1/*******************************************************************************
2* Copyright 2020-2022 Intel Corporation
3*
4* Licensed under the Apache License, Version 2.0 (the "License");
5* you may not use this file except in compliance with the License.
6* You may obtain a copy of the License at
7*
8* http://www.apache.org/licenses/LICENSE-2.0
9*
10* Unless required by applicable law or agreed to in writing, software
11* distributed under the License is distributed on an "AS IS" BASIS,
12* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13* See the License for the specific language governing permissions and
14* limitations under the License.
15*******************************************************************************/
16
17/// @example pooling.cpp
18/// > Annotated version: @ref pooling_example_cpp
19///
20/// @page pooling_example_cpp_short
21///
22/// This C++ API example demonstrates how to create and execute a
23/// [Pooling](@ref dev_guide_pooling) primitive in forward training propagation
24/// mode.
25///
26/// @page pooling_example_cpp Pooling Primitive Example
27/// @copydetails pooling_example_cpp_short
28///
29/// @include pooling.cpp
30
31#include <algorithm>
32#include <cmath>
33#include <iostream>
34#include <string>
35#include <vector>
36
37#include "example_utils.hpp"
38#include "oneapi/dnnl/dnnl.hpp"
39
40using namespace dnnl;
41
42using tag = memory::format_tag;
43using dt = memory::data_type;
44
45void pooling_example(dnnl::engine::kind engine_kind) {
46
47 // Create execution dnnl::engine.
48 dnnl::engine engine(engine_kind, 0);
49
50 // Create dnnl::stream.
51 dnnl::stream engine_stream(engine);
52
53 // Tensor dimensions.
54 const memory::dim N = 3, // batch size
55 IC = 3, // input channels
56 IH = 27, // input tensor height
57 IW = 27, // input tensor width
58 KH = 11, // kernel height
59 KW = 11, // kernel width
60 PH_L = 0, // height padding: left
61 PH_R = 0, // height padding: right
62 PW_L = 0, // width padding: left
63 PW_R = 0, // width padding: right
64 SH = 4, // height-wise stride
65 SW = 4, // width-wise stride
66 DH = 1, // height-wise dilation
67 DW = 1; // width-wise dilation
68
69 const memory::dim OH = (IH - ((KH - 1) * DH + KH) + PH_L + PH_R) / SH + 1;
70 const memory::dim OW = (IW - ((KW - 1) * DW + KW) + PW_L + PW_R) / SW + 1;
71
72 // Source (src) and destination (dst) tensors dimensions.
73 memory::dims src_dims = {N, IC, IH, IW};
74 memory::dims dst_dims = {N, IC, OH, OW};
75
76 // Kernel dimensions.
77 memory::dims kernel_dims = {KH, KW};
78
79 // Strides, padding dimensions.
80 memory::dims strides_dims = {SH, SW};
81 memory::dims padding_dims_l = {PH_L, PW_L};
82 memory::dims padding_dims_r = {PH_R, PW_R};
83 memory::dims dilation = {DH, DW};
84
85 // Allocate buffers.
86 std::vector<float> src_data(product(src_dims));
87 std::vector<float> dst_data(product(dst_dims));
88
89 std::generate(src_data.begin(), src_data.end(), []() {
90 static int i = 0;
91 return std::cos(i++ / 10.f);
92 });
93
94 // Create memory descriptors and memory objects for src and dst.
95 auto src_md = memory::desc(src_dims, dt::f32, tag::nchw);
96 auto src_mem = memory(src_md, engine);
97
98 auto dst_md = memory::desc(dst_dims, dt::f32, tag::nchw);
99 auto dst_mem = memory(dst_md, engine);
100
101 // Write data to memory object's handle.
102 write_to_dnnl_memory(src_data.data(), src_mem);
103
104 // Create primitive descriptor.
105 auto pooling_pd = pooling_forward::primitive_desc(engine,
106 prop_kind::forward_training, algorithm::pooling_max, src_md, dst_md,
107 strides_dims, kernel_dims, dilation, padding_dims_l,
108 padding_dims_r);
109
110 // Create workspace memory objects using memory descriptor created by the
111 // primitive descriptor.
112 // NOTE: Here, the workspace is required to save the indices where maximum
113 // was found, and is used in backward pooling to perform upsampling.
114 auto workspace_mem = memory(pooling_pd.workspace_desc(), engine);
115
116 // Create the primitive.
117 auto pooling_prim = pooling_forward(pooling_pd);
118
119 // Primitive arguments. Set up in-place execution by assigning src as DST.
120 std::unordered_map<int, memory> pooling_args;
121 pooling_args.insert({DNNL_ARG_SRC, src_mem});
122 pooling_args.insert({DNNL_ARG_DST, dst_mem});
123 pooling_args.insert({DNNL_ARG_WORKSPACE, workspace_mem});
124
125 // Primitive execution: pooling.
126 pooling_prim.execute(engine_stream, pooling_args);
127
128 // Wait for the computation to finalize.
129 engine_stream.wait();
130
131 // Read data from memory object's handle.
132 read_from_dnnl_memory(dst_data.data(), dst_mem);
133}
134
135int main(int argc, char **argv) {
136 return handle_example_errors(
137 pooling_example, parse_engine_kind(argc, argv));
138}
139