetRepeatedUInt32(int number, int index, uint32 value);
329 void SetRepeatedUInt64(int number, int index, uint64 value);
330 void SetRepeatedFloat(int number, int index, float value);
331 void SetRepeatedDouble(int number, int index, double value);
332 void SetRepeatedBool(int number, int index, bool value);
333 void SetRepeatedEnum(int number, int index, int value);
334 void SetRepeatedString(int number, int index, std::string value);
335 std::string* MutableRepeatedString(int number, int index);
336 MessageLite* MutableRepeatedMessage(int number, int index);
337
338#define desc const FieldDescriptor* descriptor // avoid line wrapping
339 void AddInt32(int number, FieldType type, bool packed, int32 value, desc);
340 void AddInt64(int number, FieldType type, bool packed, int64 value, desc);
341 void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc);
342 void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc);
343 void AddFloat(int number, FieldType type, bool packed, float value, desc);
344 void AddDouble(int number, FieldType type, bool packed, double value, desc);
345 void AddBool(int number, FieldType type, bool packed, bool value, desc);
346 void AddEnum(int number, FieldType type, bool packed, int value, desc);
347 void AddString(int number, FieldType type, std::string value, desc);
348 std::string* AddString(int number, FieldType type, desc);
349 MessageLite* AddMessage(int number, FieldType type,
350 const MessageLite& prototype, desc);
351 MessageLite* AddMessage(const FieldDescriptor* descriptor,
352 MessageFactory* factory);
353 void AddAllocatedMessage(const FieldDescriptor* descriptor,
354 MessageLite* new_entry);
355#undef desc
356
357 void RemoveLast(int number);
358 MessageLite* ReleaseLast(int number);
359 void SwapElements(int number, int index1, int index2);
360
361 // -----------------------------------------------------------------
362 // TODO(kenton): Hardcore memory management accessors
363
364 // =================================================================
365 // convenience methods for implementing methods of Message
366 //
367 // These could all be implemented in terms of the other methods of this
368 // class, but providing them here helps keep the generated code size down.
369
370 void Clear();
371 void MergeFrom(const ExtensionSet& other);
372 void Swap(ExtensionSet* other);
373 void SwapExtension(ExtensionSet* other, int number);
374 bool IsInitialized() const;
375
376 // Parses a single extension from the input. The input should start out
377 // positioned immediately after the tag.
378 bool ParseField(uint32 tag, io::CodedInputStream* input,
379 ExtensionFinder* extension_finder,
380 FieldSkipper* field_skipper);
381
382 // Specific versions for lite or full messages (constructs the appropriate
383 // FieldSkipper automatically). |containing_type| is the default
384 // instance for the containing message; it is used only to look up the
385 // extension by number. See RegisterExtension(), above. Unlike the other
386 // methods of ExtensionSet, this only works for generated message types --
387 // it looks up extensions registered using RegisterExtension().
388 bool ParseField(uint32 tag, io::CodedInputStream* input,
389 const MessageLite* containing_type);
390 bool ParseField(uint32 tag, io::CodedInputStream* input,
391 const Message* containing_type,
392 UnknownFieldSet* unknown_fields);
393 bool ParseField(uint32 tag, io::CodedInputStream* input,
394 const MessageLite* containing_type,
395 io::CodedOutputStream* unknown_fields);
396
397 // Lite parser
398 const char* ParseField(uint64 tag, const char* ptr,
399 const MessageLite* containing_type,
400 internal::InternalMetadataWithArenaLite* metadata,
401 internal::ParseContext* ctx);
402 // Full parser
403 const char* ParseField(uint64 tag, const char* ptr,
404 const Message* containing_type,
405 internal::InternalMetadataWithArena* metadata,
406 internal::ParseContext* ctx);
407 template <typename Msg, typename Metadata>
408 const char* ParseMessageSet(const char* ptr, const Msg* containing_type,
409 Metadata* metadata, internal::ParseContext* ctx) {
410 struct MessageSetItem {
411 const char* _InternalParse(const char* ptr, ParseContext* ctx) {
412 return me->ParseMessageSetItem(ptr, containing_type, metadata, ctx);
413 }
414 ExtensionSet* me;
415 const Msg* containing_type;
416 Metadata* metadata;
417 } item{this, containing_type, metadata};
418 while (!ctx->Done(&ptr)) {
419 uint32 tag;
420 ptr = ReadTag(ptr, &tag);
421 GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
422 if (tag == WireFormatLite::kMessageSetItemStartTag) {
423 ptr = ctx->ParseGroup(&item, ptr, tag);
424 GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
425 } else {
426 if (tag == 0 || (tag & 7) == 4) {
427 ctx->SetLastTag(tag);
428 return ptr;
429 }
430 ptr = ParseField(tag, ptr, containing_type, metadata, ctx);
431 GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
432 }
433 }
434 return ptr;
435 }
436
437 // Parse an entire message in MessageSet format. Such messages have no
438 // fields, only extensions.
439 bool ParseMessageSetLite(io::CodedInputStream* input,
440 ExtensionFinder* extension_finder,
441 FieldSkipper* field_skipper);
442 bool ParseMessageSet(io::CodedInputStream* input,
443 ExtensionFinder* extension_finder,
444 MessageSetFieldSkipper* field_skipper);
445
446 // Specific versions for lite or full messages (constructs the appropriate
447 // FieldSkipper automatically).
448 bool ParseMessageSet(io::CodedInputStream* input,
449 const MessageLite* containing_type,
450 std::string* unknown_fields);
451 bool ParseMessageSet(io::CodedInputStream* input,
452 const Message* containing_type,
453 UnknownFieldSet* unknown_fields);
454
455 // Write all extension fields with field numbers in the range
456 // [start_field_number, end_field_number)
457 // to the output stream, using the cached sizes computed when ByteSize() was
458 // last called. Note that the range bounds are inclusive-exclusive.
459 void SerializeWithCachedSizes(int start_field_number, int end_field_number,
460 io::CodedOutputStream* output) const {
461 output->SetCur(_InternalSerialize(start_field_number, end_field_number,
462 output->Cur(), output->EpsCopy()));
463 }
464
465 // Same as SerializeWithCachedSizes, but without any bounds checking.
466 // The caller must ensure that target has sufficient capacity for the
467 // serialized extensions.
468 //
469 // Returns a pointer past the last written byte.
470 uint8* _InternalSerialize(int start_field_number, int end_field_number,
471 uint8* target,
472 io::EpsCopyOutputStream* stream) const;
473
474 // Like above but serializes in MessageSet format.
475 void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const {
476 output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray(
477 output->Cur(), output->EpsCopy()));
478 }
479 uint8* InternalSerializeMessageSetWithCachedSizesToArray(
480 uint8* target, io::EpsCopyOutputStream* stream) const;
481
482 // For backward-compatibility, versions of two of the above methods that
483 // serialize deterministically iff SetDefaultSerializationDeterministic()
484 // has been called.
485 uint8* SerializeWithCachedSizesToArray(int start_field_number,
486 int end_field_number,
487 uint8* target) const;
488 uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const;
489
490 // Returns the total serialized size of all the extensions.
491 size_t ByteSize() const;
492
493 // Like ByteSize() but uses MessageSet format.
494 size_t MessageSetByteSize() const;
495
496 // Returns (an estimate of) the total number of bytes used for storing the
497 // extensions in memory, excluding sizeof(*this). If the ExtensionSet is
498 // for a lite message (and thus possibly contains lite messages), the results
499 // are undefined (might work, might crash, might corrupt data, might not even
500 // be linked in). It's up to the protocol compiler to avoid calling this on
501 // such ExtensionSets (easy enough since lite messages don't implement
502 // SpaceUsed()).
503 size_t SpaceUsedExcludingSelfLong() const;
504
505 // This method just calls SpaceUsedExcludingSelfLong() but it can not be
506 // inlined because the definition of SpaceUsedExcludingSelfLong() is not
507 // included in lite runtime and when an inline method refers to it MSVC
508 // will complain about unresolved symbols when building the lite runtime
509 // as .dll.
510 int SpaceUsedExcludingSelf() const;
511
512 private:
513 // Interface of a lazily parsed singular message extension.
514 class PROTOBUF_EXPORT LazyMessageExtension {
515 public:
516 LazyMessageExtension() {}
517 virtual ~LazyMessageExtension() {}
518
519 virtual LazyMessageExtension* New(Arena* arena) const = 0;
520 virtual const MessageLite& GetMessage(
521 const MessageLite& prototype) const = 0;
522 virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0;
523 virtual void SetAllocatedMessage(MessageLite* message) = 0;
524 virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message) = 0;
525 virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0;
526 virtual MessageLite* UnsafeArenaReleaseMessage(
527 const MessageLite& prototype) = 0;
528
529 virtual bool IsInitialized() const = 0;
530
531 PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead")
532 virtual int ByteSize() const { return internal::ToIntSize(ByteSizeLong()); }
533 virtual size_t ByteSizeLong() const = 0;
534 virtual size_t SpaceUsedLong() const = 0;
535
536 virtual void MergeFrom(const LazyMessageExtension& other) = 0;
537 virtual void Clear() = 0;
538
539 virtual bool ReadMessage(const MessageLite& prototype,
540 io::CodedInputStream* input) = 0;
541 virtual const char* _InternalParse(const char* ptr, ParseContext* ctx) = 0;
542 virtual uint8* WriteMessageToArray(
543 int number, uint8* target, io::EpsCopyOutputStream* stream) const = 0;
544
545 private:
546 virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable.
547
548 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension);
549 };
550 struct Extension {
551 // The order of these fields packs Extension into 24 bytes when using 8
552 // byte alignment. Consider this when adding or removing fields here.
553 union {
554 int32 int32_value;
555 int64 int64_value;
556 uint32 uint32_value;
557 uint64 uint64_value;
558 float float_value;
559 double double_value;
560 bool bool_value;
561 int enum_value;
562 std::string* string_value;
563 MessageLite* message_value;
564 LazyMessageExtension* lazymessage_value;
565
566 RepeatedField<int32>* repeated_int32_value;
567 RepeatedField<int64>* repeated_int64_value;
568 RepeatedField<uint32>* repeated_uint32_value;
569 RepeatedField<uint64>* repeated_uint64_value;
570 RepeatedField<float>* repeated_float_value;
571 RepeatedField<double>* repeated_double_value;
572 RepeatedField<bool>* repeated_bool_value;
573 RepeatedField<int>* repeated_enum_value;
574 RepeatedPtrField<std::string>* repeated_string_value;
575 RepeatedPtrField<MessageLite>* repeated_message_value;
576 };
577
578 FieldType type;
579 bool is_repeated;
580
581 // For singular types, indicates if the extension is "cleared". This
582 // happens when an extension is set and then later cleared by the caller.
583 // We want to keep the Extension object around for reuse, so instead of
584 // removing it from the map, we just set is_cleared = true. This has no
585 // meaning for repeated types; for those, the size of the RepeatedField
586 // simply becomes zero when cleared.
587 bool is_cleared : 4;
588
589 // For singular message types, indicates whether lazy parsing is enabled
590 // for this extension. This field is only valid when type == TYPE_MESSAGE
591 // and !is_repeated because we only support lazy parsing for singular
592 // message types currently. If is_lazy = true, the extension is stored in
593 // lazymessage_value. Otherwise, the extension will be message_value.
594 bool is_lazy : 4;
595
596 // For repeated types, this indicates if the [packed=true] option is set.
597 bool is_packed;
598
599 // For packed fields, the size of the packed data is recorded here when
600 // ByteSize() is called then used during serialization.
601 // TODO(kenton): Use atomic<int> when C++ supports it.
602 mutable int cached_size;
603
604 // The descriptor for this extension, if one exists and is known. May be
605 // NULL. Must not be NULL if the descriptor for the extension does not
606 // live in the same pool as the descriptor for the containing type.
607 const FieldDescriptor* descriptor;
608
609 // Some helper methods for operations on a single Extension.
610 uint8* InternalSerializeFieldWithCachedSizesToArray(
611 int number, uint8* target, io::EpsCopyOutputStream* stream) const;
612 uint8* InternalSerializeMessageSetItemWithCachedSizesToArray(
613 int number, uint8* target, io::EpsCopyOutputStream* stream) const;
614 size_t ByteSize(int number) const;
615 size_t MessageSetItemByteSize(int number) const;
616 void Clear();
617 int GetSize() const;
618 void Free();
619 size_t SpaceUsedExcludingSelfLong() const;
620 bool IsInitialized() const;
621 };
622
623 // The Extension struct is small enough to be passed by value, so we use it
624 // directly as the value type in mappings rather than use pointers. We use
625 // sorted maps rather than hash-maps because we expect most ExtensionSets will
626 // only contain a small number of extension. Also, we want AppendToList and
627 // deterministic serialization to order fields by field number.
628
629 struct KeyValue {
630 int first;
631 Extension second;
632
633 struct FirstComparator {
634 bool operator()(const KeyValue& lhs, const KeyValue& rhs) const {
635 return lhs.first < rhs.first;
636 }
637 bool operator()(const KeyValue& lhs, int key) const {
638 return lhs.first < key;
639 }
640 bool operator()(int key, const KeyValue& rhs) const {
641 return key < rhs.first;
642 }
643 };
644 };
645
646 typedef std::map<int, Extension> LargeMap;
647
648 // Wrapper API that switches between flat-map and LargeMap.
649
650 // Finds a key (if present) in the ExtensionSet.
651 const Extension* FindOrNull(int key) const;
652 Extension* FindOrNull(int key);
653
654 // Helper-functions that only inspect the LargeMap.
655 const Extension* FindOrNullInLargeMap(int key) const;
656 Extension* FindOrNullInLargeMap(int key);
657
658 // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or
659 // finds the already-existing Extension for that key (returns false).
660 // The Extension* will point to the new-or-found Extension.
661 std::pair<Extension*, bool> Insert(int key);
662
663 // Grows the flat_capacity_.
664 // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap.
665 void GrowCapacity(size_t minimum_new_capacity);
666 static constexpr uint16 kMaximumFlatCapacity = 256;
667 bool is_large() const { return flat_capacity_ > kMaximumFlatCapacity; }
668
669 // Removes a key from the ExtensionSet.
670 void Erase(int key);
671
672 size_t Size() const {
673 return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_;
674 }
675
676 // Similar to std::for_each.
677 // Each Iterator is decomposed into ->first and ->second fields, so
678 // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair.
679 template <typename Iterator, typename KeyValueFunctor>
680 static KeyValueFunctor ForEach(Iterator begin, Iterator end,
681 KeyValueFunctor func) {
682 for (Iterator it = begin; it != end; ++it) func(it->first, it->second);
683 return std::move(func);
684 }
685
686 // Applies a functor to the <int, Extension&> pairs in sorted order.
687 template <typename KeyValueFunctor>
688 KeyValueFunctor ForEach(KeyValueFunctor func) {
689 if (PROTOBUF_PREDICT_FALSE(is_large())) {
690 return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
691 }
692 return ForEach(flat_begin(), flat_end(), std::move(func));
693 }
694
695 // Applies a functor to the <int, const Extension&> pairs in sorted order.
696 template <typename KeyValueFunctor>
697 KeyValueFunctor ForEach(KeyValueFunctor func) const {
698 if (PROTOBUF_PREDICT_FALSE(is_large())) {
699 return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
700 }
701 return ForEach(flat_begin(), flat_end(), std::move(func));
702 }
703
704 // Merges existing Extension from other_extension
705 void InternalExtensionMergeFrom(int number, const Extension& other_extension);
706
707 // Returns true and fills field_number and extension if extension is found.
708 // Note to support packed repeated field compatibility, it also fills whether
709 // the tag on wire is packed, which can be different from
710 // extension->is_packed (whether packed=true is specified).
711 bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder,
712 int* field_number, ExtensionInfo* extension,
713 bool* was_packed_on_wire);
714
715 // Returns true and fills extension if extension is found.
716 // Note to support packed repeated field compatibility, it also fills whether
717 // the tag on wire is packed, which can be different from
718 // extension->is_packed (whether packed=true is specified).
719 bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
720 ExtensionFinder* extension_finder,
721 ExtensionInfo* extension,
722 bool* was_packed_on_wire);
723
724 // Parses a single extension from the input. The input should start out
725 // positioned immediately after the wire tag. This method is called in
726 // ParseField() after field number and was_packed_on_wire is extracted from
727 // the wire tag and ExtensionInfo is found by the field number.
728 bool ParseFieldWithExtensionInfo(int field_number, bool was_packed_on_wire,
729 const ExtensionInfo& extension,
730 io::CodedInputStream* input,
731 FieldSkipper* field_skipper);
732
733 // Like ParseField(), but this method may parse singular message extensions
734 // lazily depending on the value of FLAGS_eagerly_parse_message_sets.
735 bool ParseFieldMaybeLazily(int wire_type, int field_number,
736 io::CodedInputStream* input,
737 ExtensionFinder* extension_finder,
738 MessageSetFieldSkipper* field_skipper);
739
740 // Gets the extension with the given number, creating it if it does not
741 // already exist. Returns true if the extension did not already exist.
742 bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
743 Extension** result);
744
745 // Gets the repeated extension for the given descriptor, creating it if
746 // it does not exist.
747 Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor);
748
749 // Parse a single MessageSet item -- called just after the item group start
750 // tag has been read.
751 bool ParseMessageSetItemLite(io::CodedInputStream* input,
752 ExtensionFinder* extension_finder,
753 FieldSkipper* field_skipper);
754 // Parse a single MessageSet item -- called just after the item group start
755 // tag has been read.
756 bool ParseMessageSetItem(io::CodedInputStream* input,
757 ExtensionFinder* extension_finder,
758 MessageSetFieldSkipper* field_skipper);
759
760 bool FindExtension(int wire_type, uint32 field,
761 const MessageLite* containing_type,
762 const internal::ParseContext* /*ctx*/,
763 ExtensionInfo* extension, bool* was_packed_on_wire) {
764 GeneratedExtensionFinder finder(containing_type);
765 return FindExtensionInfoFromFieldNumber(wire_type, field, &finder,
766 extension, was_packed_on_wire);
767 }
768 inline bool FindExtension(int wire_type, uint32 field,
769 const Message* containing_type,
770 const internal::ParseContext* ctx,
771 ExtensionInfo* extension, bool* was_packed_on_wire);
772 // Used for MessageSet only
773 const char* ParseFieldMaybeLazily(
774 uint64 tag, const char* ptr, const MessageLite* containing_type,
775 internal::InternalMetadataWithArenaLite* metadata,
776 internal::ParseContext* ctx) {
777 // Lite MessageSet doesn't implement lazy.
778 return ParseField(tag, ptr, containing_type, metadata, ctx);
779 }
780 const char* ParseFieldMaybeLazily(
781 uint64 tag, const char* ptr, const Message* containing_type,
782 internal::InternalMetadataWithArena* metadata,
783 internal::ParseContext* ctx);
784 const char* ParseMessageSetItem(
785 const char* ptr, const MessageLite* containing_type,
786 internal::InternalMetadataWithArenaLite* metadata,
787 internal::ParseContext* ctx);
788 const char* ParseMessageSetItem(const char* ptr,
789 const Message* containing_type,
790 internal::InternalMetadataWithArena* metadata,
791 internal::ParseContext* ctx);
792
793 // Implemented in extension_set_inl.h to keep code out of the header file.
794 template <typename T>
795 const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire,
796 const ExtensionInfo& info,
797 T* metadata, const char* ptr,
798 internal::ParseContext* ctx);
799 template <typename Msg, typename Metadata>
800 const char* ParseMessageSetItemTmpl(const char* ptr,
801 const Msg* containing_type,
802 Metadata* metadata,
803 internal::ParseContext* ctx);
804
805 // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
806 // friendship should automatically extend to ExtensionSet::Extension, but
807 // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
808 // correctly. So, we must provide helpers for calling methods of that
809 // class.
810
811 // Defined in extension_set_heavy.cc.
812 static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong(
813 RepeatedPtrFieldBase* field);
814
815 KeyValue* flat_begin() {
816 assert(!is_large());
817 return map_.flat;
818 }
819 const KeyValue* flat_begin() const {
820 assert(!is_large());
821 return map_.flat;
822 }
823 KeyValue* flat_end() {
824 assert(!is_large());
825 return map_.flat + flat_size_;
826 }
827 const KeyValue* flat_end() const {
828 assert(!is_large());
829 return map_.flat + flat_size_;
830 }
831
832 Arena* arena_;
833
834 // Manual memory-management:
835 // map_.flat is an allocated array of flat_capacity_ elements.
836 // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix.
837 uint16 flat_capacity_;
838 uint16 flat_size_;
839 union AllocatedData {
840 KeyValue* flat;
841
842 // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap,
843 // which guarantees O(n lg n) CPU but larger constant factors.
844 LargeMap* large;
845 } map_;
846
847 static void DeleteFlatMap(const KeyValue* flat, uint16 flat_capacity);
848
849 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
850};
851
852// These are just for convenience...
853inline void ExtensionSet::SetString(int number, FieldType type,
854 std::string value,
855 const FieldDescriptor* descriptor) {
856 MutableString(number, type, descriptor)->assign(std::move(value));
857}
858inline void ExtensionSet::SetRepeatedString(int number, int index,
859 std::string value) {
860 MutableRepeatedString(number, index)->assign(std::move(value));
861}
862inline void ExtensionSet::AddString(int number, FieldType type,
863 std::string value,
864 const FieldDescriptor* descriptor) {
865 AddString(number, type, descriptor)->assign(std::move(value));
866}
867// ===================================================================
868// Glue for generated extension accessors
869
870// -------------------------------------------------------------------
871// Template magic
872
873// First we have a set of classes representing "type traits" for different
874// field types. A type traits class knows how to implement basic accessors
875// for extensions of a particular type given an ExtensionSet. The signature
876// for a type traits class looks like this:
877//
878// class TypeTraits {
879// public:
880// typedef ? ConstType;
881// typedef ? MutableType;
882// // TypeTraits for singular fields and repeated fields will define the
883// // symbol "Singular" or "Repeated" respectively. These two symbols will
884// // be used in extension accessors to distinguish between singular
885// // extensions and repeated extensions. If the TypeTraits for the passed
886// // in extension doesn't have the expected symbol defined, it means the
887// // user is passing a repeated extension to a singular accessor, or the
888// // opposite. In that case the C++ compiler will generate an error
889// // message "no matching member function" to inform the user.
890// typedef ? Singular
891// typedef ? Repeated
892//
893// static inline ConstType Get(int number, const ExtensionSet& set);
894// static inline void Set(int number, ConstType value, ExtensionSet* set);
895// static inline MutableType Mutable(int number, ExtensionSet* set);
896//
897// // Variants for repeated fields.
898// static inline ConstType Get(int number, const ExtensionSet& set,
899// int index);
900// static inline void Set(int number, int index,
901// ConstType value, ExtensionSet* set);
902// static inline MutableType Mutable(int number, int index,
903// ExtensionSet* set);
904// static inline void Add(int number, ConstType value, ExtensionSet* set);
905// static inline MutableType Add(int number, ExtensionSet* set);
906// This is used by the ExtensionIdentifier constructor to register
907// the extension at dynamic initialization.
908// template <typename ExtendeeT>
909// static void Register(int number, FieldType type, bool is_packed);
910// };
911//
912// Not all of these methods make sense for all field types. For example, the
913// "Mutable" methods only make sense for strings and messages, and the
914// repeated methods only make sense for repeated types. So, each type
915// traits class implements only the set of methods from this signature that it
916// actually supports. This will cause a compiler error if the user tries to
917// access an extension using a method that doesn't make sense for its type.
918// For example, if "foo" is an extension of type "optional int32", then if you
919// try to write code like:
920// my_message.MutableExtension(foo)
921// you will get a compile error because PrimitiveTypeTraits<int32> does not
922// have a "Mutable()" method.
923
924// -------------------------------------------------------------------
925// PrimitiveTypeTraits
926
927// Since the ExtensionSet has different methods for each primitive type,
928// we must explicitly define the methods of the type traits class for each
929// known type.
930template <typename Type>
931class PrimitiveTypeTraits {
932 public:
933 typedef Type ConstType;
934 typedef Type MutableType;
935 typedef PrimitiveTypeTraits<Type> Singular;
936
937 static inline ConstType Get(int number, const ExtensionSet& set,
938 ConstType default_value);
939 static inline void Set(int number, FieldType field_type, ConstType value,
940 ExtensionSet* set);
941 template <typename ExtendeeT>
942 static void Register(int number, FieldType type, bool is_packed) {
943 ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
944 type, false, is_packed);
945 }
946};
947
948template <typename Type>
949class RepeatedPrimitiveTypeTraits {
950 public:
951 typedef Type ConstType;
952 typedef Type MutableType;
953 typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
954
955 typedef RepeatedField<Type> RepeatedFieldType;
956
957 static inline Type Get(int number, const ExtensionSet& set, int index);
958 static inline void Set(int number, int index, Type value, ExtensionSet* set);
959 static inline void Add(int number, FieldType field_type, bool is_packed,
960 Type value, ExtensionSet* set);
961
962 static inline const RepeatedField<ConstType>& GetRepeated(
963 int number, const ExtensionSet& set);
964 static inline RepeatedField<Type>* MutableRepeated(int number,
965 FieldType field_type,
966 bool is_packed,
967 ExtensionSet* set);
968
969 static const RepeatedFieldType* GetDefaultRepeatedField();
970 template <typename ExtendeeT>
971 static void Register(int number, FieldType type, bool is_packed) {
972 ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
973 type, true, is_packed);
974 }
975};
976
977class PROTOBUF_EXPORT RepeatedPrimitiveDefaults {
978 private:
979 template <typename Type>
980 friend class RepeatedPrimitiveTypeTraits;
981 static const RepeatedPrimitiveDefaults* default_instance();
982 RepeatedField<int32> default_repeated_field_int32_;
983 RepeatedField<int64> default_repeated_field_int64_;
984 RepeatedField<uint32> default_repeated_field_uint32_;
985 RepeatedField<uint64> default_repeated_field_uint64_;
986 RepeatedField<double> default_repeated_field_double_;
987 RepeatedField<float> default_repeated_field_float_;
988 RepeatedField<bool> default_repeated_field_bool_;
989};
990
991#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
992 template <> \
993 inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
994 int number, const ExtensionSet& set, TYPE default_value) { \
995 return set.Get##METHOD(number, default_value); \
996 } \
997 template <> \
998 inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \
999 TYPE value, ExtensionSet* set) { \
1000 set->Set##METHOD(number, field_type, value, NULL); \
1001 } \
1002 \
1003 template <> \
1004 inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
1005 int number, const ExtensionSet& set, int index) { \
1006 return set.GetRepeated##METHOD(number, index); \
1007 } \
1008 template <> \
1009 inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
1010 int number, int index, TYPE value, ExtensionSet* set) { \
1011 set->SetRepeated##METHOD(number, index, value); \
1012 } \
1013 template <> \
1014 inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
1015 int number, FieldType field_type, bool is_packed, TYPE value, \
1016 ExtensionSet* set) { \
1017 set->Add##METHOD(number, field_type, is_packed, value, NULL); \
1018 } \
1019 template <> \
1020 inline const RepeatedField<TYPE>* \
1021 RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \
1022 return &RepeatedPrimitiveDefaults::default_instance() \
1023 ->default_repeated_field_##TYPE##_; \
1024 } \
1025 template <> \
1026 inline const RepeatedField<TYPE>& \
1027 RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \
1028 const ExtensionSet& set) { \
1029 return *reinterpret_cast<const RepeatedField<TYPE>*>( \
1030 set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \
1031 } \
1032 template <> \
1033 inline RepeatedField<TYPE>* \
1034 RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \
1035 int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \
1036 return reinterpret_cast<RepeatedField<TYPE>*>( \
1037 set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \
1038 }
1039
1040PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32, Int32)
1041PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64, Int64)
1042PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
1043PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
1044PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float)
1045PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
1046PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool)
1047
1048#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
1049
1050// -------------------------------------------------------------------
1051// StringTypeTraits
1052
1053// Strings support both Set() and Mutable().
1054class PROTOBUF_EXPORT StringTypeTraits {
1055 public:
1056 typedef const std::string& ConstType;
1057 typedef std::string* MutableType;
1058 typedef StringTypeTraits Singular;
1059
1060 static inline const std::string& Get(int number, const ExtensionSet& set,
1061 ConstType default_value) {
1062 return set.GetString(number, default_value);
1063 }
1064 static inline void Set(int number, FieldType field_type,
1065 const std::string& value, ExtensionSet* set) {
1066 set->SetString(number, field_type, value, NULL);
1067 }
1068 static inline std::string* Mutable(int number, FieldType field_type,
1069 ExtensionSet* set) {
1070 return set->MutableString(number, field_type, NULL);
1071 }
1072 template <typename ExtendeeT>
1073 static void Register(int number, FieldType type, bool is_packed) {
1074 ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
1075 type, false, is_packed);
1076 }
1077};
1078
1079class PROTOBUF_EXPORT RepeatedStringTypeTraits {
1080 public:
1081 typedef const std::string& ConstType;
1082 typedef std::string* MutableType;
1083 typedef RepeatedStringTypeTraits Repeated;
1084
1085 typedef RepeatedPtrField<std::string> RepeatedFieldType;
1086
1087 static inline const std::string& Get(int number, const ExtensionSet& set,
1088 int index) {
1089 return set.GetRepeatedString(number, index);
1090 }
1091 static inline void Set(int number, int index, const std::string& value,
1092 ExtensionSet* set) {
1093 set->SetRepeatedString(number, index, value);
1094 }
1095 static inline std::string* Mutable(int number, int index, ExtensionSet* set) {
1096 return set->MutableRepeatedString(number, index);
1097 }
1098 static inline void Add(int number, FieldType field_type, bool /*is_packed*/,
1099 const std::string& value, ExtensionSet* set) {
1100 set->AddString(number, field_type, value, NULL);
1101 }
1102 static inline std::string* Add(int number, FieldType field_type,
1103 ExtensionSet* set) {
1104 return set->AddString(number, field_type, NULL);
1105 }
1106 static inline const RepeatedPtrField<std::string>& GetRepeated(
1107 int number, const ExtensionSet& set) {
1108 return *reinterpret_cast<const RepeatedPtrField<std::string>*>(
1109 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1110 }
1111
1112 static inline RepeatedPtrField<std::string>* MutableRepeated(
1113 int number, FieldType field_type, bool is_packed, ExtensionSet* set) {
1114 return reinterpret_cast<RepeatedPtrField<std::string>*>(
1115 set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1116 }
1117
1118 static const RepeatedFieldType* GetDefaultRepeatedField();
1119
1120 template <typename ExtendeeT>
1121 static void Register(int number, FieldType type, bool is_packed) {
1122 ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
1123 type, true, is_packed);
1124 }
1125
1126 private:
1127 static void InitializeDefaultRepeatedFields();
1128 static void DestroyDefaultRepeatedFields();
1129};
1130
1131// -------------------------------------------------------------------
1132// EnumTypeTraits
1133
1134// ExtensionSet represents enums using integers internally, so we have to
1135// static_cast around.
1136template <typename Type, bool IsValid(int)>
1137class EnumTypeTraits {
1138 public:
1139 typedef Type ConstType;
1140 typedef Type MutableType;
1141 typedef EnumTypeTraits<Type, IsValid> Singular;
1142
1143 static inline ConstType Get(int number, const ExtensionSet& set,
1144 ConstType default_value) {
1145 return static_cast<Type>(set.GetEnum(number, default_value));
1146 }
1147 static inline void Set(int number, FieldType field_type, ConstType value,
1148 ExtensionSet* set) {
1149 GOOGLE_DCHECK(IsValid(value));
1150 set->SetEnum(number, field_type, value, NULL);
1151 }
1152 template <typename ExtendeeT>
1153 static void Register(int number, FieldType type, bool is_packed) {
1154 ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
1155 type, false, is_packed, IsValid);
1156 }
1157};
1158
1159template <typename Type, bool IsValid(int)>
1160class RepeatedEnumTypeTraits {
1161 public:
1162 typedef Type ConstType;
1163 typedef Type MutableType;
1164 typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated;
1165
1166 typedef RepeatedField<Type> RepeatedFieldType;
1167
1168 static inline ConstType Get(int number, const ExtensionSet& set, int index) {
1169 return static_cast<Type>(set.GetRepeatedEnum(number, index));
1170 }
1171 static inline void Set(int number, int index, ConstType value,
1172 ExtensionSet* set) {
1173 GOOGLE_DCHECK(IsValid(value));
1174 set->SetRepeatedEnum(number, index, value);
1175 }
1176 static inline void Add(int number, FieldType field_type, bool is_packed,
1177 ConstType value, ExtensionSet* set) {
1178 GOOGLE_DCHECK(IsValid(value));
1179 set->AddEnum(number, field_type, is_packed, value, NULL);
1180 }
1181 static inline const RepeatedField<Type>& GetRepeated(
1182 int number, const ExtensionSet& set) {
1183 // Hack: the `Extension` struct stores a RepeatedField<int> for enums.
1184 // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
1185 // so we need to do some casting magic. See message.h for similar
1186 // contortions for non-extension fields.
1187 return *reinterpret_cast<const RepeatedField<Type>*>(
1188 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1189 }
1190
1191 static inline RepeatedField<Type>* MutableRepeated(int number,
1192 FieldType field_type,
1193 bool is_packed,
1194 ExtensionSet* set) {
1195 return reinterpret_cast<RepeatedField<Type>*>(
1196 set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1197 }
1198
1199 static const RepeatedFieldType* GetDefaultRepeatedField() {
1200 // Hack: as noted above, repeated enum fields are internally stored as a
1201 // RepeatedField<int>. We need to be able to instantiate global static
1202 // objects to return as default (empty) repeated fields on non-existent
1203 // extensions. We would not be able to know a-priori all of the enum types
1204 // (values of |Type|) to instantiate all of these, so we just re-use int32's
1205 // default repeated field object.
1206 return reinterpret_cast<const RepeatedField<Type>*>(
1207 RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField());
1208 }
1209 template <typename ExtendeeT>
1210 static void Register(int number, FieldType type, bool is_packed) {
1211 ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
1212 type, true, is_packed, IsValid);
1213 }
1214};
1215
1216// -------------------------------------------------------------------
1217// MessageTypeTraits
1218
1219// ExtensionSet guarantees that when manipulating extensions with message
1220// types, the implementation used will be the compiled-in class representing
1221// that type. So, we can static_cast down to the exact type we expect.
1222template <typename Type>
1223class MessageTypeTraits {
1224 public:
1225 typedef const Type& ConstType;
1226 typedef Type* MutableType;
1227 typedef MessageTypeTraits<Type> Singular;
1228
1229 static inline ConstType Get(int number, const ExtensionSet& set,
1230 ConstType default_value) {
1231 return static_cast<const Type&>(set.GetMessage(number, default_value));
1232 }
1233 static inline MutableType Mutable(int number, FieldType field_type,
1234 ExtensionSet* set) {
1235 return static_cast<Type*>(set->MutableMessage(
1236 number, field_type, Type::default_instance(), NULL));
1237 }
1238 static inline void SetAllocated(int number, FieldType field_type,
1239 MutableType message, ExtensionSet* set) {
1240 set->SetAllocatedMessage(number, field_type, NULL, message);
1241 }
1242 static inline void UnsafeArenaSetAllocated(int number, FieldType field_type,
1243 MutableType message,
1244 ExtensionSet* set) {
1245 set->UnsafeArenaSetAllocatedMessage(number, field_type, NULL, message);
1246 }
1247 static inline MutableType Release(int number, FieldType /* field_type */,
1248 ExtensionSet* set) {
1249 return static_cast<Type*>(
1250 set->ReleaseMessage(number, Type::default_instance()));
1251 }
1252 static inline MutableType UnsafeArenaRelease(int number,
1253 FieldType /* field_type */,
1254 ExtensionSet* set) {
1255 return static_cast<Type*>(
1256 set->UnsafeArenaReleaseMessage(number, Type::default_instance()));
1257 }
1258 template <typename ExtendeeT>
1259 static void Register(int number, FieldType type, bool is_packed) {
1260 ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
1261 number, type, false, is_packed,
1262 &Type::default_instance());
1263 }
1264};
1265
1266// forward declaration
1267class RepeatedMessageGenericTypeTraits;
1268
1269template <typename Type>
1270class RepeatedMessageTypeTraits {
1271 public:
1272 typedef const Type& ConstType;
1273 typedef Type* MutableType;
1274 typedef RepeatedMessageTypeTraits<Type> Repeated;
1275
1276 typedef RepeatedPtrField<Type> RepeatedFieldType;
1277
1278 static inline ConstType Get(int number, const ExtensionSet& set, int index) {
1279 return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
1280 }
1281 static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
1282 return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
1283 }
1284 static inline MutableType Add(int number, FieldType field_type,
1285 ExtensionSet* set) {
1286 return static_cast<Type*>(
1287 set->AddMessage(number, field_type, Type::default_instance(), NULL));
1288 }
1289 static inline const RepeatedPtrField<Type>& GetRepeated(
1290 int number, const ExtensionSet& set) {
1291 // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
1292 // casting hack applies here, because a RepeatedPtrField<MessageLite>
1293 // cannot naturally become a RepeatedPtrType<Type> even though Type is
1294 // presumably a message. google::protobuf::Message goes through similar contortions
1295 // with a reinterpret_cast<>.
1296 return *reinterpret_cast<const RepeatedPtrField<Type>*>(
1297 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1298 }
1299 static inline RepeatedPtrField<Type>* MutableRepeated(int number,
1300 FieldType field_type,
1301 bool is_packed,
1302 ExtensionSet* set) {
1303 return reinterpret_cast<RepeatedPtrField<Type>*>(
1304 set->MutableRawRepeatedField(number, field_type, is_packed, NULL));
1305 }
1306
1307 static const RepeatedFieldType* GetDefaultRepeatedField();
1308 template <typename ExtendeeT>
1309 static void Register(int number, FieldType type, bool is_packed) {
1310 ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
1311 number, type, true, is_packed,
1312 &Type::default_instance());
1313 }
1314};
1315
1316template <typename Type>
1317inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
1318RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
1319 static auto instance = OnShutdownDelete(new RepeatedFieldType);
1320 return instance;
1321}
1322
1323// -------------------------------------------------------------------
1324// ExtensionIdentifier
1325
1326// This is the type of actual extension objects. E.g. if you have:
1327// extends Foo with optional int32 bar = 1234;
1328// then "bar" will be defined in C++ as:
1329// ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 5, false> bar(1234);
1330//
1331// Note that we could, in theory, supply the field number as a template
1332// parameter, and thus make an instance of ExtensionIdentifier have no
1333// actual contents. However, if we did that, then using an extension
1334// identifier would not necessarily cause the compiler to output any sort
1335// of reference to any symbol defined in the extension's .pb.o file. Some
1336// linkers will actually drop object files that are not explicitly referenced,
1337// but that would be bad because it would cause this extension to not be
1338// registered at static initialization, and therefore using it would crash.
1339
1340template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type,
1341 bool is_packed>
1342class ExtensionIdentifier {
1343 public:
1344 typedef TypeTraitsType TypeTraits;
1345 typedef ExtendeeType Extendee;
1346
1347 ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
1348 : number_(number), default_value_(default_value) {
1349 Register(number);
1350 }
1351 inline int number() const { return number_; }
1352 typename TypeTraits::ConstType default_value() const {
1353 return default_value_;
1354 }
1355
1356 static void Register(int number) {
1357 TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed);
1358 }
1359
1360 private:
1361 const int number_;
1362 typename TypeTraits::ConstType default_value_;
1363};
1364
1365// -------------------------------------------------------------------
1366// Generated accessors
1367
1368// This macro should be expanded in the context of a generated type which
1369// has extensions.
1370//
1371// We use "_proto_TypeTraits" as a type name below because "TypeTraits"
1372// causes problems if the class has a nested message or enum type with that
1373// name and "_TypeTraits" is technically reserved for the C++ library since
1374// it starts with an underscore followed by a capital letter.
1375//
1376// For similar reason, we use "_field_type" and "_is_packed" as parameter names
1377// below, so that "field_type" and "is_packed" can be used as field names.
1378#define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \
1379 /* Has, Size, Clear */ \
1380 template <typename _proto_TypeTraits, \
1381 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1382 bool _is_packed> \
1383 inline bool HasExtension( \
1384 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1385 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1386 return _extensions_.Has(id.number()); \
1387 } \
1388 \
1389 template <typename _proto_TypeTraits, \
1390 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1391 bool _is_packed> \
1392 inline void ClearExtension( \
1393 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1394 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1395 _extensions_.ClearExtension(id.number()); \
1396 } \
1397 \
1398 template <typename _proto_TypeTraits, \
1399 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1400 bool _is_packed> \
1401 inline int ExtensionSize( \
1402 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1403 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1404 return _extensions_.ExtensionSize(id.number()); \
1405 } \
1406 \
1407 /* Singular accessors */ \
1408 template <typename _proto_TypeTraits, \
1409 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1410 bool _is_packed> \
1411 inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \
1412 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1413 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1414 return _proto_TypeTraits::Get(id.number(), _extensions_, \
1415 id.default_value()); \
1416 } \
1417 \
1418 template <typename _proto_TypeTraits, \
1419 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1420 bool _is_packed> \
1421 inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \
1422 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1423 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1424 return _proto_TypeTraits::Mutable(id.number(), _field_type, \
1425 &_extensions_); \
1426 } \
1427 \
1428 template <typename _proto_TypeTraits, \
1429 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1430 bool _is_packed> \
1431 inline void SetExtension( \
1432 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1433 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1434 typename _proto_TypeTraits::Singular::ConstType value) { \
1435 _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \
1436 } \
1437 \
1438 template <typename _proto_TypeTraits, \
1439 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1440 bool _is_packed> \
1441 inline void SetAllocatedExtension( \
1442 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1443 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1444 typename _proto_TypeTraits::Singular::MutableType value) { \
1445 _proto_TypeTraits::SetAllocated(id.number(), _field_type, value, \
1446 &_extensions_); \
1447 } \
1448 template <typename _proto_TypeTraits, \
1449 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1450 bool _is_packed> \
1451 inline void UnsafeArenaSetAllocatedExtension( \
1452 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1453 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1454 typename _proto_TypeTraits::Singular::MutableType value) { \
1455 _proto_TypeTraits::UnsafeArenaSetAllocated(id.number(), _field_type, \
1456 value, &_extensions_); \
1457 } \
1458 template <typename _proto_TypeTraits, \
1459 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1460 bool _is_packed> \
1461 inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \
1462 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1463 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1464 return _proto_TypeTraits::Release(id.number(), _field_type, \
1465 &_extensions_); \
1466 } \
1467 template <typename _proto_TypeTraits, \
1468 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1469 bool _is_packed> \
1470 inline typename _proto_TypeTraits::Singular::MutableType \
1471 UnsafeArenaReleaseExtension( \
1472 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1473 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1474 return _proto_TypeTraits::UnsafeArenaRelease(id.number(), _field_type, \
1475 &_extensions_); \
1476 } \
1477 \
1478 /* Repeated accessors */ \
1479 template <typename _proto_TypeTraits, \
1480 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1481 bool _is_packed> \
1482 inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \
1483 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1484 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1485 int index) const { \
1486 return _proto_TypeTraits::Get(id.number(), _extensions_, index); \
1487 } \
1488 \
1489 template <typename _proto_TypeTraits, \
1490 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1491 bool _is_packed> \
1492 inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \
1493 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1494 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1495 int index) { \
1496 return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \
1497 } \
1498 \
1499 template <typename _proto_TypeTraits, \
1500 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1501 bool _is_packed> \
1502 inline void SetExtension( \
1503 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1504 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1505 int index, typename _proto_TypeTraits::Repeated::ConstType value) { \
1506 _proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \
1507 } \
1508 \
1509 template <typename _proto_TypeTraits, \
1510 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1511 bool _is_packed> \
1512 inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \
1513 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1514 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1515 return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \
1516 } \
1517 \
1518 template <typename _proto_TypeTraits, \
1519 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1520 bool _is_packed> \
1521 inline void AddExtension( \
1522 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1523 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \
1524 typename _proto_TypeTraits::Repeated::ConstType value) { \
1525 _proto_TypeTraits::Add(id.number(), _field_type, _is_packed, value, \
1526 &_extensions_); \
1527 } \
1528 \
1529 template <typename _proto_TypeTraits, \
1530 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1531 bool _is_packed> \
1532 inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \
1533 GetRepeatedExtension( \
1534 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1535 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \
1536 return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \
1537 } \
1538 \
1539 template <typename _proto_TypeTraits, \
1540 ::PROTOBUF_NAMESPACE_ID::internal::FieldType _field_type, \
1541 bool _is_packed> \
1542 inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \
1543 MutableRepeatedExtension( \
1544 const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \
1545 CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \
1546 return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \
1547 _is_packed, &_extensions_); \
1548 }
1549
1550} // namespace internal
1551
1552// Call this function to ensure that this extensions's reflection is linked into
1553// the binary:
1554//
1555// google::protobuf::LinkExtensionReflection(Foo::my_extension);
1556//
1557// This will ensure that the following lookup will succeed:
1558//
1559// DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension");
1560//
1561// This is often relevant for parsing extensions in text mode.
1562//
1563// As a side-effect, it will also guarantee that anything else from the same
1564// .proto file will also be available for lookup in the generated pool.
1565//
1566// This function does not actually register the extension, so it does not need
1567// to be called before the lookup. However it does need to occur in a function
1568// that cannot be stripped from the binary (ie. it must be reachable from main).
1569//
1570// Best practice is to call this function as close as possible to where the
1571// reflection is actually needed. This function is very cheap to call, so you
1572// should not need to worry about its runtime overhead except in tight loops (on
1573// x86-64 it compiles into two "mov" instructions).
1574template <typename ExtendeeType, typename TypeTraitsType,
1575 internal::FieldType field_type, bool is_packed>
1576void LinkExtensionReflection(
1577 const google::protobuf::internal::ExtensionIdentifier<
1578 ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) {
1579 internal::StrongReference(extension);
1580}
1581
1582} // namespace protobuf
1583} // namespace google
1584
1585#include <google/protobuf/port_undef.inc>
1586
1587#endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__
1588