1/*
2** $Id: lmathlib.c $
3** Standard mathematical library
4** See Copyright Notice in lua.h
5*/
6
7#define lmathlib_c
8#define LUA_LIB
9
10#include "lprefix.h"
11
12
13#include <float.h>
14#include <limits.h>
15#include <math.h>
16#include <stdlib.h>
17#include <time.h>
18
19#include "lua.h"
20
21#include "lauxlib.h"
22#include "lualib.h"
23
24
25#undef PI
26#define PI (l_mathop(3.141592653589793238462643383279502884))
27
28
29static int math_abs (lua_State *L) {
30 if (lua_isinteger(L, 1)) {
31 lua_Integer n = lua_tointeger(L, 1);
32 if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n);
33 lua_pushinteger(L, n);
34 }
35 else
36 lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1)));
37 return 1;
38}
39
40static int math_sin (lua_State *L) {
41 lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1)));
42 return 1;
43}
44
45static int math_cos (lua_State *L) {
46 lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1)));
47 return 1;
48}
49
50static int math_tan (lua_State *L) {
51 lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1)));
52 return 1;
53}
54
55static int math_asin (lua_State *L) {
56 lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1)));
57 return 1;
58}
59
60static int math_acos (lua_State *L) {
61 lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1)));
62 return 1;
63}
64
65static int math_atan (lua_State *L) {
66 lua_Number y = luaL_checknumber(L, 1);
67 lua_Number x = luaL_optnumber(L, 2, 1);
68 lua_pushnumber(L, l_mathop(atan2)(y, x));
69 return 1;
70}
71
72
73static int math_toint (lua_State *L) {
74 int valid;
75 lua_Integer n = lua_tointegerx(L, 1, &valid);
76 if (l_likely(valid))
77 lua_pushinteger(L, n);
78 else {
79 luaL_checkany(L, 1);
80 luaL_pushfail(L); /* value is not convertible to integer */
81 }
82 return 1;
83}
84
85
86static void pushnumint (lua_State *L, lua_Number d) {
87 lua_Integer n;
88 if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */
89 lua_pushinteger(L, n); /* result is integer */
90 else
91 lua_pushnumber(L, d); /* result is float */
92}
93
94
95static int math_floor (lua_State *L) {
96 if (lua_isinteger(L, 1))
97 lua_settop(L, 1); /* integer is its own floor */
98 else {
99 lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1));
100 pushnumint(L, d);
101 }
102 return 1;
103}
104
105
106static int math_ceil (lua_State *L) {
107 if (lua_isinteger(L, 1))
108 lua_settop(L, 1); /* integer is its own ceil */
109 else {
110 lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1));
111 pushnumint(L, d);
112 }
113 return 1;
114}
115
116
117static int math_fmod (lua_State *L) {
118 if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) {
119 lua_Integer d = lua_tointeger(L, 2);
120 if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */
121 luaL_argcheck(L, d != 0, 2, "zero");
122 lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */
123 }
124 else
125 lua_pushinteger(L, lua_tointeger(L, 1) % d);
126 }
127 else
128 lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1),
129 luaL_checknumber(L, 2)));
130 return 1;
131}
132
133
134/*
135** next function does not use 'modf', avoiding problems with 'double*'
136** (which is not compatible with 'float*') when lua_Number is not
137** 'double'.
138*/
139static int math_modf (lua_State *L) {
140 if (lua_isinteger(L ,1)) {
141 lua_settop(L, 1); /* number is its own integer part */
142 lua_pushnumber(L, 0); /* no fractional part */
143 }
144 else {
145 lua_Number n = luaL_checknumber(L, 1);
146 /* integer part (rounds toward zero) */
147 lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n);
148 pushnumint(L, ip);
149 /* fractional part (test needed for inf/-inf) */
150 lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip));
151 }
152 return 2;
153}
154
155
156static int math_sqrt (lua_State *L) {
157 lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1)));
158 return 1;
159}
160
161
162static int math_ult (lua_State *L) {
163 lua_Integer a = luaL_checkinteger(L, 1);
164 lua_Integer b = luaL_checkinteger(L, 2);
165 lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b);
166 return 1;
167}
168
169static int math_log (lua_State *L) {
170 lua_Number x = luaL_checknumber(L, 1);
171 lua_Number res;
172 if (lua_isnoneornil(L, 2))
173 res = l_mathop(log)(x);
174 else {
175 lua_Number base = luaL_checknumber(L, 2);
176#if !defined(LUA_USE_C89)
177 if (base == l_mathop(2.0))
178 res = l_mathop(log2)(x);
179 else
180#endif
181 if (base == l_mathop(10.0))
182 res = l_mathop(log10)(x);
183 else
184 res = l_mathop(log)(x)/l_mathop(log)(base);
185 }
186 lua_pushnumber(L, res);
187 return 1;
188}
189
190static int math_exp (lua_State *L) {
191 lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1)));
192 return 1;
193}
194
195static int math_deg (lua_State *L) {
196 lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI));
197 return 1;
198}
199
200static int math_rad (lua_State *L) {
201 lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0)));
202 return 1;
203}
204
205
206static int math_min (lua_State *L) {
207 int n = lua_gettop(L); /* number of arguments */
208 int imin = 1; /* index of current minimum value */
209 int i;
210 luaL_argcheck(L, n >= 1, 1, "value expected");
211 for (i = 2; i <= n; i++) {
212 if (lua_compare(L, i, imin, LUA_OPLT))
213 imin = i;
214 }
215 lua_pushvalue(L, imin);
216 return 1;
217}
218
219
220static int math_max (lua_State *L) {
221 int n = lua_gettop(L); /* number of arguments */
222 int imax = 1; /* index of current maximum value */
223 int i;
224 luaL_argcheck(L, n >= 1, 1, "value expected");
225 for (i = 2; i <= n; i++) {
226 if (lua_compare(L, imax, i, LUA_OPLT))
227 imax = i;
228 }
229 lua_pushvalue(L, imax);
230 return 1;
231}
232
233
234static int math_type (lua_State *L) {
235 if (lua_type(L, 1) == LUA_TNUMBER)
236 lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float");
237 else {
238 luaL_checkany(L, 1);
239 luaL_pushfail(L);
240 }
241 return 1;
242}
243
244
245
246/*
247** {==================================================================
248** Pseudo-Random Number Generator based on 'xoshiro256**'.
249** ===================================================================
250*/
251
252/* number of binary digits in the mantissa of a float */
253#define FIGS l_floatatt(MANT_DIG)
254
255#if FIGS > 64
256/* there are only 64 random bits; use them all */
257#undef FIGS
258#define FIGS 64
259#endif
260
261
262/*
263** LUA_RAND32 forces the use of 32-bit integers in the implementation
264** of the PRN generator (mainly for testing).
265*/
266#if !defined(LUA_RAND32) && !defined(Rand64)
267
268/* try to find an integer type with at least 64 bits */
269
270#if (ULONG_MAX >> 31 >> 31) >= 3
271
272/* 'long' has at least 64 bits */
273#define Rand64 unsigned long
274
275#elif !defined(LUA_USE_C89) && defined(LLONG_MAX)
276
277/* there is a 'long long' type (which must have at least 64 bits) */
278#define Rand64 unsigned long long
279
280#elif (LUA_MAXUNSIGNED >> 31 >> 31) >= 3
281
282/* 'lua_Integer' has at least 64 bits */
283#define Rand64 lua_Unsigned
284
285#endif
286
287#endif
288
289
290#if defined(Rand64) /* { */
291
292/*
293** Standard implementation, using 64-bit integers.
294** If 'Rand64' has more than 64 bits, the extra bits do not interfere
295** with the 64 initial bits, except in a right shift. Moreover, the
296** final result has to discard the extra bits.
297*/
298
299/* avoid using extra bits when needed */
300#define trim64(x) ((x) & 0xffffffffffffffffu)
301
302
303/* rotate left 'x' by 'n' bits */
304static Rand64 rotl (Rand64 x, int n) {
305 return (x << n) | (trim64(x) >> (64 - n));
306}
307
308static Rand64 nextrand (Rand64 *state) {
309 Rand64 state0 = state[0];
310 Rand64 state1 = state[1];
311 Rand64 state2 = state[2] ^ state0;
312 Rand64 state3 = state[3] ^ state1;
313 Rand64 res = rotl(state1 * 5, 7) * 9;
314 state[0] = state0 ^ state3;
315 state[1] = state1 ^ state2;
316 state[2] = state2 ^ (state1 << 17);
317 state[3] = rotl(state3, 45);
318 return res;
319}
320
321
322/* must take care to not shift stuff by more than 63 slots */
323
324
325/*
326** Convert bits from a random integer into a float in the
327** interval [0,1), getting the higher FIG bits from the
328** random unsigned integer and converting that to a float.
329*/
330
331/* must throw out the extra (64 - FIGS) bits */
332#define shift64_FIG (64 - FIGS)
333
334/* to scale to [0, 1), multiply by scaleFIG = 2^(-FIGS) */
335#define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1)))
336
337static lua_Number I2d (Rand64 x) {
338 return (lua_Number)(trim64(x) >> shift64_FIG) * scaleFIG;
339}
340
341/* convert a 'Rand64' to a 'lua_Unsigned' */
342#define I2UInt(x) ((lua_Unsigned)trim64(x))
343
344/* convert a 'lua_Unsigned' to a 'Rand64' */
345#define Int2I(x) ((Rand64)(x))
346
347
348#else /* no 'Rand64' }{ */
349
350/* get an integer with at least 32 bits */
351#if LUAI_IS32INT
352typedef unsigned int lu_int32;
353#else
354typedef unsigned long lu_int32;
355#endif
356
357
358/*
359** Use two 32-bit integers to represent a 64-bit quantity.
360*/
361typedef struct Rand64 {
362 lu_int32 h; /* higher half */
363 lu_int32 l; /* lower half */
364} Rand64;
365
366
367/*
368** If 'lu_int32' has more than 32 bits, the extra bits do not interfere
369** with the 32 initial bits, except in a right shift and comparisons.
370** Moreover, the final result has to discard the extra bits.
371*/
372
373/* avoid using extra bits when needed */
374#define trim32(x) ((x) & 0xffffffffu)
375
376
377/*
378** basic operations on 'Rand64' values
379*/
380
381/* build a new Rand64 value */
382static Rand64 packI (lu_int32 h, lu_int32 l) {
383 Rand64 result;
384 result.h = h;
385 result.l = l;
386 return result;
387}
388
389/* return i << n */
390static Rand64 Ishl (Rand64 i, int n) {
391 lua_assert(n > 0 && n < 32);
392 return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n);
393}
394
395/* i1 ^= i2 */
396static void Ixor (Rand64 *i1, Rand64 i2) {
397 i1->h ^= i2.h;
398 i1->l ^= i2.l;
399}
400
401/* return i1 + i2 */
402static Rand64 Iadd (Rand64 i1, Rand64 i2) {
403 Rand64 result = packI(i1.h + i2.h, i1.l + i2.l);
404 if (trim32(result.l) < trim32(i1.l)) /* carry? */
405 result.h++;
406 return result;
407}
408
409/* return i * 5 */
410static Rand64 times5 (Rand64 i) {
411 return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */
412}
413
414/* return i * 9 */
415static Rand64 times9 (Rand64 i) {
416 return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */
417}
418
419/* return 'i' rotated left 'n' bits */
420static Rand64 rotl (Rand64 i, int n) {
421 lua_assert(n > 0 && n < 32);
422 return packI((i.h << n) | (trim32(i.l) >> (32 - n)),
423 (trim32(i.h) >> (32 - n)) | (i.l << n));
424}
425
426/* for offsets larger than 32, rotate right by 64 - offset */
427static Rand64 rotl1 (Rand64 i, int n) {
428 lua_assert(n > 32 && n < 64);
429 n = 64 - n;
430 return packI((trim32(i.h) >> n) | (i.l << (32 - n)),
431 (i.h << (32 - n)) | (trim32(i.l) >> n));
432}
433
434/*
435** implementation of 'xoshiro256**' algorithm on 'Rand64' values
436*/
437static Rand64 nextrand (Rand64 *state) {
438 Rand64 res = times9(rotl(times5(state[1]), 7));
439 Rand64 t = Ishl(state[1], 17);
440 Ixor(&state[2], state[0]);
441 Ixor(&state[3], state[1]);
442 Ixor(&state[1], state[2]);
443 Ixor(&state[0], state[3]);
444 Ixor(&state[2], t);
445 state[3] = rotl1(state[3], 45);
446 return res;
447}
448
449
450/*
451** Converts a 'Rand64' into a float.
452*/
453
454/* an unsigned 1 with proper type */
455#define UONE ((lu_int32)1)
456
457
458#if FIGS <= 32
459
460/* 2^(-FIGS) */
461#define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1)))
462
463/*
464** get up to 32 bits from higher half, shifting right to
465** throw out the extra bits.
466*/
467static lua_Number I2d (Rand64 x) {
468 lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS));
469 return h * scaleFIG;
470}
471
472#else /* 32 < FIGS <= 64 */
473
474/* must take care to not shift stuff by more than 31 slots */
475
476/* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */
477#define scaleFIG \
478 (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33)))
479
480/*
481** use FIGS - 32 bits from lower half, throwing out the other
482** (32 - (FIGS - 32)) = (64 - FIGS) bits
483*/
484#define shiftLOW (64 - FIGS)
485
486/*
487** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32)
488*/
489#define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0))
490
491
492static lua_Number I2d (Rand64 x) {
493 lua_Number h = (lua_Number)trim32(x.h) * shiftHI;
494 lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW);
495 return (h + l) * scaleFIG;
496}
497
498#endif
499
500
501/* convert a 'Rand64' to a 'lua_Unsigned' */
502static lua_Unsigned I2UInt (Rand64 x) {
503 return ((lua_Unsigned)trim32(x.h) << 31 << 1) | (lua_Unsigned)trim32(x.l);
504}
505
506/* convert a 'lua_Unsigned' to a 'Rand64' */
507static Rand64 Int2I (lua_Unsigned n) {
508 return packI((lu_int32)(n >> 31 >> 1), (lu_int32)n);
509}
510
511#endif /* } */
512
513
514/*
515** A state uses four 'Rand64' values.
516*/
517typedef struct {
518 Rand64 s[4];
519} RanState;
520
521
522/*
523** Project the random integer 'ran' into the interval [0, n].
524** Because 'ran' has 2^B possible values, the projection can only be
525** uniform when the size of the interval is a power of 2 (exact
526** division). Otherwise, to get a uniform projection into [0, n], we
527** first compute 'lim', the smallest Mersenne number not smaller than
528** 'n'. We then project 'ran' into the interval [0, lim]. If the result
529** is inside [0, n], we are done. Otherwise, we try with another 'ran',
530** until we have a result inside the interval.
531*/
532static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
533 RanState *state) {
534 if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */
535 return ran & n; /* no bias */
536 else {
537 lua_Unsigned lim = n;
538 /* compute the smallest (2^b - 1) not smaller than 'n' */
539 lim |= (lim >> 1);
540 lim |= (lim >> 2);
541 lim |= (lim >> 4);
542 lim |= (lim >> 8);
543 lim |= (lim >> 16);
544#if (LUA_MAXUNSIGNED >> 31) >= 3
545 lim |= (lim >> 32); /* integer type has more than 32 bits */
546#endif
547 lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */
548 && lim >= n /* not smaller than 'n', */
549 && (lim >> 1) < n); /* and it is the smallest one */
550 while ((ran &= lim) > n) /* project 'ran' into [0..lim] */
551 ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */
552 return ran;
553 }
554}
555
556
557static int math_random (lua_State *L) {
558 lua_Integer low, up;
559 lua_Unsigned p;
560 RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
561 Rand64 rv = nextrand(state->s); /* next pseudo-random value */
562 switch (lua_gettop(L)) { /* check number of arguments */
563 case 0: { /* no arguments */
564 lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */
565 return 1;
566 }
567 case 1: { /* only upper limit */
568 low = 1;
569 up = luaL_checkinteger(L, 1);
570 if (up == 0) { /* single 0 as argument? */
571 lua_pushinteger(L, I2UInt(rv)); /* full random integer */
572 return 1;
573 }
574 break;
575 }
576 case 2: { /* lower and upper limits */
577 low = luaL_checkinteger(L, 1);
578 up = luaL_checkinteger(L, 2);
579 break;
580 }
581 default: return luaL_error(L, "wrong number of arguments");
582 }
583 /* random integer in the interval [low, up] */
584 luaL_argcheck(L, low <= up, 1, "interval is empty");
585 /* project random integer into the interval [0, up - low] */
586 p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state);
587 lua_pushinteger(L, p + (lua_Unsigned)low);
588 return 1;
589}
590
591
592static void setseed (lua_State *L, Rand64 *state,
593 lua_Unsigned n1, lua_Unsigned n2) {
594 int i;
595 state[0] = Int2I(n1);
596 state[1] = Int2I(0xff); /* avoid a zero state */
597 state[2] = Int2I(n2);
598 state[3] = Int2I(0);
599 for (i = 0; i < 16; i++)
600 nextrand(state); /* discard initial values to "spread" seed */
601 lua_pushinteger(L, n1);
602 lua_pushinteger(L, n2);
603}
604
605
606/*
607** Set a "random" seed. To get some randomness, use the current time
608** and the address of 'L' (in case the machine does address space layout
609** randomization).
610*/
611static void randseed (lua_State *L, RanState *state) {
612 lua_Unsigned seed1 = (lua_Unsigned)time(NULL);
613 lua_Unsigned seed2 = (lua_Unsigned)(size_t)L;
614 setseed(L, state->s, seed1, seed2);
615}
616
617
618static int math_randomseed (lua_State *L) {
619 RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
620 if (lua_isnone(L, 1)) {
621 randseed(L, state);
622 }
623 else {
624 lua_Integer n1 = luaL_checkinteger(L, 1);
625 lua_Integer n2 = luaL_optinteger(L, 2, 0);
626 setseed(L, state->s, n1, n2);
627 }
628 return 2; /* return seeds */
629}
630
631
632static const luaL_Reg randfuncs[] = {
633 {"random", math_random},
634 {"randomseed", math_randomseed},
635 {NULL, NULL}
636};
637
638
639/*
640** Register the random functions and initialize their state.
641*/
642static void setrandfunc (lua_State *L) {
643 RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0);
644 randseed(L, state); /* initialize with a "random" seed */
645 lua_pop(L, 2); /* remove pushed seeds */
646 luaL_setfuncs(L, randfuncs, 1);
647}
648
649/* }================================================================== */
650
651
652/*
653** {==================================================================
654** Deprecated functions (for compatibility only)
655** ===================================================================
656*/
657#if defined(LUA_COMPAT_MATHLIB)
658
659static int math_cosh (lua_State *L) {
660 lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1)));
661 return 1;
662}
663
664static int math_sinh (lua_State *L) {
665 lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1)));
666 return 1;
667}
668
669static int math_tanh (lua_State *L) {
670 lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1)));
671 return 1;
672}
673
674static int math_pow (lua_State *L) {
675 lua_Number x = luaL_checknumber(L, 1);
676 lua_Number y = luaL_checknumber(L, 2);
677 lua_pushnumber(L, l_mathop(pow)(x, y));
678 return 1;
679}
680
681static int math_frexp (lua_State *L) {
682 int e;
683 lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e));
684 lua_pushinteger(L, e);
685 return 2;
686}
687
688static int math_ldexp (lua_State *L) {
689 lua_Number x = luaL_checknumber(L, 1);
690 int ep = (int)luaL_checkinteger(L, 2);
691 lua_pushnumber(L, l_mathop(ldexp)(x, ep));
692 return 1;
693}
694
695static int math_log10 (lua_State *L) {
696 lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1)));
697 return 1;
698}
699
700#endif
701/* }================================================================== */
702
703
704
705static const luaL_Reg mathlib[] = {
706 {"abs", math_abs},
707 {"acos", math_acos},
708 {"asin", math_asin},
709 {"atan", math_atan},
710 {"ceil", math_ceil},
711 {"cos", math_cos},
712 {"deg", math_deg},
713 {"exp", math_exp},
714 {"tointeger", math_toint},
715 {"floor", math_floor},
716 {"fmod", math_fmod},
717 {"ult", math_ult},
718 {"log", math_log},
719 {"max", math_max},
720 {"min", math_min},
721 {"modf", math_modf},
722 {"rad", math_rad},
723 {"sin", math_sin},
724 {"sqrt", math_sqrt},
725 {"tan", math_tan},
726 {"type", math_type},
727#if defined(LUA_COMPAT_MATHLIB)
728 {"atan2", math_atan},
729 {"cosh", math_cosh},
730 {"sinh", math_sinh},
731 {"tanh", math_tanh},
732 {"pow", math_pow},
733 {"frexp", math_frexp},
734 {"ldexp", math_ldexp},
735 {"log10", math_log10},
736#endif
737 /* placeholders */
738 {"random", NULL},
739 {"randomseed", NULL},
740 {"pi", NULL},
741 {"huge", NULL},
742 {"maxinteger", NULL},
743 {"mininteger", NULL},
744 {NULL, NULL}
745};
746
747
748/*
749** Open math library
750*/
751LUAMOD_API int luaopen_math (lua_State *L) {
752 luaL_newlib(L, mathlib);
753 lua_pushnumber(L, PI);
754 lua_setfield(L, -2, "pi");
755 lua_pushnumber(L, (lua_Number)HUGE_VAL);
756 lua_setfield(L, -2, "huge");
757 lua_pushinteger(L, LUA_MAXINTEGER);
758 lua_setfield(L, -2, "maxinteger");
759 lua_pushinteger(L, LUA_MININTEGER);
760 lua_setfield(L, -2, "mininteger");
761 setrandfunc(L);
762 return 1;
763}
764
765