1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31// Google Mock - a framework for writing C++ mock classes.
32//
33// The MATCHER* family of macros can be used in a namespace scope to
34// define custom matchers easily.
35//
36// Basic Usage
37// ===========
38//
39// The syntax
40//
41// MATCHER(name, description_string) { statements; }
42//
43// defines a matcher with the given name that executes the statements,
44// which must return a bool to indicate if the match succeeds. Inside
45// the statements, you can refer to the value being matched by 'arg',
46// and refer to its type by 'arg_type'.
47//
48// The description string documents what the matcher does, and is used
49// to generate the failure message when the match fails. Since a
50// MATCHER() is usually defined in a header file shared by multiple
51// C++ source files, we require the description to be a C-string
52// literal to avoid possible side effects. It can be empty, in which
53// case we'll use the sequence of words in the matcher name as the
54// description.
55//
56// For example:
57//
58// MATCHER(IsEven, "") { return (arg % 2) == 0; }
59//
60// allows you to write
61//
62// // Expects mock_foo.Bar(n) to be called where n is even.
63// EXPECT_CALL(mock_foo, Bar(IsEven()));
64//
65// or,
66//
67// // Verifies that the value of some_expression is even.
68// EXPECT_THAT(some_expression, IsEven());
69//
70// If the above assertion fails, it will print something like:
71//
72// Value of: some_expression
73// Expected: is even
74// Actual: 7
75//
76// where the description "is even" is automatically calculated from the
77// matcher name IsEven.
78//
79// Argument Type
80// =============
81//
82// Note that the type of the value being matched (arg_type) is
83// determined by the context in which you use the matcher and is
84// supplied to you by the compiler, so you don't need to worry about
85// declaring it (nor can you). This allows the matcher to be
86// polymorphic. For example, IsEven() can be used to match any type
87// where the value of "(arg % 2) == 0" can be implicitly converted to
88// a bool. In the "Bar(IsEven())" example above, if method Bar()
89// takes an int, 'arg_type' will be int; if it takes an unsigned long,
90// 'arg_type' will be unsigned long; and so on.
91//
92// Parameterizing Matchers
93// =======================
94//
95// Sometimes you'll want to parameterize the matcher. For that you
96// can use another macro:
97//
98// MATCHER_P(name, param_name, description_string) { statements; }
99//
100// For example:
101//
102// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
103//
104// will allow you to write:
105//
106// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
107//
108// which may lead to this message (assuming n is 10):
109//
110// Value of: Blah("a")
111// Expected: has absolute value 10
112// Actual: -9
113//
114// Note that both the matcher description and its parameter are
115// printed, making the message human-friendly.
116//
117// In the matcher definition body, you can write 'foo_type' to
118// reference the type of a parameter named 'foo'. For example, in the
119// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
120// 'value_type' to refer to the type of 'value'.
121//
122// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
123// support multi-parameter matchers.
124//
125// Describing Parameterized Matchers
126// =================================
127//
128// The last argument to MATCHER*() is a string-typed expression. The
129// expression can reference all of the matcher's parameters and a
130// special bool-typed variable named 'negation'. When 'negation' is
131// false, the expression should evaluate to the matcher's description;
132// otherwise it should evaluate to the description of the negation of
133// the matcher. For example,
134//
135// using testing::PrintToString;
136//
137// MATCHER_P2(InClosedRange, low, hi,
138// std::string(negation ? "is not" : "is") + " in range [" +
139// PrintToString(low) + ", " + PrintToString(hi) + "]") {
140// return low <= arg && arg <= hi;
141// }
142// ...
143// EXPECT_THAT(3, InClosedRange(4, 6));
144// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
145//
146// would generate two failures that contain the text:
147//
148// Expected: is in range [4, 6]
149// ...
150// Expected: is not in range [2, 4]
151//
152// If you specify "" as the description, the failure message will
153// contain the sequence of words in the matcher name followed by the
154// parameter values printed as a tuple. For example,
155//
156// MATCHER_P2(InClosedRange, low, hi, "") { ... }
157// ...
158// EXPECT_THAT(3, InClosedRange(4, 6));
159// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
160//
161// would generate two failures that contain the text:
162//
163// Expected: in closed range (4, 6)
164// ...
165// Expected: not (in closed range (2, 4))
166//
167// Types of Matcher Parameters
168// ===========================
169//
170// For the purpose of typing, you can view
171//
172// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
173//
174// as shorthand for
175//
176// template <typename p1_type, ..., typename pk_type>
177// FooMatcherPk<p1_type, ..., pk_type>
178// Foo(p1_type p1, ..., pk_type pk) { ... }
179//
180// When you write Foo(v1, ..., vk), the compiler infers the types of
181// the parameters v1, ..., and vk for you. If you are not happy with
182// the result of the type inference, you can specify the types by
183// explicitly instantiating the template, as in Foo<long, bool>(5,
184// false). As said earlier, you don't get to (or need to) specify
185// 'arg_type' as that's determined by the context in which the matcher
186// is used. You can assign the result of expression Foo(p1, ..., pk)
187// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
188// can be useful when composing matchers.
189//
190// While you can instantiate a matcher template with reference types,
191// passing the parameters by pointer usually makes your code more
192// readable. If, however, you still want to pass a parameter by
193// reference, be aware that in the failure message generated by the
194// matcher you will see the value of the referenced object but not its
195// address.
196//
197// Explaining Match Results
198// ========================
199//
200// Sometimes the matcher description alone isn't enough to explain why
201// the match has failed or succeeded. For example, when expecting a
202// long string, it can be very helpful to also print the diff between
203// the expected string and the actual one. To achieve that, you can
204// optionally stream additional information to a special variable
205// named result_listener, whose type is a pointer to class
206// MatchResultListener:
207//
208// MATCHER_P(EqualsLongString, str, "") {
209// if (arg == str) return true;
210//
211// *result_listener << "the difference: "
212/// << DiffStrings(str, arg);
213// return false;
214// }
215//
216// Overloading Matchers
217// ====================
218//
219// You can overload matchers with different numbers of parameters:
220//
221// MATCHER_P(Blah, a, description_string1) { ... }
222// MATCHER_P2(Blah, a, b, description_string2) { ... }
223//
224// Caveats
225// =======
226//
227// When defining a new matcher, you should also consider implementing
228// MatcherInterface or using MakePolymorphicMatcher(). These
229// approaches require more work than the MATCHER* macros, but also
230// give you more control on the types of the value being matched and
231// the matcher parameters, which may leads to better compiler error
232// messages when the matcher is used wrong. They also allow
233// overloading matchers based on parameter types (as opposed to just
234// based on the number of parameters).
235//
236// MATCHER*() can only be used in a namespace scope as templates cannot be
237// declared inside of a local class.
238//
239// More Information
240// ================
241//
242// To learn more about using these macros, please search for 'MATCHER'
243// on
244// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
245//
246// This file also implements some commonly used argument matchers. More
247// matchers can be defined by the user implementing the
248// MatcherInterface<T> interface if necessary.
249//
250// See googletest/include/gtest/gtest-matchers.h for the definition of class
251// Matcher, class MatcherInterface, and others.
252
253// GOOGLETEST_CM0002 DO NOT DELETE
254
255#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257
258#include <algorithm>
259#include <cmath>
260#include <initializer_list>
261#include <iterator>
262#include <limits>
263#include <memory>
264#include <ostream> // NOLINT
265#include <sstream>
266#include <string>
267#include <type_traits>
268#include <utility>
269#include <vector>
270
271#include "gmock/internal/gmock-internal-utils.h"
272#include "gmock/internal/gmock-port.h"
273#include "gmock/internal/gmock-pp.h"
274#include "gtest/gtest.h"
275
276// MSVC warning C5046 is new as of VS2017 version 15.8.
277#if defined(_MSC_VER) && _MSC_VER >= 1915
278#define GMOCK_MAYBE_5046_ 5046
279#else
280#define GMOCK_MAYBE_5046_
281#endif
282
283GTEST_DISABLE_MSC_WARNINGS_PUSH_(
284 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
285 clients of class B */
286 /* Symbol involving type with internal linkage not defined */)
287
288namespace testing {
289
290// To implement a matcher Foo for type T, define:
291// 1. a class FooMatcherImpl that implements the
292// MatcherInterface<T> interface, and
293// 2. a factory function that creates a Matcher<T> object from a
294// FooMatcherImpl*.
295//
296// The two-level delegation design makes it possible to allow a user
297// to write "v" instead of "Eq(v)" where a Matcher is expected, which
298// is impossible if we pass matchers by pointers. It also eases
299// ownership management as Matcher objects can now be copied like
300// plain values.
301
302// A match result listener that stores the explanation in a string.
303class StringMatchResultListener : public MatchResultListener {
304 public:
305 StringMatchResultListener() : MatchResultListener(&ss_) {}
306
307 // Returns the explanation accumulated so far.
308 std::string str() const { return ss_.str(); }
309
310 // Clears the explanation accumulated so far.
311 void Clear() { ss_.str(""); }
312
313 private:
314 ::std::stringstream ss_;
315
316 GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
317};
318
319// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
320// and MUST NOT BE USED IN USER CODE!!!
321namespace internal {
322
323// The MatcherCastImpl class template is a helper for implementing
324// MatcherCast(). We need this helper in order to partially
325// specialize the implementation of MatcherCast() (C++ allows
326// class/struct templates to be partially specialized, but not
327// function templates.).
328
329// This general version is used when MatcherCast()'s argument is a
330// polymorphic matcher (i.e. something that can be converted to a
331// Matcher but is not one yet; for example, Eq(value)) or a value (for
332// example, "hello").
333template <typename T, typename M>
334class MatcherCastImpl {
335 public:
336 static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
337 // M can be a polymorphic matcher, in which case we want to use
338 // its conversion operator to create Matcher<T>. Or it can be a value
339 // that should be passed to the Matcher<T>'s constructor.
340 //
341 // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
342 // polymorphic matcher because it'll be ambiguous if T has an implicit
343 // constructor from M (this usually happens when T has an implicit
344 // constructor from any type).
345 //
346 // It won't work to unconditionally implicit_cast
347 // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
348 // a user-defined conversion from M to T if one exists (assuming M is
349 // a value).
350 return CastImpl(polymorphic_matcher_or_value,
351 std::is_convertible<M, Matcher<T>>{},
352 std::is_convertible<M, T>{});
353 }
354
355 private:
356 template <bool Ignore>
357 static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
358 std::true_type /* convertible_to_matcher */,
359 std::integral_constant<bool, Ignore>) {
360 // M is implicitly convertible to Matcher<T>, which means that either
361 // M is a polymorphic matcher or Matcher<T> has an implicit constructor
362 // from M. In both cases using the implicit conversion will produce a
363 // matcher.
364 //
365 // Even if T has an implicit constructor from M, it won't be called because
366 // creating Matcher<T> would require a chain of two user-defined conversions
367 // (first to create T from M and then to create Matcher<T> from T).
368 return polymorphic_matcher_or_value;
369 }
370
371 // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
372 // matcher. It's a value of a type implicitly convertible to T. Use direct
373 // initialization to create a matcher.
374 static Matcher<T> CastImpl(const M& value,
375 std::false_type /* convertible_to_matcher */,
376 std::true_type /* convertible_to_T */) {
377 return Matcher<T>(ImplicitCast_<T>(value));
378 }
379
380 // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
381 // polymorphic matcher Eq(value) in this case.
382 //
383 // Note that we first attempt to perform an implicit cast on the value and
384 // only fall back to the polymorphic Eq() matcher afterwards because the
385 // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
386 // which might be undefined even when Rhs is implicitly convertible to Lhs
387 // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
388 //
389 // We don't define this method inline as we need the declaration of Eq().
390 static Matcher<T> CastImpl(const M& value,
391 std::false_type /* convertible_to_matcher */,
392 std::false_type /* convertible_to_T */);
393};
394
395// This more specialized version is used when MatcherCast()'s argument
396// is already a Matcher. This only compiles when type T can be
397// statically converted to type U.
398template <typename T, typename U>
399class MatcherCastImpl<T, Matcher<U> > {
400 public:
401 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
402 return Matcher<T>(new Impl(source_matcher));
403 }
404
405 private:
406 class Impl : public MatcherInterface<T> {
407 public:
408 explicit Impl(const Matcher<U>& source_matcher)
409 : source_matcher_(source_matcher) {}
410
411 // We delegate the matching logic to the source matcher.
412 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
413 using FromType = typename std::remove_cv<typename std::remove_pointer<
414 typename std::remove_reference<T>::type>::type>::type;
415 using ToType = typename std::remove_cv<typename std::remove_pointer<
416 typename std::remove_reference<U>::type>::type>::type;
417 // Do not allow implicitly converting base*/& to derived*/&.
418 static_assert(
419 // Do not trigger if only one of them is a pointer. That implies a
420 // regular conversion and not a down_cast.
421 (std::is_pointer<typename std::remove_reference<T>::type>::value !=
422 std::is_pointer<typename std::remove_reference<U>::type>::value) ||
423 std::is_same<FromType, ToType>::value ||
424 !std::is_base_of<FromType, ToType>::value,
425 "Can't implicitly convert from <base> to <derived>");
426
427 // Do the cast to `U` explicitly if necessary.
428 // Otherwise, let implicit conversions do the trick.
429 using CastType =
430 typename std::conditional<std::is_convertible<T&, const U&>::value,
431 T&, U>::type;
432
433 return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
434 listener);
435 }
436
437 void DescribeTo(::std::ostream* os) const override {
438 source_matcher_.DescribeTo(os);
439 }
440
441 void DescribeNegationTo(::std::ostream* os) const override {
442 source_matcher_.DescribeNegationTo(os);
443 }
444
445 private:
446 const Matcher<U> source_matcher_;
447 };
448};
449
450// This even more specialized version is used for efficiently casting
451// a matcher to its own type.
452template <typename T>
453class MatcherCastImpl<T, Matcher<T> > {
454 public:
455 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
456};
457
458// Template specialization for parameterless Matcher.
459template <typename Derived>
460class MatcherBaseImpl {
461 public:
462 MatcherBaseImpl() = default;
463
464 template <typename T>
465 operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
466 return ::testing::Matcher<T>(new
467 typename Derived::template gmock_Impl<T>());
468 }
469};
470
471// Template specialization for Matcher with parameters.
472template <template <typename...> class Derived, typename... Ts>
473class MatcherBaseImpl<Derived<Ts...>> {
474 public:
475 // Mark the constructor explicit for single argument T to avoid implicit
476 // conversions.
477 template <typename E = std::enable_if<sizeof...(Ts) == 1>,
478 typename E::type* = nullptr>
479 explicit MatcherBaseImpl(Ts... params)
480 : params_(std::forward<Ts>(params)...) {}
481 template <typename E = std::enable_if<sizeof...(Ts) != 1>,
482 typename = typename E::type>
483 MatcherBaseImpl(Ts... params) // NOLINT
484 : params_(std::forward<Ts>(params)...) {}
485
486 template <typename F>
487 operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
488 return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
489 }
490
491 private:
492 template <typename F, std::size_t... tuple_ids>
493 ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
494 return ::testing::Matcher<F>(
495 new typename Derived<Ts...>::template gmock_Impl<F>(
496 std::get<tuple_ids>(params_)...));
497 }
498
499 const std::tuple<Ts...> params_;
500};
501
502} // namespace internal
503
504// In order to be safe and clear, casting between different matcher
505// types is done explicitly via MatcherCast<T>(m), which takes a
506// matcher m and returns a Matcher<T>. It compiles only when T can be
507// statically converted to the argument type of m.
508template <typename T, typename M>
509inline Matcher<T> MatcherCast(const M& matcher) {
510 return internal::MatcherCastImpl<T, M>::Cast(matcher);
511}
512
513// This overload handles polymorphic matchers and values only since
514// monomorphic matchers are handled by the next one.
515template <typename T, typename M>
516inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
517 return MatcherCast<T>(polymorphic_matcher_or_value);
518}
519
520// This overload handles monomorphic matchers.
521//
522// In general, if type T can be implicitly converted to type U, we can
523// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
524// contravariant): just keep a copy of the original Matcher<U>, convert the
525// argument from type T to U, and then pass it to the underlying Matcher<U>.
526// The only exception is when U is a reference and T is not, as the
527// underlying Matcher<U> may be interested in the argument's address, which
528// is not preserved in the conversion from T to U.
529template <typename T, typename U>
530inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
531 // Enforce that T can be implicitly converted to U.
532 static_assert(std::is_convertible<const T&, const U&>::value,
533 "T must be implicitly convertible to U");
534 // Enforce that we are not converting a non-reference type T to a reference
535 // type U.
536 GTEST_COMPILE_ASSERT_(
537 std::is_reference<T>::value || !std::is_reference<U>::value,
538 cannot_convert_non_reference_arg_to_reference);
539 // In case both T and U are arithmetic types, enforce that the
540 // conversion is not lossy.
541 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
542 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
543 constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
544 constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
545 GTEST_COMPILE_ASSERT_(
546 kTIsOther || kUIsOther ||
547 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
548 conversion_of_arithmetic_types_must_be_lossless);
549 return MatcherCast<T>(matcher);
550}
551
552// A<T>() returns a matcher that matches any value of type T.
553template <typename T>
554Matcher<T> A();
555
556// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
557// and MUST NOT BE USED IN USER CODE!!!
558namespace internal {
559
560// If the explanation is not empty, prints it to the ostream.
561inline void PrintIfNotEmpty(const std::string& explanation,
562 ::std::ostream* os) {
563 if (explanation != "" && os != nullptr) {
564 *os << ", " << explanation;
565 }
566}
567
568// Returns true if the given type name is easy to read by a human.
569// This is used to decide whether printing the type of a value might
570// be helpful.
571inline bool IsReadableTypeName(const std::string& type_name) {
572 // We consider a type name readable if it's short or doesn't contain
573 // a template or function type.
574 return (type_name.length() <= 20 ||
575 type_name.find_first_of("<(") == std::string::npos);
576}
577
578// Matches the value against the given matcher, prints the value and explains
579// the match result to the listener. Returns the match result.
580// 'listener' must not be NULL.
581// Value cannot be passed by const reference, because some matchers take a
582// non-const argument.
583template <typename Value, typename T>
584bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
585 MatchResultListener* listener) {
586 if (!listener->IsInterested()) {
587 // If the listener is not interested, we do not need to construct the
588 // inner explanation.
589 return matcher.Matches(value);
590 }
591
592 StringMatchResultListener inner_listener;
593 const bool match = matcher.MatchAndExplain(value, &inner_listener);
594
595 UniversalPrint(value, listener->stream());
596#if GTEST_HAS_RTTI
597 const std::string& type_name = GetTypeName<Value>();
598 if (IsReadableTypeName(type_name))
599 *listener->stream() << " (of type " << type_name << ")";
600#endif
601 PrintIfNotEmpty(inner_listener.str(), listener->stream());
602
603 return match;
604}
605
606// An internal helper class for doing compile-time loop on a tuple's
607// fields.
608template <size_t N>
609class TuplePrefix {
610 public:
611 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
612 // if and only if the first N fields of matcher_tuple matches
613 // the first N fields of value_tuple, respectively.
614 template <typename MatcherTuple, typename ValueTuple>
615 static bool Matches(const MatcherTuple& matcher_tuple,
616 const ValueTuple& value_tuple) {
617 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
618 std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
619 }
620
621 // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
622 // describes failures in matching the first N fields of matchers
623 // against the first N fields of values. If there is no failure,
624 // nothing will be streamed to os.
625 template <typename MatcherTuple, typename ValueTuple>
626 static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
627 const ValueTuple& values,
628 ::std::ostream* os) {
629 // First, describes failures in the first N - 1 fields.
630 TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
631
632 // Then describes the failure (if any) in the (N - 1)-th (0-based)
633 // field.
634 typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
635 std::get<N - 1>(matchers);
636 typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
637 const Value& value = std::get<N - 1>(values);
638 StringMatchResultListener listener;
639 if (!matcher.MatchAndExplain(value, &listener)) {
640 *os << " Expected arg #" << N - 1 << ": ";
641 std::get<N - 1>(matchers).DescribeTo(os);
642 *os << "\n Actual: ";
643 // We remove the reference in type Value to prevent the
644 // universal printer from printing the address of value, which
645 // isn't interesting to the user most of the time. The
646 // matcher's MatchAndExplain() method handles the case when
647 // the address is interesting.
648 internal::UniversalPrint(value, os);
649 PrintIfNotEmpty(listener.str(), os);
650 *os << "\n";
651 }
652 }
653};
654
655// The base case.
656template <>
657class TuplePrefix<0> {
658 public:
659 template <typename MatcherTuple, typename ValueTuple>
660 static bool Matches(const MatcherTuple& /* matcher_tuple */,
661 const ValueTuple& /* value_tuple */) {
662 return true;
663 }
664
665 template <typename MatcherTuple, typename ValueTuple>
666 static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
667 const ValueTuple& /* values */,
668 ::std::ostream* /* os */) {}
669};
670
671// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
672// all matchers in matcher_tuple match the corresponding fields in
673// value_tuple. It is a compiler error if matcher_tuple and
674// value_tuple have different number of fields or incompatible field
675// types.
676template <typename MatcherTuple, typename ValueTuple>
677bool TupleMatches(const MatcherTuple& matcher_tuple,
678 const ValueTuple& value_tuple) {
679 // Makes sure that matcher_tuple and value_tuple have the same
680 // number of fields.
681 GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
682 std::tuple_size<ValueTuple>::value,
683 matcher_and_value_have_different_numbers_of_fields);
684 return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
685 value_tuple);
686}
687
688// Describes failures in matching matchers against values. If there
689// is no failure, nothing will be streamed to os.
690template <typename MatcherTuple, typename ValueTuple>
691void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
692 const ValueTuple& values,
693 ::std::ostream* os) {
694 TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
695 matchers, values, os);
696}
697
698// TransformTupleValues and its helper.
699//
700// TransformTupleValuesHelper hides the internal machinery that
701// TransformTupleValues uses to implement a tuple traversal.
702template <typename Tuple, typename Func, typename OutIter>
703class TransformTupleValuesHelper {
704 private:
705 typedef ::std::tuple_size<Tuple> TupleSize;
706
707 public:
708 // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
709 // Returns the final value of 'out' in case the caller needs it.
710 static OutIter Run(Func f, const Tuple& t, OutIter out) {
711 return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
712 }
713
714 private:
715 template <typename Tup, size_t kRemainingSize>
716 struct IterateOverTuple {
717 OutIter operator() (Func f, const Tup& t, OutIter out) const {
718 *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
719 return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
720 }
721 };
722 template <typename Tup>
723 struct IterateOverTuple<Tup, 0> {
724 OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
725 return out;
726 }
727 };
728};
729
730// Successively invokes 'f(element)' on each element of the tuple 't',
731// appending each result to the 'out' iterator. Returns the final value
732// of 'out'.
733template <typename Tuple, typename Func, typename OutIter>
734OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
735 return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
736}
737
738// Implements _, a matcher that matches any value of any
739// type. This is a polymorphic matcher, so we need a template type
740// conversion operator to make it appearing as a Matcher<T> for any
741// type T.
742class AnythingMatcher {
743 public:
744 using is_gtest_matcher = void;
745
746 template <typename T>
747 bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
748 return true;
749 }
750 void DescribeTo(std::ostream* os) const { *os << "is anything"; }
751 void DescribeNegationTo(::std::ostream* os) const {
752 // This is mostly for completeness' sake, as it's not very useful
753 // to write Not(A<bool>()). However we cannot completely rule out
754 // such a possibility, and it doesn't hurt to be prepared.
755 *os << "never matches";
756 }
757};
758
759// Implements the polymorphic IsNull() matcher, which matches any raw or smart
760// pointer that is NULL.
761class IsNullMatcher {
762 public:
763 template <typename Pointer>
764 bool MatchAndExplain(const Pointer& p,
765 MatchResultListener* /* listener */) const {
766 return p == nullptr;
767 }
768
769 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
770 void DescribeNegationTo(::std::ostream* os) const {
771 *os << "isn't NULL";
772 }
773};
774
775// Implements the polymorphic NotNull() matcher, which matches any raw or smart
776// pointer that is not NULL.
777class NotNullMatcher {
778 public:
779 template <typename Pointer>
780 bool MatchAndExplain(const Pointer& p,
781 MatchResultListener* /* listener */) const {
782 return p != nullptr;
783 }
784
785 void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
786 void DescribeNegationTo(::std::ostream* os) const {
787 *os << "is NULL";
788 }
789};
790
791// Ref(variable) matches any argument that is a reference to
792// 'variable'. This matcher is polymorphic as it can match any
793// super type of the type of 'variable'.
794//
795// The RefMatcher template class implements Ref(variable). It can
796// only be instantiated with a reference type. This prevents a user
797// from mistakenly using Ref(x) to match a non-reference function
798// argument. For example, the following will righteously cause a
799// compiler error:
800//
801// int n;
802// Matcher<int> m1 = Ref(n); // This won't compile.
803// Matcher<int&> m2 = Ref(n); // This will compile.
804template <typename T>
805class RefMatcher;
806
807template <typename T>
808class RefMatcher<T&> {
809 // Google Mock is a generic framework and thus needs to support
810 // mocking any function types, including those that take non-const
811 // reference arguments. Therefore the template parameter T (and
812 // Super below) can be instantiated to either a const type or a
813 // non-const type.
814 public:
815 // RefMatcher() takes a T& instead of const T&, as we want the
816 // compiler to catch using Ref(const_value) as a matcher for a
817 // non-const reference.
818 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
819
820 template <typename Super>
821 operator Matcher<Super&>() const {
822 // By passing object_ (type T&) to Impl(), which expects a Super&,
823 // we make sure that Super is a super type of T. In particular,
824 // this catches using Ref(const_value) as a matcher for a
825 // non-const reference, as you cannot implicitly convert a const
826 // reference to a non-const reference.
827 return MakeMatcher(new Impl<Super>(object_));
828 }
829
830 private:
831 template <typename Super>
832 class Impl : public MatcherInterface<Super&> {
833 public:
834 explicit Impl(Super& x) : object_(x) {} // NOLINT
835
836 // MatchAndExplain() takes a Super& (as opposed to const Super&)
837 // in order to match the interface MatcherInterface<Super&>.
838 bool MatchAndExplain(Super& x,
839 MatchResultListener* listener) const override {
840 *listener << "which is located @" << static_cast<const void*>(&x);
841 return &x == &object_;
842 }
843
844 void DescribeTo(::std::ostream* os) const override {
845 *os << "references the variable ";
846 UniversalPrinter<Super&>::Print(object_, os);
847 }
848
849 void DescribeNegationTo(::std::ostream* os) const override {
850 *os << "does not reference the variable ";
851 UniversalPrinter<Super&>::Print(object_, os);
852 }
853
854 private:
855 const Super& object_;
856 };
857
858 T& object_;
859};
860
861// Polymorphic helper functions for narrow and wide string matchers.
862inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
863 return String::CaseInsensitiveCStringEquals(lhs, rhs);
864}
865
866inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
867 const wchar_t* rhs) {
868 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
869}
870
871// String comparison for narrow or wide strings that can have embedded NUL
872// characters.
873template <typename StringType>
874bool CaseInsensitiveStringEquals(const StringType& s1,
875 const StringType& s2) {
876 // Are the heads equal?
877 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
878 return false;
879 }
880
881 // Skip the equal heads.
882 const typename StringType::value_type nul = 0;
883 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
884
885 // Are we at the end of either s1 or s2?
886 if (i1 == StringType::npos || i2 == StringType::npos) {
887 return i1 == i2;
888 }
889
890 // Are the tails equal?
891 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
892}
893
894// String matchers.
895
896// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
897template <typename StringType>
898class StrEqualityMatcher {
899 public:
900 StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
901 : string_(std::move(str)),
902 expect_eq_(expect_eq),
903 case_sensitive_(case_sensitive) {}
904
905#if GTEST_INTERNAL_HAS_STRING_VIEW
906 bool MatchAndExplain(const internal::StringView& s,
907 MatchResultListener* listener) const {
908 // This should fail to compile if StringView is used with wide
909 // strings.
910 const StringType& str = std::string(s);
911 return MatchAndExplain(str, listener);
912 }
913#endif // GTEST_INTERNAL_HAS_STRING_VIEW
914
915 // Accepts pointer types, particularly:
916 // const char*
917 // char*
918 // const wchar_t*
919 // wchar_t*
920 template <typename CharType>
921 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
922 if (s == nullptr) {
923 return !expect_eq_;
924 }
925 return MatchAndExplain(StringType(s), listener);
926 }
927
928 // Matches anything that can convert to StringType.
929 //
930 // This is a template, not just a plain function with const StringType&,
931 // because StringView has some interfering non-explicit constructors.
932 template <typename MatcheeStringType>
933 bool MatchAndExplain(const MatcheeStringType& s,
934 MatchResultListener* /* listener */) const {
935 const StringType s2(s);
936 const bool eq = case_sensitive_ ? s2 == string_ :
937 CaseInsensitiveStringEquals(s2, string_);
938 return expect_eq_ == eq;
939 }
940
941 void DescribeTo(::std::ostream* os) const {
942 DescribeToHelper(expect_eq_, os);
943 }
944
945 void DescribeNegationTo(::std::ostream* os) const {
946 DescribeToHelper(!expect_eq_, os);
947 }
948
949 private:
950 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
951 *os << (expect_eq ? "is " : "isn't ");
952 *os << "equal to ";
953 if (!case_sensitive_) {
954 *os << "(ignoring case) ";
955 }
956 UniversalPrint(string_, os);
957 }
958
959 const StringType string_;
960 const bool expect_eq_;
961 const bool case_sensitive_;
962};
963
964// Implements the polymorphic HasSubstr(substring) matcher, which
965// can be used as a Matcher<T> as long as T can be converted to a
966// string.
967template <typename StringType>
968class HasSubstrMatcher {
969 public:
970 explicit HasSubstrMatcher(const StringType& substring)
971 : substring_(substring) {}
972
973#if GTEST_INTERNAL_HAS_STRING_VIEW
974 bool MatchAndExplain(const internal::StringView& s,
975 MatchResultListener* listener) const {
976 // This should fail to compile if StringView is used with wide
977 // strings.
978 const StringType& str = std::string(s);
979 return MatchAndExplain(str, listener);
980 }
981#endif // GTEST_INTERNAL_HAS_STRING_VIEW
982
983 // Accepts pointer types, particularly:
984 // const char*
985 // char*
986 // const wchar_t*
987 // wchar_t*
988 template <typename CharType>
989 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
990 return s != nullptr && MatchAndExplain(StringType(s), listener);
991 }
992
993 // Matches anything that can convert to StringType.
994 //
995 // This is a template, not just a plain function with const StringType&,
996 // because StringView has some interfering non-explicit constructors.
997 template <typename MatcheeStringType>
998 bool MatchAndExplain(const MatcheeStringType& s,
999 MatchResultListener* /* listener */) const {
1000 return StringType(s).find(substring_) != StringType::npos;
1001 }
1002
1003 // Describes what this matcher matches.
1004 void DescribeTo(::std::ostream* os) const {
1005 *os << "has substring ";
1006 UniversalPrint(substring_, os);
1007 }
1008
1009 void DescribeNegationTo(::std::ostream* os) const {
1010 *os << "has no substring ";
1011 UniversalPrint(substring_, os);
1012 }
1013
1014 private:
1015 const StringType substring_;
1016};
1017
1018// Implements the polymorphic StartsWith(substring) matcher, which
1019// can be used as a Matcher<T> as long as T can be converted to a
1020// string.
1021template <typename StringType>
1022class StartsWithMatcher {
1023 public:
1024 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
1025 }
1026
1027#if GTEST_INTERNAL_HAS_STRING_VIEW
1028 bool MatchAndExplain(const internal::StringView& s,
1029 MatchResultListener* listener) const {
1030 // This should fail to compile if StringView is used with wide
1031 // strings.
1032 const StringType& str = std::string(s);
1033 return MatchAndExplain(str, listener);
1034 }
1035#endif // GTEST_INTERNAL_HAS_STRING_VIEW
1036
1037 // Accepts pointer types, particularly:
1038 // const char*
1039 // char*
1040 // const wchar_t*
1041 // wchar_t*
1042 template <typename CharType>
1043 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1044 return s != nullptr && MatchAndExplain(StringType(s), listener);
1045 }
1046
1047 // Matches anything that can convert to StringType.
1048 //
1049 // This is a template, not just a plain function with const StringType&,
1050 // because StringView has some interfering non-explicit constructors.
1051 template <typename MatcheeStringType>
1052 bool MatchAndExplain(const MatcheeStringType& s,
1053 MatchResultListener* /* listener */) const {
1054 const StringType& s2(s);
1055 return s2.length() >= prefix_.length() &&
1056 s2.substr(0, prefix_.length()) == prefix_;
1057 }
1058
1059 void DescribeTo(::std::ostream* os) const {
1060 *os << "starts with ";
1061 UniversalPrint(prefix_, os);
1062 }
1063
1064 void DescribeNegationTo(::std::ostream* os) const {
1065 *os << "doesn't start with ";
1066 UniversalPrint(prefix_, os);
1067 }
1068
1069 private:
1070 const StringType prefix_;
1071};
1072
1073// Implements the polymorphic EndsWith(substring) matcher, which
1074// can be used as a Matcher<T> as long as T can be converted to a
1075// string.
1076template <typename StringType>
1077class EndsWithMatcher {
1078 public:
1079 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1080
1081#if GTEST_INTERNAL_HAS_STRING_VIEW
1082 bool MatchAndExplain(const internal::StringView& s,
1083 MatchResultListener* listener) const {
1084 // This should fail to compile if StringView is used with wide
1085 // strings.
1086 const StringType& str = std::string(s);
1087 return MatchAndExplain(str, listener);
1088 }
1089#endif // GTEST_INTERNAL_HAS_STRING_VIEW
1090
1091 // Accepts pointer types, particularly:
1092 // const char*
1093 // char*
1094 // const wchar_t*
1095 // wchar_t*
1096 template <typename CharType>
1097 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1098 return s != nullptr && MatchAndExplain(StringType(s), listener);
1099 }
1100
1101 // Matches anything that can convert to StringType.
1102 //
1103 // This is a template, not just a plain function with const StringType&,
1104 // because StringView has some interfering non-explicit constructors.
1105 template <typename MatcheeStringType>
1106 bool MatchAndExplain(const MatcheeStringType& s,
1107 MatchResultListener* /* listener */) const {
1108 const StringType& s2(s);
1109 return s2.length() >= suffix_.length() &&
1110 s2.substr(s2.length() - suffix_.length()) == suffix_;
1111 }
1112
1113 void DescribeTo(::std::ostream* os) const {
1114 *os << "ends with ";
1115 UniversalPrint(suffix_, os);
1116 }
1117
1118 void DescribeNegationTo(::std::ostream* os) const {
1119 *os << "doesn't end with ";
1120 UniversalPrint(suffix_, os);
1121 }
1122
1123 private:
1124 const StringType suffix_;
1125};
1126
1127// Implements a matcher that compares the two fields of a 2-tuple
1128// using one of the ==, <=, <, etc, operators. The two fields being
1129// compared don't have to have the same type.
1130//
1131// The matcher defined here is polymorphic (for example, Eq() can be
1132// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1133// etc). Therefore we use a template type conversion operator in the
1134// implementation.
1135template <typename D, typename Op>
1136class PairMatchBase {
1137 public:
1138 template <typename T1, typename T2>
1139 operator Matcher<::std::tuple<T1, T2>>() const {
1140 return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1141 }
1142 template <typename T1, typename T2>
1143 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1144 return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1145 }
1146
1147 private:
1148 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1149 return os << D::Desc();
1150 }
1151
1152 template <typename Tuple>
1153 class Impl : public MatcherInterface<Tuple> {
1154 public:
1155 bool MatchAndExplain(Tuple args,
1156 MatchResultListener* /* listener */) const override {
1157 return Op()(::std::get<0>(args), ::std::get<1>(args));
1158 }
1159 void DescribeTo(::std::ostream* os) const override {
1160 *os << "are " << GetDesc;
1161 }
1162 void DescribeNegationTo(::std::ostream* os) const override {
1163 *os << "aren't " << GetDesc;
1164 }
1165 };
1166};
1167
1168class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
1169 public:
1170 static const char* Desc() { return "an equal pair"; }
1171};
1172class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
1173 public:
1174 static const char* Desc() { return "an unequal pair"; }
1175};
1176class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
1177 public:
1178 static const char* Desc() { return "a pair where the first < the second"; }
1179};
1180class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
1181 public:
1182 static const char* Desc() { return "a pair where the first > the second"; }
1183};
1184class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
1185 public:
1186 static const char* Desc() { return "a pair where the first <= the second"; }
1187};
1188class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
1189 public:
1190 static const char* Desc() { return "a pair where the first >= the second"; }
1191};
1192
1193// Implements the Not(...) matcher for a particular argument type T.
1194// We do not nest it inside the NotMatcher class template, as that
1195// will prevent different instantiations of NotMatcher from sharing
1196// the same NotMatcherImpl<T> class.
1197template <typename T>
1198class NotMatcherImpl : public MatcherInterface<const T&> {
1199 public:
1200 explicit NotMatcherImpl(const Matcher<T>& matcher)
1201 : matcher_(matcher) {}
1202
1203 bool MatchAndExplain(const T& x,
1204 MatchResultListener* listener) const override {
1205 return !matcher_.MatchAndExplain(x, listener);
1206 }
1207
1208 void DescribeTo(::std::ostream* os) const override {
1209 matcher_.DescribeNegationTo(os);
1210 }
1211
1212 void DescribeNegationTo(::std::ostream* os) const override {
1213 matcher_.DescribeTo(os);
1214 }
1215
1216 private:
1217 const Matcher<T> matcher_;
1218};
1219
1220// Implements the Not(m) matcher, which matches a value that doesn't
1221// match matcher m.
1222template <typename InnerMatcher>
1223class NotMatcher {
1224 public:
1225 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1226
1227 // This template type conversion operator allows Not(m) to be used
1228 // to match any type m can match.
1229 template <typename T>
1230 operator Matcher<T>() const {
1231 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1232 }
1233
1234 private:
1235 InnerMatcher matcher_;
1236};
1237
1238// Implements the AllOf(m1, m2) matcher for a particular argument type
1239// T. We do not nest it inside the BothOfMatcher class template, as
1240// that will prevent different instantiations of BothOfMatcher from
1241// sharing the same BothOfMatcherImpl<T> class.
1242template <typename T>
1243class AllOfMatcherImpl : public MatcherInterface<const T&> {
1244 public:
1245 explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
1246 : matchers_(std::move(matchers)) {}
1247
1248 void DescribeTo(::std::ostream* os) const override {
1249 *os << "(";
1250 for (size_t i = 0; i < matchers_.size(); ++i) {
1251 if (i != 0) *os << ") and (";
1252 matchers_[i].DescribeTo(os);
1253 }
1254 *os << ")";
1255 }
1256
1257 void DescribeNegationTo(::std::ostream* os) const override {
1258 *os << "(";
1259 for (size_t i = 0; i < matchers_.size(); ++i) {
1260 if (i != 0) *os << ") or (";
1261 matchers_[i].DescribeNegationTo(os);
1262 }
1263 *os << ")";
1264 }
1265
1266 bool MatchAndExplain(const T& x,
1267 MatchResultListener* listener) const override {
1268 // If either matcher1_ or matcher2_ doesn't match x, we only need
1269 // to explain why one of them fails.
1270 std::string all_match_result;
1271
1272 for (size_t i = 0; i < matchers_.size(); ++i) {
1273 StringMatchResultListener slistener;
1274 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1275 if (all_match_result.empty()) {
1276 all_match_result = slistener.str();
1277 } else {
1278 std::string result = slistener.str();
1279 if (!result.empty()) {
1280 all_match_result += ", and ";
1281 all_match_result += result;
1282 }
1283 }
1284 } else {
1285 *listener << slistener.str();
1286 return false;
1287 }
1288 }
1289
1290 // Otherwise we need to explain why *both* of them match.
1291 *listener << all_match_result;
1292 return true;
1293 }
1294
1295 private:
1296 const std::vector<Matcher<T> > matchers_;
1297};
1298
1299// VariadicMatcher is used for the variadic implementation of
1300// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1301// CombiningMatcher<T> is used to recursively combine the provided matchers
1302// (of type Args...).
1303template <template <typename T> class CombiningMatcher, typename... Args>
1304class VariadicMatcher {
1305 public:
1306 VariadicMatcher(const Args&... matchers) // NOLINT
1307 : matchers_(matchers...) {
1308 static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1309 }
1310
1311 VariadicMatcher(const VariadicMatcher&) = default;
1312 VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1313
1314 // This template type conversion operator allows an
1315 // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1316 // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1317 template <typename T>
1318 operator Matcher<T>() const {
1319 std::vector<Matcher<T> > values;
1320 CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1321 return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1322 }
1323
1324 private:
1325 template <typename T, size_t I>
1326 void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
1327 std::integral_constant<size_t, I>) const {
1328 values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1329 CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1330 }
1331
1332 template <typename T>
1333 void CreateVariadicMatcher(
1334 std::vector<Matcher<T> >*,
1335 std::integral_constant<size_t, sizeof...(Args)>) const {}
1336
1337 std::tuple<Args...> matchers_;
1338};
1339
1340template <typename... Args>
1341using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1342
1343// Implements the AnyOf(m1, m2) matcher for a particular argument type
1344// T. We do not nest it inside the AnyOfMatcher class template, as
1345// that will prevent different instantiations of AnyOfMatcher from
1346// sharing the same EitherOfMatcherImpl<T> class.
1347template <typename T>
1348class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1349 public:
1350 explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
1351 : matchers_(std::move(matchers)) {}
1352
1353 void DescribeTo(::std::ostream* os) const override {
1354 *os << "(";
1355 for (size_t i = 0; i < matchers_.size(); ++i) {
1356 if (i != 0) *os << ") or (";
1357 matchers_[i].DescribeTo(os);
1358 }
1359 *os << ")";
1360 }
1361
1362 void DescribeNegationTo(::std::ostream* os) const override {
1363 *os << "(";
1364 for (size_t i = 0; i < matchers_.size(); ++i) {
1365 if (i != 0) *os << ") and (";
1366 matchers_[i].DescribeNegationTo(os);
1367 }
1368 *os << ")";
1369 }
1370
1371 bool MatchAndExplain(const T& x,
1372 MatchResultListener* listener) const override {
1373 std::string no_match_result;
1374
1375 // If either matcher1_ or matcher2_ matches x, we just need to
1376 // explain why *one* of them matches.
1377 for (size_t i = 0; i < matchers_.size(); ++i) {
1378 StringMatchResultListener slistener;
1379 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1380 *listener << slistener.str();
1381 return true;
1382 } else {
1383 if (no_match_result.empty()) {
1384 no_match_result = slistener.str();
1385 } else {
1386 std::string result = slistener.str();
1387 if (!result.empty()) {
1388 no_match_result += ", and ";
1389 no_match_result += result;
1390 }
1391 }
1392 }
1393 }
1394
1395 // Otherwise we need to explain why *both* of them fail.
1396 *listener << no_match_result;
1397 return false;
1398 }
1399
1400 private:
1401 const std::vector<Matcher<T> > matchers_;
1402};
1403
1404// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1405template <typename... Args>
1406using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1407
1408// Wrapper for implementation of Any/AllOfArray().
1409template <template <class> class MatcherImpl, typename T>
1410class SomeOfArrayMatcher {
1411 public:
1412 // Constructs the matcher from a sequence of element values or
1413 // element matchers.
1414 template <typename Iter>
1415 SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1416
1417 template <typename U>
1418 operator Matcher<U>() const { // NOLINT
1419 using RawU = typename std::decay<U>::type;
1420 std::vector<Matcher<RawU>> matchers;
1421 for (const auto& matcher : matchers_) {
1422 matchers.push_back(MatcherCast<RawU>(matcher));
1423 }
1424 return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1425 }
1426
1427 private:
1428 const ::std::vector<T> matchers_;
1429};
1430
1431template <typename T>
1432using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1433
1434template <typename T>
1435using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1436
1437// Used for implementing Truly(pred), which turns a predicate into a
1438// matcher.
1439template <typename Predicate>
1440class TrulyMatcher {
1441 public:
1442 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1443
1444 // This method template allows Truly(pred) to be used as a matcher
1445 // for type T where T is the argument type of predicate 'pred'. The
1446 // argument is passed by reference as the predicate may be
1447 // interested in the address of the argument.
1448 template <typename T>
1449 bool MatchAndExplain(T& x, // NOLINT
1450 MatchResultListener* listener) const {
1451 // Without the if-statement, MSVC sometimes warns about converting
1452 // a value to bool (warning 4800).
1453 //
1454 // We cannot write 'return !!predicate_(x);' as that doesn't work
1455 // when predicate_(x) returns a class convertible to bool but
1456 // having no operator!().
1457 if (predicate_(x))
1458 return true;
1459 *listener << "didn't satisfy the given predicate";
1460 return false;
1461 }
1462
1463 void DescribeTo(::std::ostream* os) const {
1464 *os << "satisfies the given predicate";
1465 }
1466
1467 void DescribeNegationTo(::std::ostream* os) const {
1468 *os << "doesn't satisfy the given predicate";
1469 }
1470
1471 private:
1472 Predicate predicate_;
1473};
1474
1475// Used for implementing Matches(matcher), which turns a matcher into
1476// a predicate.
1477template <typename M>
1478class MatcherAsPredicate {
1479 public:
1480 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1481
1482 // This template operator() allows Matches(m) to be used as a
1483 // predicate on type T where m is a matcher on type T.
1484 //
1485 // The argument x is passed by reference instead of by value, as
1486 // some matcher may be interested in its address (e.g. as in
1487 // Matches(Ref(n))(x)).
1488 template <typename T>
1489 bool operator()(const T& x) const {
1490 // We let matcher_ commit to a particular type here instead of
1491 // when the MatcherAsPredicate object was constructed. This
1492 // allows us to write Matches(m) where m is a polymorphic matcher
1493 // (e.g. Eq(5)).
1494 //
1495 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1496 // compile when matcher_ has type Matcher<const T&>; if we write
1497 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1498 // when matcher_ has type Matcher<T>; if we just write
1499 // matcher_.Matches(x), it won't compile when matcher_ is
1500 // polymorphic, e.g. Eq(5).
1501 //
1502 // MatcherCast<const T&>() is necessary for making the code work
1503 // in all of the above situations.
1504 return MatcherCast<const T&>(matcher_).Matches(x);
1505 }
1506
1507 private:
1508 M matcher_;
1509};
1510
1511// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1512// argument M must be a type that can be converted to a matcher.
1513template <typename M>
1514class PredicateFormatterFromMatcher {
1515 public:
1516 explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1517
1518 // This template () operator allows a PredicateFormatterFromMatcher
1519 // object to act as a predicate-formatter suitable for using with
1520 // Google Test's EXPECT_PRED_FORMAT1() macro.
1521 template <typename T>
1522 AssertionResult operator()(const char* value_text, const T& x) const {
1523 // We convert matcher_ to a Matcher<const T&> *now* instead of
1524 // when the PredicateFormatterFromMatcher object was constructed,
1525 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1526 // know which type to instantiate it to until we actually see the
1527 // type of x here.
1528 //
1529 // We write SafeMatcherCast<const T&>(matcher_) instead of
1530 // Matcher<const T&>(matcher_), as the latter won't compile when
1531 // matcher_ has type Matcher<T> (e.g. An<int>()).
1532 // We don't write MatcherCast<const T&> either, as that allows
1533 // potentially unsafe downcasting of the matcher argument.
1534 const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1535
1536 // The expected path here is that the matcher should match (i.e. that most
1537 // tests pass) so optimize for this case.
1538 if (matcher.Matches(x)) {
1539 return AssertionSuccess();
1540 }
1541
1542 ::std::stringstream ss;
1543 ss << "Value of: " << value_text << "\n"
1544 << "Expected: ";
1545 matcher.DescribeTo(&ss);
1546
1547 // Rerun the matcher to "PrintAndExplain" the failure.
1548 StringMatchResultListener listener;
1549 if (MatchPrintAndExplain(x, matcher, &listener)) {
1550 ss << "\n The matcher failed on the initial attempt; but passed when "
1551 "rerun to generate the explanation.";
1552 }
1553 ss << "\n Actual: " << listener.str();
1554 return AssertionFailure() << ss.str();
1555 }
1556
1557 private:
1558 const M matcher_;
1559};
1560
1561// A helper function for converting a matcher to a predicate-formatter
1562// without the user needing to explicitly write the type. This is
1563// used for implementing ASSERT_THAT() and EXPECT_THAT().
1564// Implementation detail: 'matcher' is received by-value to force decaying.
1565template <typename M>
1566inline PredicateFormatterFromMatcher<M>
1567MakePredicateFormatterFromMatcher(M matcher) {
1568 return PredicateFormatterFromMatcher<M>(std::move(matcher));
1569}
1570
1571// Implements the polymorphic IsNan() matcher, which matches any floating type
1572// value that is Nan.
1573class IsNanMatcher {
1574 public:
1575 template <typename FloatType>
1576 bool MatchAndExplain(const FloatType& f,
1577 MatchResultListener* /* listener */) const {
1578 return (::std::isnan)(f);
1579 }
1580
1581 void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1582 void DescribeNegationTo(::std::ostream* os) const {
1583 *os << "isn't NaN";
1584 }
1585};
1586
1587// Implements the polymorphic floating point equality matcher, which matches
1588// two float values using ULP-based approximation or, optionally, a
1589// user-specified epsilon. The template is meant to be instantiated with
1590// FloatType being either float or double.
1591template <typename FloatType>
1592class FloatingEqMatcher {
1593 public:
1594 // Constructor for FloatingEqMatcher.
1595 // The matcher's input will be compared with expected. The matcher treats two
1596 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1597 // equality comparisons between NANs will always return false. We specify a
1598 // negative max_abs_error_ term to indicate that ULP-based approximation will
1599 // be used for comparison.
1600 FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
1601 expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
1602 }
1603
1604 // Constructor that supports a user-specified max_abs_error that will be used
1605 // for comparison instead of ULP-based approximation. The max absolute
1606 // should be non-negative.
1607 FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1608 FloatType max_abs_error)
1609 : expected_(expected),
1610 nan_eq_nan_(nan_eq_nan),
1611 max_abs_error_(max_abs_error) {
1612 GTEST_CHECK_(max_abs_error >= 0)
1613 << ", where max_abs_error is" << max_abs_error;
1614 }
1615
1616 // Implements floating point equality matcher as a Matcher<T>.
1617 template <typename T>
1618 class Impl : public MatcherInterface<T> {
1619 public:
1620 Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1621 : expected_(expected),
1622 nan_eq_nan_(nan_eq_nan),
1623 max_abs_error_(max_abs_error) {}
1624
1625 bool MatchAndExplain(T value,
1626 MatchResultListener* listener) const override {
1627 const FloatingPoint<FloatType> actual(value), expected(expected_);
1628
1629 // Compares NaNs first, if nan_eq_nan_ is true.
1630 if (actual.is_nan() || expected.is_nan()) {
1631 if (actual.is_nan() && expected.is_nan()) {
1632 return nan_eq_nan_;
1633 }
1634 // One is nan; the other is not nan.
1635 return false;
1636 }
1637 if (HasMaxAbsError()) {
1638 // We perform an equality check so that inf will match inf, regardless
1639 // of error bounds. If the result of value - expected_ would result in
1640 // overflow or if either value is inf, the default result is infinity,
1641 // which should only match if max_abs_error_ is also infinity.
1642 if (value == expected_) {
1643 return true;
1644 }
1645
1646 const FloatType diff = value - expected_;
1647 if (::std::fabs(diff) <= max_abs_error_) {
1648 return true;
1649 }
1650
1651 if (listener->IsInterested()) {
1652 *listener << "which is " << diff << " from " << expected_;
1653 }
1654 return false;
1655 } else {
1656 return actual.AlmostEquals(expected);
1657 }
1658 }
1659
1660 void DescribeTo(::std::ostream* os) const override {
1661 // os->precision() returns the previously set precision, which we
1662 // store to restore the ostream to its original configuration
1663 // after outputting.
1664 const ::std::streamsize old_precision = os->precision(
1665 ::std::numeric_limits<FloatType>::digits10 + 2);
1666 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1667 if (nan_eq_nan_) {
1668 *os << "is NaN";
1669 } else {
1670 *os << "never matches";
1671 }
1672 } else {
1673 *os << "is approximately " << expected_;
1674 if (HasMaxAbsError()) {
1675 *os << " (absolute error <= " << max_abs_error_ << ")";
1676 }
1677 }
1678 os->precision(old_precision);
1679 }
1680
1681 void DescribeNegationTo(::std::ostream* os) const override {
1682 // As before, get original precision.
1683 const ::std::streamsize old_precision = os->precision(
1684 ::std::numeric_limits<FloatType>::digits10 + 2);
1685 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1686 if (nan_eq_nan_) {
1687 *os << "isn't NaN";
1688 } else {
1689 *os << "is anything";
1690 }
1691 } else {
1692 *os << "isn't approximately " << expected_;
1693 if (HasMaxAbsError()) {
1694 *os << " (absolute error > " << max_abs_error_ << ")";
1695 }
1696 }
1697 // Restore original precision.
1698 os->precision(old_precision);
1699 }
1700
1701 private:
1702 bool HasMaxAbsError() const {
1703 return max_abs_error_ >= 0;
1704 }
1705
1706 const FloatType expected_;
1707 const bool nan_eq_nan_;
1708 // max_abs_error will be used for value comparison when >= 0.
1709 const FloatType max_abs_error_;
1710 };
1711
1712 // The following 3 type conversion operators allow FloatEq(expected) and
1713 // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1714 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1715 operator Matcher<FloatType>() const {
1716 return MakeMatcher(
1717 new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1718 }
1719
1720 operator Matcher<const FloatType&>() const {
1721 return MakeMatcher(
1722 new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1723 }
1724
1725 operator Matcher<FloatType&>() const {
1726 return MakeMatcher(
1727 new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1728 }
1729
1730 private:
1731 const FloatType expected_;
1732 const bool nan_eq_nan_;
1733 // max_abs_error will be used for value comparison when >= 0.
1734 const FloatType max_abs_error_;
1735};
1736
1737// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1738// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1739// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1740// against y. The former implements "Eq", the latter "Near". At present, there
1741// is no version that compares NaNs as equal.
1742template <typename FloatType>
1743class FloatingEq2Matcher {
1744 public:
1745 FloatingEq2Matcher() { Init(-1, false); }
1746
1747 explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1748
1749 explicit FloatingEq2Matcher(FloatType max_abs_error) {
1750 Init(max_abs_error, false);
1751 }
1752
1753 FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1754 Init(max_abs_error, nan_eq_nan);
1755 }
1756
1757 template <typename T1, typename T2>
1758 operator Matcher<::std::tuple<T1, T2>>() const {
1759 return MakeMatcher(
1760 new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1761 }
1762 template <typename T1, typename T2>
1763 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1764 return MakeMatcher(
1765 new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1766 }
1767
1768 private:
1769 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1770 return os << "an almost-equal pair";
1771 }
1772
1773 template <typename Tuple>
1774 class Impl : public MatcherInterface<Tuple> {
1775 public:
1776 Impl(FloatType max_abs_error, bool nan_eq_nan) :
1777 max_abs_error_(max_abs_error),
1778 nan_eq_nan_(nan_eq_nan) {}
1779
1780 bool MatchAndExplain(Tuple args,
1781 MatchResultListener* listener) const override {
1782 if (max_abs_error_ == -1) {
1783 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1784 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1785 ::std::get<1>(args), listener);
1786 } else {
1787 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1788 max_abs_error_);
1789 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1790 ::std::get<1>(args), listener);
1791 }
1792 }
1793 void DescribeTo(::std::ostream* os) const override {
1794 *os << "are " << GetDesc;
1795 }
1796 void DescribeNegationTo(::std::ostream* os) const override {
1797 *os << "aren't " << GetDesc;
1798 }
1799
1800 private:
1801 FloatType max_abs_error_;
1802 const bool nan_eq_nan_;
1803 };
1804
1805 void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1806 max_abs_error_ = max_abs_error_val;
1807 nan_eq_nan_ = nan_eq_nan_val;
1808 }
1809 FloatType max_abs_error_;
1810 bool nan_eq_nan_;
1811};
1812
1813// Implements the Pointee(m) matcher for matching a pointer whose
1814// pointee matches matcher m. The pointer can be either raw or smart.
1815template <typename InnerMatcher>
1816class PointeeMatcher {
1817 public:
1818 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1819
1820 // This type conversion operator template allows Pointee(m) to be
1821 // used as a matcher for any pointer type whose pointee type is
1822 // compatible with the inner matcher, where type Pointer can be
1823 // either a raw pointer or a smart pointer.
1824 //
1825 // The reason we do this instead of relying on
1826 // MakePolymorphicMatcher() is that the latter is not flexible
1827 // enough for implementing the DescribeTo() method of Pointee().
1828 template <typename Pointer>
1829 operator Matcher<Pointer>() const {
1830 return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1831 }
1832
1833 private:
1834 // The monomorphic implementation that works for a particular pointer type.
1835 template <typename Pointer>
1836 class Impl : public MatcherInterface<Pointer> {
1837 public:
1838 using Pointee =
1839 typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1840 Pointer)>::element_type;
1841
1842 explicit Impl(const InnerMatcher& matcher)
1843 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1844
1845 void DescribeTo(::std::ostream* os) const override {
1846 *os << "points to a value that ";
1847 matcher_.DescribeTo(os);
1848 }
1849
1850 void DescribeNegationTo(::std::ostream* os) const override {
1851 *os << "does not point to a value that ";
1852 matcher_.DescribeTo(os);
1853 }
1854
1855 bool MatchAndExplain(Pointer pointer,
1856 MatchResultListener* listener) const override {
1857 if (GetRawPointer(pointer) == nullptr) return false;
1858
1859 *listener << "which points to ";
1860 return MatchPrintAndExplain(*pointer, matcher_, listener);
1861 }
1862
1863 private:
1864 const Matcher<const Pointee&> matcher_;
1865 };
1866
1867 const InnerMatcher matcher_;
1868};
1869
1870// Implements the Pointer(m) matcher
1871// Implements the Pointer(m) matcher for matching a pointer that matches matcher
1872// m. The pointer can be either raw or smart, and will match `m` against the
1873// raw pointer.
1874template <typename InnerMatcher>
1875class PointerMatcher {
1876 public:
1877 explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1878
1879 // This type conversion operator template allows Pointer(m) to be
1880 // used as a matcher for any pointer type whose pointer type is
1881 // compatible with the inner matcher, where type PointerType can be
1882 // either a raw pointer or a smart pointer.
1883 //
1884 // The reason we do this instead of relying on
1885 // MakePolymorphicMatcher() is that the latter is not flexible
1886 // enough for implementing the DescribeTo() method of Pointer().
1887 template <typename PointerType>
1888 operator Matcher<PointerType>() const { // NOLINT
1889 return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1890 }
1891
1892 private:
1893 // The monomorphic implementation that works for a particular pointer type.
1894 template <typename PointerType>
1895 class Impl : public MatcherInterface<PointerType> {
1896 public:
1897 using Pointer =
1898 const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1899 PointerType)>::element_type*;
1900
1901 explicit Impl(const InnerMatcher& matcher)
1902 : matcher_(MatcherCast<Pointer>(matcher)) {}
1903
1904 void DescribeTo(::std::ostream* os) const override {
1905 *os << "is a pointer that ";
1906 matcher_.DescribeTo(os);
1907 }
1908
1909 void DescribeNegationTo(::std::ostream* os) const override {
1910 *os << "is not a pointer that ";
1911 matcher_.DescribeTo(os);
1912 }
1913
1914 bool MatchAndExplain(PointerType pointer,
1915 MatchResultListener* listener) const override {
1916 *listener << "which is a pointer that ";
1917 Pointer p = GetRawPointer(pointer);
1918 return MatchPrintAndExplain(p, matcher_, listener);
1919 }
1920
1921 private:
1922 Matcher<Pointer> matcher_;
1923 };
1924
1925 const InnerMatcher matcher_;
1926};
1927
1928#if GTEST_HAS_RTTI
1929// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1930// reference that matches inner_matcher when dynamic_cast<T> is applied.
1931// The result of dynamic_cast<To> is forwarded to the inner matcher.
1932// If To is a pointer and the cast fails, the inner matcher will receive NULL.
1933// If To is a reference and the cast fails, this matcher returns false
1934// immediately.
1935template <typename To>
1936class WhenDynamicCastToMatcherBase {
1937 public:
1938 explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
1939 : matcher_(matcher) {}
1940
1941 void DescribeTo(::std::ostream* os) const {
1942 GetCastTypeDescription(os);
1943 matcher_.DescribeTo(os);
1944 }
1945
1946 void DescribeNegationTo(::std::ostream* os) const {
1947 GetCastTypeDescription(os);
1948 matcher_.DescribeNegationTo(os);
1949 }
1950
1951 protected:
1952 const Matcher<To> matcher_;
1953
1954 static std::string GetToName() {
1955 return GetTypeName<To>();
1956 }
1957
1958 private:
1959 static void GetCastTypeDescription(::std::ostream* os) {
1960 *os << "when dynamic_cast to " << GetToName() << ", ";
1961 }
1962};
1963
1964// Primary template.
1965// To is a pointer. Cast and forward the result.
1966template <typename To>
1967class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
1968 public:
1969 explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
1970 : WhenDynamicCastToMatcherBase<To>(matcher) {}
1971
1972 template <typename From>
1973 bool MatchAndExplain(From from, MatchResultListener* listener) const {
1974 To to = dynamic_cast<To>(from);
1975 return MatchPrintAndExplain(to, this->matcher_, listener);
1976 }
1977};
1978
1979// Specialize for references.
1980// In this case we return false if the dynamic_cast fails.
1981template <typename To>
1982class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
1983 public:
1984 explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
1985 : WhenDynamicCastToMatcherBase<To&>(matcher) {}
1986
1987 template <typename From>
1988 bool MatchAndExplain(From& from, MatchResultListener* listener) const {
1989 // We don't want an std::bad_cast here, so do the cast with pointers.
1990 To* to = dynamic_cast<To*>(&from);
1991 if (to == nullptr) {
1992 *listener << "which cannot be dynamic_cast to " << this->GetToName();
1993 return false;
1994 }
1995 return MatchPrintAndExplain(*to, this->matcher_, listener);
1996 }
1997};
1998#endif // GTEST_HAS_RTTI
1999
2000// Implements the Field() matcher for matching a field (i.e. member
2001// variable) of an object.
2002template <typename Class, typename FieldType>
2003class FieldMatcher {
2004 public:
2005 FieldMatcher(FieldType Class::*field,
2006 const Matcher<const FieldType&>& matcher)
2007 : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2008
2009 FieldMatcher(const std::string& field_name, FieldType Class::*field,
2010 const Matcher<const FieldType&>& matcher)
2011 : field_(field),
2012 matcher_(matcher),
2013 whose_field_("whose field `" + field_name + "` ") {}
2014
2015 void DescribeTo(::std::ostream* os) const {
2016 *os << "is an object " << whose_field_;
2017 matcher_.DescribeTo(os);
2018 }
2019
2020 void DescribeNegationTo(::std::ostream* os) const {
2021 *os << "is an object " << whose_field_;
2022 matcher_.DescribeNegationTo(os);
2023 }
2024
2025 template <typename T>
2026 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2027 // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2028 // a compiler bug, and can now be removed.
2029 return MatchAndExplainImpl(
2030 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2031 value, listener);
2032 }
2033
2034 private:
2035 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2036 const Class& obj,
2037 MatchResultListener* listener) const {
2038 *listener << whose_field_ << "is ";
2039 return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2040 }
2041
2042 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2043 MatchResultListener* listener) const {
2044 if (p == nullptr) return false;
2045
2046 *listener << "which points to an object ";
2047 // Since *p has a field, it must be a class/struct/union type and
2048 // thus cannot be a pointer. Therefore we pass false_type() as
2049 // the first argument.
2050 return MatchAndExplainImpl(std::false_type(), *p, listener);
2051 }
2052
2053 const FieldType Class::*field_;
2054 const Matcher<const FieldType&> matcher_;
2055
2056 // Contains either "whose given field " if the name of the field is unknown
2057 // or "whose field `name_of_field` " if the name is known.
2058 const std::string whose_field_;
2059};
2060
2061// Implements the Property() matcher for matching a property
2062// (i.e. return value of a getter method) of an object.
2063//
2064// Property is a const-qualified member function of Class returning
2065// PropertyType.
2066template <typename Class, typename PropertyType, typename Property>
2067class PropertyMatcher {
2068 public:
2069 typedef const PropertyType& RefToConstProperty;
2070
2071 PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2072 : property_(property),
2073 matcher_(matcher),
2074 whose_property_("whose given property ") {}
2075
2076 PropertyMatcher(const std::string& property_name, Property property,
2077 const Matcher<RefToConstProperty>& matcher)
2078 : property_(property),
2079 matcher_(matcher),
2080 whose_property_("whose property `" + property_name + "` ") {}
2081
2082 void DescribeTo(::std::ostream* os) const {
2083 *os << "is an object " << whose_property_;
2084 matcher_.DescribeTo(os);
2085 }
2086
2087 void DescribeNegationTo(::std::ostream* os) const {
2088 *os << "is an object " << whose_property_;
2089 matcher_.DescribeNegationTo(os);
2090 }
2091
2092 template <typename T>
2093 bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
2094 return MatchAndExplainImpl(
2095 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2096 value, listener);
2097 }
2098
2099 private:
2100 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2101 const Class& obj,
2102 MatchResultListener* listener) const {
2103 *listener << whose_property_ << "is ";
2104 // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2105 // which takes a non-const reference as argument.
2106 RefToConstProperty result = (obj.*property_)();
2107 return MatchPrintAndExplain(result, matcher_, listener);
2108 }
2109
2110 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2111 MatchResultListener* listener) const {
2112 if (p == nullptr) return false;
2113
2114 *listener << "which points to an object ";
2115 // Since *p has a property method, it must be a class/struct/union
2116 // type and thus cannot be a pointer. Therefore we pass
2117 // false_type() as the first argument.
2118 return MatchAndExplainImpl(std::false_type(), *p, listener);
2119 }
2120
2121 Property property_;
2122 const Matcher<RefToConstProperty> matcher_;
2123
2124 // Contains either "whose given property " if the name of the property is
2125 // unknown or "whose property `name_of_property` " if the name is known.
2126 const std::string whose_property_;
2127};
2128
2129// Type traits specifying various features of different functors for ResultOf.
2130// The default template specifies features for functor objects.
2131template <typename Functor>
2132struct CallableTraits {
2133 typedef Functor StorageType;
2134
2135 static void CheckIsValid(Functor /* functor */) {}
2136
2137 template <typename T>
2138 static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2139 return f(arg);
2140 }
2141};
2142
2143// Specialization for function pointers.
2144template <typename ArgType, typename ResType>
2145struct CallableTraits<ResType(*)(ArgType)> {
2146 typedef ResType ResultType;
2147 typedef ResType(*StorageType)(ArgType);
2148
2149 static void CheckIsValid(ResType(*f)(ArgType)) {
2150 GTEST_CHECK_(f != nullptr)
2151 << "NULL function pointer is passed into ResultOf().";
2152 }
2153 template <typename T>
2154 static ResType Invoke(ResType(*f)(ArgType), T arg) {
2155 return (*f)(arg);
2156 }
2157};
2158
2159// Implements the ResultOf() matcher for matching a return value of a
2160// unary function of an object.
2161template <typename Callable, typename InnerMatcher>
2162class ResultOfMatcher {
2163 public:
2164 ResultOfMatcher(Callable callable, InnerMatcher matcher)
2165 : callable_(std::move(callable)), matcher_(std::move(matcher)) {
2166 CallableTraits<Callable>::CheckIsValid(callable_);
2167 }
2168
2169 template <typename T>
2170 operator Matcher<T>() const {
2171 return Matcher<T>(new Impl<const T&>(callable_, matcher_));
2172 }
2173
2174 private:
2175 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2176
2177 template <typename T>
2178 class Impl : public MatcherInterface<T> {
2179 using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2180 std::declval<CallableStorageType>(), std::declval<T>()));
2181
2182 public:
2183 template <typename M>
2184 Impl(const CallableStorageType& callable, const M& matcher)
2185 : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
2186
2187 void DescribeTo(::std::ostream* os) const override {
2188 *os << "is mapped by the given callable to a value that ";
2189 matcher_.DescribeTo(os);
2190 }
2191
2192 void DescribeNegationTo(::std::ostream* os) const override {
2193 *os << "is mapped by the given callable to a value that ";
2194 matcher_.DescribeNegationTo(os);
2195 }
2196
2197 bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2198 *listener << "which is mapped by the given callable to ";
2199 // Cannot pass the return value directly to MatchPrintAndExplain, which
2200 // takes a non-const reference as argument.
2201 // Also, specifying template argument explicitly is needed because T could
2202 // be a non-const reference (e.g. Matcher<Uncopyable&>).
2203 ResultType result =
2204 CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2205 return MatchPrintAndExplain(result, matcher_, listener);
2206 }
2207
2208 private:
2209 // Functors often define operator() as non-const method even though
2210 // they are actually stateless. But we need to use them even when
2211 // 'this' is a const pointer. It's the user's responsibility not to
2212 // use stateful callables with ResultOf(), which doesn't guarantee
2213 // how many times the callable will be invoked.
2214 mutable CallableStorageType callable_;
2215 const Matcher<ResultType> matcher_;
2216 }; // class Impl
2217
2218 const CallableStorageType callable_;
2219 const InnerMatcher matcher_;
2220};
2221
2222// Implements a matcher that checks the size of an STL-style container.
2223template <typename SizeMatcher>
2224class SizeIsMatcher {
2225 public:
2226 explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2227 : size_matcher_(size_matcher) {
2228 }
2229
2230 template <typename Container>
2231 operator Matcher<Container>() const {
2232 return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2233 }
2234
2235 template <typename Container>
2236 class Impl : public MatcherInterface<Container> {
2237 public:
2238 using SizeType = decltype(std::declval<Container>().size());
2239 explicit Impl(const SizeMatcher& size_matcher)
2240 : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2241
2242 void DescribeTo(::std::ostream* os) const override {
2243 *os << "size ";
2244 size_matcher_.DescribeTo(os);
2245 }
2246 void DescribeNegationTo(::std::ostream* os) const override {
2247 *os << "size ";
2248 size_matcher_.DescribeNegationTo(os);
2249 }
2250
2251 bool MatchAndExplain(Container container,
2252 MatchResultListener* listener) const override {
2253 SizeType size = container.size();
2254 StringMatchResultListener size_listener;
2255 const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2256 *listener
2257 << "whose size " << size << (result ? " matches" : " doesn't match");
2258 PrintIfNotEmpty(size_listener.str(), listener->stream());
2259 return result;
2260 }
2261
2262 private:
2263 const Matcher<SizeType> size_matcher_;
2264 };
2265
2266 private:
2267 const SizeMatcher size_matcher_;
2268};
2269
2270// Implements a matcher that checks the begin()..end() distance of an STL-style
2271// container.
2272template <typename DistanceMatcher>
2273class BeginEndDistanceIsMatcher {
2274 public:
2275 explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2276 : distance_matcher_(distance_matcher) {}
2277
2278 template <typename Container>
2279 operator Matcher<Container>() const {
2280 return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2281 }
2282
2283 template <typename Container>
2284 class Impl : public MatcherInterface<Container> {
2285 public:
2286 typedef internal::StlContainerView<
2287 GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
2288 typedef typename std::iterator_traits<
2289 typename ContainerView::type::const_iterator>::difference_type
2290 DistanceType;
2291 explicit Impl(const DistanceMatcher& distance_matcher)
2292 : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2293
2294 void DescribeTo(::std::ostream* os) const override {
2295 *os << "distance between begin() and end() ";
2296 distance_matcher_.DescribeTo(os);
2297 }
2298 void DescribeNegationTo(::std::ostream* os) const override {
2299 *os << "distance between begin() and end() ";
2300 distance_matcher_.DescribeNegationTo(os);
2301 }
2302
2303 bool MatchAndExplain(Container container,
2304 MatchResultListener* listener) const override {
2305 using std::begin;
2306 using std::end;
2307 DistanceType distance = std::distance(begin(container), end(container));
2308 StringMatchResultListener distance_listener;
2309 const bool result =
2310 distance_matcher_.MatchAndExplain(distance, &distance_listener);
2311 *listener << "whose distance between begin() and end() " << distance
2312 << (result ? " matches" : " doesn't match");
2313 PrintIfNotEmpty(distance_listener.str(), listener->stream());
2314 return result;
2315 }
2316
2317 private:
2318 const Matcher<DistanceType> distance_matcher_;
2319 };
2320
2321 private:
2322 const DistanceMatcher distance_matcher_;
2323};
2324
2325// Implements an equality matcher for any STL-style container whose elements
2326// support ==. This matcher is like Eq(), but its failure explanations provide
2327// more detailed information that is useful when the container is used as a set.
2328// The failure message reports elements that are in one of the operands but not
2329// the other. The failure messages do not report duplicate or out-of-order
2330// elements in the containers (which don't properly matter to sets, but can
2331// occur if the containers are vectors or lists, for example).
2332//
2333// Uses the container's const_iterator, value_type, operator ==,
2334// begin(), and end().
2335template <typename Container>
2336class ContainerEqMatcher {
2337 public:
2338 typedef internal::StlContainerView<Container> View;
2339 typedef typename View::type StlContainer;
2340 typedef typename View::const_reference StlContainerReference;
2341
2342 static_assert(!std::is_const<Container>::value,
2343 "Container type must not be const");
2344 static_assert(!std::is_reference<Container>::value,
2345 "Container type must not be a reference");
2346
2347 // We make a copy of expected in case the elements in it are modified
2348 // after this matcher is created.
2349 explicit ContainerEqMatcher(const Container& expected)
2350 : expected_(View::Copy(expected)) {}
2351
2352 void DescribeTo(::std::ostream* os) const {
2353 *os << "equals ";
2354 UniversalPrint(expected_, os);
2355 }
2356 void DescribeNegationTo(::std::ostream* os) const {
2357 *os << "does not equal ";
2358 UniversalPrint(expected_, os);
2359 }
2360
2361 template <typename LhsContainer>
2362 bool MatchAndExplain(const LhsContainer& lhs,
2363 MatchResultListener* listener) const {
2364 typedef internal::StlContainerView<
2365 typename std::remove_const<LhsContainer>::type>
2366 LhsView;
2367 typedef typename LhsView::type LhsStlContainer;
2368 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2369 if (lhs_stl_container == expected_)
2370 return true;
2371
2372 ::std::ostream* const os = listener->stream();
2373 if (os != nullptr) {
2374 // Something is different. Check for extra values first.
2375 bool printed_header = false;
2376 for (typename LhsStlContainer::const_iterator it =
2377 lhs_stl_container.begin();
2378 it != lhs_stl_container.end(); ++it) {
2379 if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2380 expected_.end()) {
2381 if (printed_header) {
2382 *os << ", ";
2383 } else {
2384 *os << "which has these unexpected elements: ";
2385 printed_header = true;
2386 }
2387 UniversalPrint(*it, os);
2388 }
2389 }
2390
2391 // Now check for missing values.
2392 bool printed_header2 = false;
2393 for (typename StlContainer::const_iterator it = expected_.begin();
2394 it != expected_.end(); ++it) {
2395 if (internal::ArrayAwareFind(
2396 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
2397 lhs_stl_container.end()) {
2398 if (printed_header2) {
2399 *os << ", ";
2400 } else {
2401 *os << (printed_header ? ",\nand" : "which")
2402 << " doesn't have these expected elements: ";
2403 printed_header2 = true;
2404 }
2405 UniversalPrint(*it, os);
2406 }
2407 }
2408 }
2409
2410 return false;
2411 }
2412
2413 private:
2414 const StlContainer expected_;
2415};
2416
2417// A comparator functor that uses the < operator to compare two values.
2418struct LessComparator {
2419 template <typename T, typename U>
2420 bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
2421};
2422
2423// Implements WhenSortedBy(comparator, container_matcher).
2424template <typename Comparator, typename ContainerMatcher>
2425class WhenSortedByMatcher {
2426 public:
2427 WhenSortedByMatcher(const Comparator& comparator,
2428 const ContainerMatcher& matcher)
2429 : comparator_(comparator), matcher_(matcher) {}
2430
2431 template <typename LhsContainer>
2432 operator Matcher<LhsContainer>() const {
2433 return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2434 }
2435
2436 template <typename LhsContainer>
2437 class Impl : public MatcherInterface<LhsContainer> {
2438 public:
2439 typedef internal::StlContainerView<
2440 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2441 typedef typename LhsView::type LhsStlContainer;
2442 typedef typename LhsView::const_reference LhsStlContainerReference;
2443 // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2444 // so that we can match associative containers.
2445 typedef typename RemoveConstFromKey<
2446 typename LhsStlContainer::value_type>::type LhsValue;
2447
2448 Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2449 : comparator_(comparator), matcher_(matcher) {}
2450
2451 void DescribeTo(::std::ostream* os) const override {
2452 *os << "(when sorted) ";
2453 matcher_.DescribeTo(os);
2454 }
2455
2456 void DescribeNegationTo(::std::ostream* os) const override {
2457 *os << "(when sorted) ";
2458 matcher_.DescribeNegationTo(os);
2459 }
2460
2461 bool MatchAndExplain(LhsContainer lhs,
2462 MatchResultListener* listener) const override {
2463 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2464 ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2465 lhs_stl_container.end());
2466 ::std::sort(
2467 sorted_container.begin(), sorted_container.end(), comparator_);
2468
2469 if (!listener->IsInterested()) {
2470 // If the listener is not interested, we do not need to
2471 // construct the inner explanation.
2472 return matcher_.Matches(sorted_container);
2473 }
2474
2475 *listener << "which is ";
2476 UniversalPrint(sorted_container, listener->stream());
2477 *listener << " when sorted";
2478
2479 StringMatchResultListener inner_listener;
2480 const bool match = matcher_.MatchAndExplain(sorted_container,
2481 &inner_listener);
2482 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2483 return match;
2484 }
2485
2486 private:
2487 const Comparator comparator_;
2488 const Matcher<const ::std::vector<LhsValue>&> matcher_;
2489
2490 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
2491 };
2492
2493 private:
2494 const Comparator comparator_;
2495 const ContainerMatcher matcher_;
2496};
2497
2498// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
2499// must be able to be safely cast to Matcher<std::tuple<const T1&, const
2500// T2&> >, where T1 and T2 are the types of elements in the LHS
2501// container and the RHS container respectively.
2502template <typename TupleMatcher, typename RhsContainer>
2503class PointwiseMatcher {
2504 GTEST_COMPILE_ASSERT_(
2505 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2506 use_UnorderedPointwise_with_hash_tables);
2507
2508 public:
2509 typedef internal::StlContainerView<RhsContainer> RhsView;
2510 typedef typename RhsView::type RhsStlContainer;
2511 typedef typename RhsStlContainer::value_type RhsValue;
2512
2513 static_assert(!std::is_const<RhsContainer>::value,
2514 "RhsContainer type must not be const");
2515 static_assert(!std::is_reference<RhsContainer>::value,
2516 "RhsContainer type must not be a reference");
2517
2518 // Like ContainerEq, we make a copy of rhs in case the elements in
2519 // it are modified after this matcher is created.
2520 PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2521 : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2522
2523 template <typename LhsContainer>
2524 operator Matcher<LhsContainer>() const {
2525 GTEST_COMPILE_ASSERT_(
2526 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2527 use_UnorderedPointwise_with_hash_tables);
2528
2529 return Matcher<LhsContainer>(
2530 new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2531 }
2532
2533 template <typename LhsContainer>
2534 class Impl : public MatcherInterface<LhsContainer> {
2535 public:
2536 typedef internal::StlContainerView<
2537 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2538 typedef typename LhsView::type LhsStlContainer;
2539 typedef typename LhsView::const_reference LhsStlContainerReference;
2540 typedef typename LhsStlContainer::value_type LhsValue;
2541 // We pass the LHS value and the RHS value to the inner matcher by
2542 // reference, as they may be expensive to copy. We must use tuple
2543 // instead of pair here, as a pair cannot hold references (C++ 98,
2544 // 20.2.2 [lib.pairs]).
2545 typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2546
2547 Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2548 // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2549 : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2550 rhs_(rhs) {}
2551
2552 void DescribeTo(::std::ostream* os) const override {
2553 *os << "contains " << rhs_.size()
2554 << " values, where each value and its corresponding value in ";
2555 UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2556 *os << " ";
2557 mono_tuple_matcher_.DescribeTo(os);
2558 }
2559 void DescribeNegationTo(::std::ostream* os) const override {
2560 *os << "doesn't contain exactly " << rhs_.size()
2561 << " values, or contains a value x at some index i"
2562 << " where x and the i-th value of ";
2563 UniversalPrint(rhs_, os);
2564 *os << " ";
2565 mono_tuple_matcher_.DescribeNegationTo(os);
2566 }
2567
2568 bool MatchAndExplain(LhsContainer lhs,
2569 MatchResultListener* listener) const override {
2570 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2571 const size_t actual_size = lhs_stl_container.size();
2572 if (actual_size != rhs_.size()) {
2573 *listener << "which contains " << actual_size << " values";
2574 return false;
2575 }
2576
2577 typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
2578 typename RhsStlContainer::const_iterator right = rhs_.begin();
2579 for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2580 if (listener->IsInterested()) {
2581 StringMatchResultListener inner_listener;
2582 // Create InnerMatcherArg as a temporarily object to avoid it outlives
2583 // *left and *right. Dereference or the conversion to `const T&` may
2584 // return temp objects, e.g for vector<bool>.
2585 if (!mono_tuple_matcher_.MatchAndExplain(
2586 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2587 ImplicitCast_<const RhsValue&>(*right)),
2588 &inner_listener)) {
2589 *listener << "where the value pair (";
2590 UniversalPrint(*left, listener->stream());
2591 *listener << ", ";
2592 UniversalPrint(*right, listener->stream());
2593 *listener << ") at index #" << i << " don't match";
2594 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2595 return false;
2596 }
2597 } else {
2598 if (!mono_tuple_matcher_.Matches(
2599 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2600 ImplicitCast_<const RhsValue&>(*right))))
2601 return false;
2602 }
2603 }
2604
2605 return true;
2606 }
2607
2608 private:
2609 const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2610 const RhsStlContainer rhs_;
2611 };
2612
2613 private:
2614 const TupleMatcher tuple_matcher_;
2615 const RhsStlContainer rhs_;
2616};
2617
2618// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2619template <typename Container>
2620class QuantifierMatcherImpl : public MatcherInterface<Container> {
2621 public:
2622 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2623 typedef StlContainerView<RawContainer> View;
2624 typedef typename View::type StlContainer;
2625 typedef typename View::const_reference StlContainerReference;
2626 typedef typename StlContainer::value_type Element;
2627
2628 template <typename InnerMatcher>
2629 explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2630 : inner_matcher_(
2631 testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2632
2633 // Checks whether:
2634 // * All elements in the container match, if all_elements_should_match.
2635 // * Any element in the container matches, if !all_elements_should_match.
2636 bool MatchAndExplainImpl(bool all_elements_should_match,
2637 Container container,
2638 MatchResultListener* listener) const {
2639 StlContainerReference stl_container = View::ConstReference(container);
2640 size_t i = 0;
2641 for (typename StlContainer::const_iterator it = stl_container.begin();
2642 it != stl_container.end(); ++it, ++i) {
2643 StringMatchResultListener inner_listener;
2644 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2645
2646 if (matches != all_elements_should_match) {
2647 *listener << "whose element #" << i
2648 << (matches ? " matches" : " doesn't match");
2649 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2650 return !all_elements_should_match;
2651 }
2652 }
2653 return all_elements_should_match;
2654 }
2655
2656 protected:
2657 const Matcher<const Element&> inner_matcher_;
2658};
2659
2660// Implements Contains(element_matcher) for the given argument type Container.
2661// Symmetric to EachMatcherImpl.
2662template <typename Container>
2663class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2664 public:
2665 template <typename InnerMatcher>
2666 explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2667 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2668
2669 // Describes what this matcher does.
2670 void DescribeTo(::std::ostream* os) const override {
2671 *os << "contains at least one element that ";
2672 this->inner_matcher_.DescribeTo(os);
2673 }
2674
2675 void DescribeNegationTo(::std::ostream* os) const override {
2676 *os << "doesn't contain any element that ";
2677 this->inner_matcher_.DescribeTo(os);
2678 }
2679
2680 bool MatchAndExplain(Container container,
2681 MatchResultListener* listener) const override {
2682 return this->MatchAndExplainImpl(false, container, listener);
2683 }
2684};
2685
2686// Implements Each(element_matcher) for the given argument type Container.
2687// Symmetric to ContainsMatcherImpl.
2688template <typename Container>
2689class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2690 public:
2691 template <typename InnerMatcher>
2692 explicit EachMatcherImpl(InnerMatcher inner_matcher)
2693 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2694
2695 // Describes what this matcher does.
2696 void DescribeTo(::std::ostream* os) const override {
2697 *os << "only contains elements that ";
2698 this->inner_matcher_.DescribeTo(os);
2699 }
2700
2701 void DescribeNegationTo(::std::ostream* os) const override {
2702 *os << "contains some element that ";
2703 this->inner_matcher_.DescribeNegationTo(os);
2704 }
2705
2706 bool MatchAndExplain(Container container,
2707 MatchResultListener* listener) const override {
2708 return this->MatchAndExplainImpl(true, container, listener);
2709 }
2710};
2711
2712// Implements polymorphic Contains(element_matcher).
2713template <typename M>
2714class ContainsMatcher {
2715 public:
2716 explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2717
2718 template <typename Container>
2719 operator Matcher<Container>() const {
2720 return Matcher<Container>(
2721 new ContainsMatcherImpl<const Container&>(inner_matcher_));
2722 }
2723
2724 private:
2725 const M inner_matcher_;
2726};
2727
2728// Implements polymorphic Each(element_matcher).
2729template <typename M>
2730class EachMatcher {
2731 public:
2732 explicit EachMatcher(M m) : inner_matcher_(m) {}
2733
2734 template <typename Container>
2735 operator Matcher<Container>() const {
2736 return Matcher<Container>(
2737 new EachMatcherImpl<const Container&>(inner_matcher_));
2738 }
2739
2740 private:
2741 const M inner_matcher_;
2742};
2743
2744struct Rank1 {};
2745struct Rank0 : Rank1 {};
2746
2747namespace pair_getters {
2748using std::get;
2749template <typename T>
2750auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
2751 return get<0>(x);
2752}
2753template <typename T>
2754auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
2755 return x.first;
2756}
2757
2758template <typename T>
2759auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
2760 return get<1>(x);
2761}
2762template <typename T>
2763auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
2764 return x.second;
2765}
2766} // namespace pair_getters
2767
2768// Implements Key(inner_matcher) for the given argument pair type.
2769// Key(inner_matcher) matches an std::pair whose 'first' field matches
2770// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
2771// std::map that contains at least one element whose key is >= 5.
2772template <typename PairType>
2773class KeyMatcherImpl : public MatcherInterface<PairType> {
2774 public:
2775 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2776 typedef typename RawPairType::first_type KeyType;
2777
2778 template <typename InnerMatcher>
2779 explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2780 : inner_matcher_(
2781 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2782 }
2783
2784 // Returns true if and only if 'key_value.first' (the key) matches the inner
2785 // matcher.
2786 bool MatchAndExplain(PairType key_value,
2787 MatchResultListener* listener) const override {
2788 StringMatchResultListener inner_listener;
2789 const bool match = inner_matcher_.MatchAndExplain(
2790 pair_getters::First(key_value, Rank0()), &inner_listener);
2791 const std::string explanation = inner_listener.str();
2792 if (explanation != "") {
2793 *listener << "whose first field is a value " << explanation;
2794 }
2795 return match;
2796 }
2797
2798 // Describes what this matcher does.
2799 void DescribeTo(::std::ostream* os) const override {
2800 *os << "has a key that ";
2801 inner_matcher_.DescribeTo(os);
2802 }
2803
2804 // Describes what the negation of this matcher does.
2805 void DescribeNegationTo(::std::ostream* os) const override {
2806 *os << "doesn't have a key that ";
2807 inner_matcher_.DescribeTo(os);
2808 }
2809
2810 private:
2811 const Matcher<const KeyType&> inner_matcher_;
2812};
2813
2814// Implements polymorphic Key(matcher_for_key).
2815template <typename M>
2816class KeyMatcher {
2817 public:
2818 explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2819
2820 template <typename PairType>
2821 operator Matcher<PairType>() const {
2822 return Matcher<PairType>(
2823 new KeyMatcherImpl<const PairType&>(matcher_for_key_));
2824 }
2825
2826 private:
2827 const M matcher_for_key_;
2828};
2829
2830// Implements polymorphic Address(matcher_for_address).
2831template <typename InnerMatcher>
2832class AddressMatcher {
2833 public:
2834 explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
2835
2836 template <typename Type>
2837 operator Matcher<Type>() const { // NOLINT
2838 return Matcher<Type>(new Impl<const Type&>(matcher_));
2839 }
2840
2841 private:
2842 // The monomorphic implementation that works for a particular object type.
2843 template <typename Type>
2844 class Impl : public MatcherInterface<Type> {
2845 public:
2846 using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
2847 explicit Impl(const InnerMatcher& matcher)
2848 : matcher_(MatcherCast<Address>(matcher)) {}
2849
2850 void DescribeTo(::std::ostream* os) const override {
2851 *os << "has address that ";
2852 matcher_.DescribeTo(os);
2853 }
2854
2855 void DescribeNegationTo(::std::ostream* os) const override {
2856 *os << "does not have address that ";
2857 matcher_.DescribeTo(os);
2858 }
2859
2860 bool MatchAndExplain(Type object,
2861 MatchResultListener* listener) const override {
2862 *listener << "which has address ";
2863 Address address = std::addressof(object);
2864 return MatchPrintAndExplain(address, matcher_, listener);
2865 }
2866
2867 private:
2868 const Matcher<Address> matcher_;
2869 };
2870 const InnerMatcher matcher_;
2871};
2872
2873// Implements Pair(first_matcher, second_matcher) for the given argument pair
2874// type with its two matchers. See Pair() function below.
2875template <typename PairType>
2876class PairMatcherImpl : public MatcherInterface<PairType> {
2877 public:
2878 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2879 typedef typename RawPairType::first_type FirstType;
2880 typedef typename RawPairType::second_type SecondType;
2881
2882 template <typename FirstMatcher, typename SecondMatcher>
2883 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
2884 : first_matcher_(
2885 testing::SafeMatcherCast<const FirstType&>(first_matcher)),
2886 second_matcher_(
2887 testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
2888 }
2889
2890 // Describes what this matcher does.
2891 void DescribeTo(::std::ostream* os) const override {
2892 *os << "has a first field that ";
2893 first_matcher_.DescribeTo(os);
2894 *os << ", and has a second field that ";
2895 second_matcher_.DescribeTo(os);
2896 }
2897
2898 // Describes what the negation of this matcher does.
2899 void DescribeNegationTo(::std::ostream* os) const override {
2900 *os << "has a first field that ";
2901 first_matcher_.DescribeNegationTo(os);
2902 *os << ", or has a second field that ";
2903 second_matcher_.DescribeNegationTo(os);
2904 }
2905
2906 // Returns true if and only if 'a_pair.first' matches first_matcher and
2907 // 'a_pair.second' matches second_matcher.
2908 bool MatchAndExplain(PairType a_pair,
2909 MatchResultListener* listener) const override {
2910 if (!listener->IsInterested()) {
2911 // If the listener is not interested, we don't need to construct the
2912 // explanation.
2913 return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
2914 second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
2915 }
2916 StringMatchResultListener first_inner_listener;
2917 if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
2918 &first_inner_listener)) {
2919 *listener << "whose first field does not match";
2920 PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
2921 return false;
2922 }
2923 StringMatchResultListener second_inner_listener;
2924 if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
2925 &second_inner_listener)) {
2926 *listener << "whose second field does not match";
2927 PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
2928 return false;
2929 }
2930 ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
2931 listener);
2932 return true;
2933 }
2934
2935 private:
2936 void ExplainSuccess(const std::string& first_explanation,
2937 const std::string& second_explanation,
2938 MatchResultListener* listener) const {
2939 *listener << "whose both fields match";
2940 if (first_explanation != "") {
2941 *listener << ", where the first field is a value " << first_explanation;
2942 }
2943 if (second_explanation != "") {
2944 *listener << ", ";
2945 if (first_explanation != "") {
2946 *listener << "and ";
2947 } else {
2948 *listener << "where ";
2949 }
2950 *listener << "the second field is a value " << second_explanation;
2951 }
2952 }
2953
2954 const Matcher<const FirstType&> first_matcher_;
2955 const Matcher<const SecondType&> second_matcher_;
2956};
2957
2958// Implements polymorphic Pair(first_matcher, second_matcher).
2959template <typename FirstMatcher, typename SecondMatcher>
2960class PairMatcher {
2961 public:
2962 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
2963 : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
2964
2965 template <typename PairType>
2966 operator Matcher<PairType> () const {
2967 return Matcher<PairType>(
2968 new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
2969 }
2970
2971 private:
2972 const FirstMatcher first_matcher_;
2973 const SecondMatcher second_matcher_;
2974};
2975
2976template <typename T, size_t... I>
2977auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
2978 -> decltype(std::tie(get<I>(t)...)) {
2979 static_assert(std::tuple_size<T>::value == sizeof...(I),
2980 "Number of arguments doesn't match the number of fields.");
2981 return std::tie(get<I>(t)...);
2982}
2983
2984#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
2985template <typename T>
2986auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
2987 const auto& [a] = t;
2988 return std::tie(a);
2989}
2990template <typename T>
2991auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
2992 const auto& [a, b] = t;
2993 return std::tie(a, b);
2994}
2995template <typename T>
2996auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
2997 const auto& [a, b, c] = t;
2998 return std::tie(a, b, c);
2999}
3000template <typename T>
3001auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
3002 const auto& [a, b, c, d] = t;
3003 return std::tie(a, b, c, d);
3004}
3005template <typename T>
3006auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
3007 const auto& [a, b, c, d, e] = t;
3008 return std::tie(a, b, c, d, e);
3009}
3010template <typename T>
3011auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
3012 const auto& [a, b, c, d, e, f] = t;
3013 return std::tie(a, b, c, d, e, f);
3014}
3015template <typename T>
3016auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
3017 const auto& [a, b, c, d, e, f, g] = t;
3018 return std::tie(a, b, c, d, e, f, g);
3019}
3020template <typename T>
3021auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
3022 const auto& [a, b, c, d, e, f, g, h] = t;
3023 return std::tie(a, b, c, d, e, f, g, h);
3024}
3025template <typename T>
3026auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
3027 const auto& [a, b, c, d, e, f, g, h, i] = t;
3028 return std::tie(a, b, c, d, e, f, g, h, i);
3029}
3030template <typename T>
3031auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
3032 const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3033 return std::tie(a, b, c, d, e, f, g, h, i, j);
3034}
3035template <typename T>
3036auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
3037 const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3038 return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3039}
3040template <typename T>
3041auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
3042 const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3043 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3044}
3045template <typename T>
3046auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
3047 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3048 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3049}
3050template <typename T>
3051auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
3052 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3053 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3054}
3055template <typename T>
3056auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
3057 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3058 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3059}
3060template <typename T>
3061auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
3062 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3063 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3064}
3065#endif // defined(__cpp_structured_bindings)
3066
3067template <size_t I, typename T>
3068auto UnpackStruct(const T& t)
3069 -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
3070 return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
3071}
3072
3073// Helper function to do comma folding in C++11.
3074// The array ensures left-to-right order of evaluation.
3075// Usage: VariadicExpand({expr...});
3076template <typename T, size_t N>
3077void VariadicExpand(const T (&)[N]) {}
3078
3079template <typename Struct, typename StructSize>
3080class FieldsAreMatcherImpl;
3081
3082template <typename Struct, size_t... I>
3083class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
3084 : public MatcherInterface<Struct> {
3085 using UnpackedType =
3086 decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3087 using MatchersType = std::tuple<
3088 Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3089
3090 public:
3091 template <typename Inner>
3092 explicit FieldsAreMatcherImpl(const Inner& matchers)
3093 : matchers_(testing::SafeMatcherCast<
3094 const typename std::tuple_element<I, UnpackedType>::type&>(
3095 std::get<I>(matchers))...) {}
3096
3097 void DescribeTo(::std::ostream* os) const override {
3098 const char* separator = "";
3099 VariadicExpand(
3100 {(*os << separator << "has field #" << I << " that ",
3101 std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3102 }
3103
3104 void DescribeNegationTo(::std::ostream* os) const override {
3105 const char* separator = "";
3106 VariadicExpand({(*os << separator << "has field #" << I << " that ",
3107 std::get<I>(matchers_).DescribeNegationTo(os),
3108 separator = ", or ")...});
3109 }
3110
3111 bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3112 return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3113 }
3114
3115 private:
3116 bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3117 if (!listener->IsInterested()) {
3118 // If the listener is not interested, we don't need to construct the
3119 // explanation.
3120 bool good = true;
3121 VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3122 std::get<I>(tuple))...});
3123 return good;
3124 }
3125
3126 size_t failed_pos = ~size_t{};
3127
3128 std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3129
3130 VariadicExpand(
3131 {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3132 std::get<I>(tuple), &inner_listener[I])
3133 ? failed_pos = I
3134 : 0 ...});
3135 if (failed_pos != ~size_t{}) {
3136 *listener << "whose field #" << failed_pos << " does not match";
3137 PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3138 return false;
3139 }
3140
3141 *listener << "whose all elements match";
3142 const char* separator = ", where";
3143 for (size_t index = 0; index < sizeof...(I); ++index) {
3144 const std::string str = inner_listener[index].str();
3145 if (!str.empty()) {
3146 *listener << separator << " field #" << index << " is a value " << str;
3147 separator = ", and";
3148 }
3149 }
3150
3151 return true;
3152 }
3153
3154 MatchersType matchers_;
3155};
3156
3157template <typename... Inner>
3158class FieldsAreMatcher {
3159 public:
3160 explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3161
3162 template <typename Struct>
3163 operator Matcher<Struct>() const { // NOLINT
3164 return Matcher<Struct>(
3165 new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
3166 matchers_));
3167 }
3168
3169 private:
3170 std::tuple<Inner...> matchers_;
3171};
3172
3173// Implements ElementsAre() and ElementsAreArray().
3174template <typename Container>
3175class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3176 public:
3177 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3178 typedef internal::StlContainerView<RawContainer> View;
3179 typedef typename View::type StlContainer;
3180 typedef typename View::const_reference StlContainerReference;
3181 typedef typename StlContainer::value_type Element;
3182
3183 // Constructs the matcher from a sequence of element values or
3184 // element matchers.
3185 template <typename InputIter>
3186 ElementsAreMatcherImpl(InputIter first, InputIter last) {
3187 while (first != last) {
3188 matchers_.push_back(MatcherCast<const Element&>(*first++));
3189 }
3190 }
3191
3192 // Describes what this matcher does.
3193 void DescribeTo(::std::ostream* os) const override {
3194 if (count() == 0) {
3195 *os << "is empty";
3196 } else if (count() == 1) {
3197 *os << "has 1 element that ";
3198 matchers_[0].DescribeTo(os);
3199 } else {
3200 *os << "has " << Elements(count()) << " where\n";
3201 for (size_t i = 0; i != count(); ++i) {
3202 *os << "element #" << i << " ";
3203 matchers_[i].DescribeTo(os);
3204 if (i + 1 < count()) {
3205 *os << ",\n";
3206 }
3207 }
3208 }
3209 }
3210
3211 // Describes what the negation of this matcher does.
3212 void DescribeNegationTo(::std::ostream* os) const override {
3213 if (count() == 0) {
3214 *os << "isn't empty";
3215 return;
3216 }
3217
3218 *os << "doesn't have " << Elements(count()) << ", or\n";
3219 for (size_t i = 0; i != count(); ++i) {
3220 *os << "element #" << i << " ";
3221 matchers_[i].DescribeNegationTo(os);
3222 if (i + 1 < count()) {
3223 *os << ", or\n";
3224 }
3225 }
3226 }
3227
3228 bool MatchAndExplain(Container container,
3229 MatchResultListener* listener) const override {
3230 // To work with stream-like "containers", we must only walk
3231 // through the elements in one pass.
3232
3233 const bool listener_interested = listener->IsInterested();
3234
3235 // explanations[i] is the explanation of the element at index i.
3236 ::std::vector<std::string> explanations(count());
3237 StlContainerReference stl_container = View::ConstReference(container);
3238 typename StlContainer::const_iterator it = stl_container.begin();
3239 size_t exam_pos = 0;
3240 bool mismatch_found = false; // Have we found a mismatched element yet?
3241
3242 // Go through the elements and matchers in pairs, until we reach
3243 // the end of either the elements or the matchers, or until we find a
3244 // mismatch.
3245 for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3246 bool match; // Does the current element match the current matcher?
3247 if (listener_interested) {
3248 StringMatchResultListener s;
3249 match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3250 explanations[exam_pos] = s.str();
3251 } else {
3252 match = matchers_[exam_pos].Matches(*it);
3253 }
3254
3255 if (!match) {
3256 mismatch_found = true;
3257 break;
3258 }
3259 }
3260 // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3261
3262 // Find how many elements the actual container has. We avoid
3263 // calling size() s.t. this code works for stream-like "containers"
3264 // that don't define size().
3265 size_t actual_count = exam_pos;
3266 for (; it != stl_container.end(); ++it) {
3267 ++actual_count;
3268 }
3269
3270 if (actual_count != count()) {
3271 // The element count doesn't match. If the container is empty,
3272 // there's no need to explain anything as Google Mock already
3273 // prints the empty container. Otherwise we just need to show
3274 // how many elements there actually are.
3275 if (listener_interested && (actual_count != 0)) {
3276 *listener << "which has " << Elements(actual_count);
3277 }
3278 return false;
3279 }
3280
3281 if (mismatch_found) {
3282 // The element count matches, but the exam_pos-th element doesn't match.
3283 if (listener_interested) {
3284 *listener << "whose element #" << exam_pos << " doesn't match";
3285 PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3286 }
3287 return false;
3288 }
3289
3290 // Every element matches its expectation. We need to explain why
3291 // (the obvious ones can be skipped).
3292 if (listener_interested) {
3293 bool reason_printed = false;
3294 for (size_t i = 0; i != count(); ++i) {
3295 const std::string& s = explanations[i];
3296 if (!s.empty()) {
3297 if (reason_printed) {
3298 *listener << ",\nand ";
3299 }
3300 *listener << "whose element #" << i << " matches, " << s;
3301 reason_printed = true;
3302 }
3303 }
3304 }
3305 return true;
3306 }
3307
3308 private:
3309 static Message Elements(size_t count) {
3310 return Message() << count << (count == 1 ? " element" : " elements");
3311 }
3312
3313 size_t count() const { return matchers_.size(); }
3314
3315 ::std::vector<Matcher<const Element&> > matchers_;
3316};
3317
3318// Connectivity matrix of (elements X matchers), in element-major order.
3319// Initially, there are no edges.
3320// Use NextGraph() to iterate over all possible edge configurations.
3321// Use Randomize() to generate a random edge configuration.
3322class GTEST_API_ MatchMatrix {
3323 public:
3324 MatchMatrix(size_t num_elements, size_t num_matchers)
3325 : num_elements_(num_elements),
3326 num_matchers_(num_matchers),
3327 matched_(num_elements_* num_matchers_, 0) {
3328 }
3329
3330 size_t LhsSize() const { return num_elements_; }
3331 size_t RhsSize() const { return num_matchers_; }
3332 bool HasEdge(size_t ilhs, size_t irhs) const {
3333 return matched_[SpaceIndex(ilhs, irhs)] == 1;
3334 }
3335 void SetEdge(size_t ilhs, size_t irhs, bool b) {
3336 matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3337 }
3338
3339 // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3340 // adds 1 to that number; returns false if incrementing the graph left it
3341 // empty.
3342 bool NextGraph();
3343
3344 void Randomize();
3345
3346 std::string DebugString() const;
3347
3348 private:
3349 size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3350 return ilhs * num_matchers_ + irhs;
3351 }
3352
3353 size_t num_elements_;
3354 size_t num_matchers_;
3355
3356 // Each element is a char interpreted as bool. They are stored as a
3357 // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3358 // a (ilhs, irhs) matrix coordinate into an offset.
3359 ::std::vector<char> matched_;
3360};
3361
3362typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3363typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3364
3365// Returns a maximum bipartite matching for the specified graph 'g'.
3366// The matching is represented as a vector of {element, matcher} pairs.
3367GTEST_API_ ElementMatcherPairs
3368FindMaxBipartiteMatching(const MatchMatrix& g);
3369
3370struct UnorderedMatcherRequire {
3371 enum Flags {
3372 Superset = 1 << 0,
3373 Subset = 1 << 1,
3374 ExactMatch = Superset | Subset,
3375 };
3376};
3377
3378// Untyped base class for implementing UnorderedElementsAre. By
3379// putting logic that's not specific to the element type here, we
3380// reduce binary bloat and increase compilation speed.
3381class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3382 protected:
3383 explicit UnorderedElementsAreMatcherImplBase(
3384 UnorderedMatcherRequire::Flags matcher_flags)
3385 : match_flags_(matcher_flags) {}
3386
3387 // A vector of matcher describers, one for each element matcher.
3388 // Does not own the describers (and thus can be used only when the
3389 // element matchers are alive).
3390 typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3391
3392 // Describes this UnorderedElementsAre matcher.
3393 void DescribeToImpl(::std::ostream* os) const;
3394
3395 // Describes the negation of this UnorderedElementsAre matcher.
3396 void DescribeNegationToImpl(::std::ostream* os) const;
3397
3398 bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3399 const MatchMatrix& matrix,
3400 MatchResultListener* listener) const;
3401
3402 bool FindPairing(const MatchMatrix& matrix,
3403 MatchResultListener* listener) const;
3404
3405 MatcherDescriberVec& matcher_describers() {
3406 return matcher_describers_;
3407 }
3408
3409 static Message Elements(size_t n) {
3410 return Message() << n << " element" << (n == 1 ? "" : "s");
3411 }
3412
3413 UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3414
3415 private:
3416 UnorderedMatcherRequire::Flags match_flags_;
3417 MatcherDescriberVec matcher_describers_;
3418};
3419
3420// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3421// IsSupersetOf.
3422template <typename Container>
3423class UnorderedElementsAreMatcherImpl
3424 : public MatcherInterface<Container>,
3425 public UnorderedElementsAreMatcherImplBase {
3426 public:
3427 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3428 typedef internal::StlContainerView<RawContainer> View;
3429 typedef typename View::type StlContainer;
3430 typedef typename View::const_reference StlContainerReference;
3431 typedef typename StlContainer::const_iterator StlContainerConstIterator;
3432 typedef typename StlContainer::value_type Element;
3433
3434 template <typename InputIter>
3435 UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3436 InputIter first, InputIter last)
3437 : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3438 for (; first != last; ++first) {
3439 matchers_.push_back(MatcherCast<const Element&>(*first));
3440 }
3441 for (const auto& m : matchers_) {
3442 matcher_describers().push_back(m.GetDescriber());
3443 }
3444 }
3445
3446 // Describes what this matcher does.
3447 void DescribeTo(::std::ostream* os) const override {
3448 return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3449 }
3450
3451 // Describes what the negation of this matcher does.
3452 void DescribeNegationTo(::std::ostream* os) const override {
3453 return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3454 }
3455
3456 bool MatchAndExplain(Container container,
3457 MatchResultListener* listener) const override {
3458 StlContainerReference stl_container = View::ConstReference(container);
3459 ::std::vector<std::string> element_printouts;
3460 MatchMatrix matrix =
3461 AnalyzeElements(stl_container.begin(), stl_container.end(),
3462 &element_printouts, listener);
3463
3464 if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
3465 return true;
3466 }
3467
3468 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
3469 if (matrix.LhsSize() != matrix.RhsSize()) {
3470 // The element count doesn't match. If the container is empty,
3471 // there's no need to explain anything as Google Mock already
3472 // prints the empty container. Otherwise we just need to show
3473 // how many elements there actually are.
3474 if (matrix.LhsSize() != 0 && listener->IsInterested()) {
3475 *listener << "which has " << Elements(matrix.LhsSize());
3476 }
3477 return false;
3478 }
3479 }
3480
3481 return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3482 FindPairing(matrix, listener);
3483 }
3484
3485 private:
3486 template <typename ElementIter>
3487 MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3488 ::std::vector<std::string>* element_printouts,
3489 MatchResultListener* listener) const {
3490 element_printouts->clear();
3491 ::std::vector<char> did_match;
3492 size_t num_elements = 0;
3493 DummyMatchResultListener dummy;
3494 for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3495 if (listener->IsInterested()) {
3496 element_printouts->push_back(PrintToString(*elem_first));
3497 }
3498 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3499 did_match.push_back(
3500 matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3501 }
3502 }
3503
3504 MatchMatrix matrix(num_elements, matchers_.size());
3505 ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3506 for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3507 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3508 matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3509 }
3510 }
3511 return matrix;
3512 }
3513
3514 ::std::vector<Matcher<const Element&> > matchers_;
3515};
3516
3517// Functor for use in TransformTuple.
3518// Performs MatcherCast<Target> on an input argument of any type.
3519template <typename Target>
3520struct CastAndAppendTransform {
3521 template <typename Arg>
3522 Matcher<Target> operator()(const Arg& a) const {
3523 return MatcherCast<Target>(a);
3524 }
3525};
3526
3527// Implements UnorderedElementsAre.
3528template <typename MatcherTuple>
3529class UnorderedElementsAreMatcher {
3530 public:
3531 explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3532 : matchers_(args) {}
3533
3534 template <typename Container>
3535 operator Matcher<Container>() const {
3536 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3537 typedef typename internal::StlContainerView<RawContainer>::type View;
3538 typedef typename View::value_type Element;
3539 typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3540 MatcherVec matchers;
3541 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3542 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3543 ::std::back_inserter(matchers));
3544 return Matcher<Container>(
3545 new UnorderedElementsAreMatcherImpl<const Container&>(
3546 UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3547 matchers.end()));
3548 }
3549
3550 private:
3551 const MatcherTuple matchers_;
3552};
3553
3554// Implements ElementsAre.
3555template <typename MatcherTuple>
3556class ElementsAreMatcher {
3557 public:
3558 explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3559
3560 template <typename Container>
3561 operator Matcher<Container>() const {
3562 GTEST_COMPILE_ASSERT_(
3563 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3564 ::std::tuple_size<MatcherTuple>::value < 2,
3565 use_UnorderedElementsAre_with_hash_tables);
3566
3567 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3568 typedef typename internal::StlContainerView<RawContainer>::type View;
3569 typedef typename View::value_type Element;
3570 typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3571 MatcherVec matchers;
3572 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3573 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3574 ::std::back_inserter(matchers));
3575 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3576 matchers.begin(), matchers.end()));
3577 }
3578
3579 private:
3580 const MatcherTuple matchers_;
3581};
3582
3583// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3584template <typename T>
3585class UnorderedElementsAreArrayMatcher {
3586 public:
3587 template <typename Iter>
3588 UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3589 Iter first, Iter last)
3590 : match_flags_(match_flags), matchers_(first, last) {}
3591
3592 template <typename Container>
3593 operator Matcher<Container>() const {
3594 return Matcher<Container>(
3595 new UnorderedElementsAreMatcherImpl<const Container&>(
3596 match_flags_, matchers_.begin(), matchers_.end()));
3597 }
3598
3599 private:
3600 UnorderedMatcherRequire::Flags match_flags_;
3601 ::std::vector<T> matchers_;
3602};
3603
3604// Implements ElementsAreArray().
3605template <typename T>
3606class ElementsAreArrayMatcher {
3607 public:
3608 template <typename Iter>
3609 ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3610
3611 template <typename Container>
3612 operator Matcher<Container>() const {
3613 GTEST_COMPILE_ASSERT_(
3614 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3615 use_UnorderedElementsAreArray_with_hash_tables);
3616
3617 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3618 matchers_.begin(), matchers_.end()));
3619 }
3620
3621 private:
3622 const ::std::vector<T> matchers_;
3623};
3624
3625// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3626// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3627// second) is a polymorphic matcher that matches a value x if and only if
3628// tm matches tuple (x, second). Useful for implementing
3629// UnorderedPointwise() in terms of UnorderedElementsAreArray().
3630//
3631// BoundSecondMatcher is copyable and assignable, as we need to put
3632// instances of this class in a vector when implementing
3633// UnorderedPointwise().
3634template <typename Tuple2Matcher, typename Second>
3635class BoundSecondMatcher {
3636 public:
3637 BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3638 : tuple2_matcher_(tm), second_value_(second) {}
3639
3640 BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3641
3642 template <typename T>
3643 operator Matcher<T>() const {
3644 return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3645 }
3646
3647 // We have to define this for UnorderedPointwise() to compile in
3648 // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3649 // which requires the elements to be assignable in C++98. The
3650 // compiler cannot generate the operator= for us, as Tuple2Matcher
3651 // and Second may not be assignable.
3652 //
3653 // However, this should never be called, so the implementation just
3654 // need to assert.
3655 void operator=(const BoundSecondMatcher& /*rhs*/) {
3656 GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3657 }
3658
3659 private:
3660 template <typename T>
3661 class Impl : public MatcherInterface<T> {
3662 public:
3663 typedef ::std::tuple<T, Second> ArgTuple;
3664
3665 Impl(const Tuple2Matcher& tm, const Second& second)
3666 : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3667 second_value_(second) {}
3668
3669 void DescribeTo(::std::ostream* os) const override {
3670 *os << "and ";
3671 UniversalPrint(second_value_, os);
3672 *os << " ";
3673 mono_tuple2_matcher_.DescribeTo(os);
3674 }
3675
3676 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3677 return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3678 listener);
3679 }
3680
3681 private:
3682 const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3683 const Second second_value_;
3684 };
3685
3686 const Tuple2Matcher tuple2_matcher_;
3687 const Second second_value_;
3688};
3689
3690// Given a 2-tuple matcher tm and a value second,
3691// MatcherBindSecond(tm, second) returns a matcher that matches a
3692// value x if and only if tm matches tuple (x, second). Useful for
3693// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3694template <typename Tuple2Matcher, typename Second>
3695BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3696 const Tuple2Matcher& tm, const Second& second) {
3697 return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3698}
3699
3700// Returns the description for a matcher defined using the MATCHER*()
3701// macro where the user-supplied description string is "", if
3702// 'negation' is false; otherwise returns the description of the
3703// negation of the matcher. 'param_values' contains a list of strings
3704// that are the print-out of the matcher's parameters.
3705GTEST_API_ std::string FormatMatcherDescription(bool negation,
3706 const char* matcher_name,
3707 const Strings& param_values);
3708
3709// Implements a matcher that checks the value of a optional<> type variable.
3710template <typename ValueMatcher>
3711class OptionalMatcher {
3712 public:
3713 explicit OptionalMatcher(const ValueMatcher& value_matcher)
3714 : value_matcher_(value_matcher) {}
3715
3716 template <typename Optional>
3717 operator Matcher<Optional>() const {
3718 return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3719 }
3720
3721 template <typename Optional>
3722 class Impl : public MatcherInterface<Optional> {
3723 public:
3724 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3725 typedef typename OptionalView::value_type ValueType;
3726 explicit Impl(const ValueMatcher& value_matcher)
3727 : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3728
3729 void DescribeTo(::std::ostream* os) const override {
3730 *os << "value ";
3731 value_matcher_.DescribeTo(os);
3732 }
3733
3734 void DescribeNegationTo(::std::ostream* os) const override {
3735 *os << "value ";
3736 value_matcher_.DescribeNegationTo(os);
3737 }
3738
3739 bool MatchAndExplain(Optional optional,
3740 MatchResultListener* listener) const override {
3741 if (!optional) {
3742 *listener << "which is not engaged";
3743 return false;
3744 }
3745 const ValueType& value = *optional;
3746 StringMatchResultListener value_listener;
3747 const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3748 *listener << "whose value " << PrintToString(value)
3749 << (match ? " matches" : " doesn't match");
3750 PrintIfNotEmpty(value_listener.str(), listener->stream());
3751 return match;
3752 }
3753
3754 private:
3755 const Matcher<ValueType> value_matcher_;
3756 };
3757
3758 private:
3759 const ValueMatcher value_matcher_;
3760};
3761
3762namespace variant_matcher {
3763// Overloads to allow VariantMatcher to do proper ADL lookup.
3764template <typename T>
3765void holds_alternative() {}
3766template <typename T>
3767void get() {}
3768
3769// Implements a matcher that checks the value of a variant<> type variable.
3770template <typename T>
3771class VariantMatcher {
3772 public:
3773 explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3774 : matcher_(std::move(matcher)) {}
3775
3776 template <typename Variant>
3777 bool MatchAndExplain(const Variant& value,
3778 ::testing::MatchResultListener* listener) const {
3779 using std::get;
3780 if (!listener->IsInterested()) {
3781 return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3782 }
3783
3784 if (!holds_alternative<T>(value)) {
3785 *listener << "whose value is not of type '" << GetTypeName() << "'";
3786 return false;
3787 }
3788
3789 const T& elem = get<T>(value);
3790 StringMatchResultListener elem_listener;
3791 const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3792 *listener << "whose value " << PrintToString(elem)
3793 << (match ? " matches" : " doesn't match");
3794 PrintIfNotEmpty(elem_listener.str(), listener->stream());
3795 return match;
3796 }
3797
3798 void DescribeTo(std::ostream* os) const {
3799 *os << "is a variant<> with value of type '" << GetTypeName()
3800 << "' and the value ";
3801 matcher_.DescribeTo(os);
3802 }
3803
3804 void DescribeNegationTo(std::ostream* os) const {
3805 *os << "is a variant<> with value of type other than '" << GetTypeName()
3806 << "' or the value ";
3807 matcher_.DescribeNegationTo(os);
3808 }
3809
3810 private:
3811 static std::string GetTypeName() {
3812#if GTEST_HAS_RTTI
3813 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3814 return internal::GetTypeName<T>());
3815#endif
3816 return "the element type";
3817 }
3818
3819 const ::testing::Matcher<const T&> matcher_;
3820};
3821
3822} // namespace variant_matcher
3823
3824namespace any_cast_matcher {
3825
3826// Overloads to allow AnyCastMatcher to do proper ADL lookup.
3827template <typename T>
3828void any_cast() {}
3829
3830// Implements a matcher that any_casts the value.
3831template <typename T>
3832class AnyCastMatcher {
3833 public:
3834 explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
3835 : matcher_(matcher) {}
3836
3837 template <typename AnyType>
3838 bool MatchAndExplain(const AnyType& value,
3839 ::testing::MatchResultListener* listener) const {
3840 if (!listener->IsInterested()) {
3841 const T* ptr = any_cast<T>(&value);
3842 return ptr != nullptr && matcher_.Matches(*ptr);
3843 }
3844
3845 const T* elem = any_cast<T>(&value);
3846 if (elem == nullptr) {
3847 *listener << "whose value is not of type '" << GetTypeName() << "'";
3848 return false;
3849 }
3850
3851 StringMatchResultListener elem_listener;
3852 const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
3853 *listener << "whose value " << PrintToString(*elem)
3854 << (match ? " matches" : " doesn't match");
3855 PrintIfNotEmpty(elem_listener.str(), listener->stream());
3856 return match;
3857 }
3858
3859 void DescribeTo(std::ostream* os) const {
3860 *os << "is an 'any' type with value of type '" << GetTypeName()
3861 << "' and the value ";
3862 matcher_.DescribeTo(os);
3863 }
3864
3865 void DescribeNegationTo(std::ostream* os) const {
3866 *os << "is an 'any' type with value of type other than '" << GetTypeName()
3867 << "' or the value ";
3868 matcher_.DescribeNegationTo(os);
3869 }
3870
3871 private:
3872 static std::string GetTypeName() {
3873#if GTEST_HAS_RTTI
3874 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3875 return internal::GetTypeName<T>());
3876#endif
3877 return "the element type";
3878 }
3879
3880 const ::testing::Matcher<const T&> matcher_;
3881};
3882
3883} // namespace any_cast_matcher
3884
3885// Implements the Args() matcher.
3886template <class ArgsTuple, size_t... k>
3887class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
3888 public:
3889 using RawArgsTuple = typename std::decay<ArgsTuple>::type;
3890 using SelectedArgs =
3891 std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
3892 using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
3893
3894 template <typename InnerMatcher>
3895 explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
3896 : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
3897
3898 bool MatchAndExplain(ArgsTuple args,
3899 MatchResultListener* listener) const override {
3900 // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
3901 (void)args;
3902 const SelectedArgs& selected_args =
3903 std::forward_as_tuple(std::get<k>(args)...);
3904 if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
3905
3906 PrintIndices(listener->stream());
3907 *listener << "are " << PrintToString(selected_args);
3908
3909 StringMatchResultListener inner_listener;
3910 const bool match =
3911 inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
3912 PrintIfNotEmpty(inner_listener.str(), listener->stream());
3913 return match;
3914 }
3915
3916 void DescribeTo(::std::ostream* os) const override {
3917 *os << "are a tuple ";
3918 PrintIndices(os);
3919 inner_matcher_.DescribeTo(os);
3920 }
3921
3922 void DescribeNegationTo(::std::ostream* os) const override {
3923 *os << "are a tuple ";
3924 PrintIndices(os);
3925 inner_matcher_.DescribeNegationTo(os);
3926 }
3927
3928 private:
3929 // Prints the indices of the selected fields.
3930 static void PrintIndices(::std::ostream* os) {
3931 *os << "whose fields (";
3932 const char* sep = "";
3933 // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
3934 (void)sep;
3935 const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
3936 (void)dummy;
3937 *os << ") ";
3938 }
3939
3940 MonomorphicInnerMatcher inner_matcher_;
3941};
3942
3943template <class InnerMatcher, size_t... k>
3944class ArgsMatcher {
3945 public:
3946 explicit ArgsMatcher(InnerMatcher inner_matcher)
3947 : inner_matcher_(std::move(inner_matcher)) {}
3948
3949 template <typename ArgsTuple>
3950 operator Matcher<ArgsTuple>() const { // NOLINT
3951 return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
3952 }
3953
3954 private:
3955 InnerMatcher inner_matcher_;
3956};
3957
3958} // namespace internal
3959
3960// ElementsAreArray(iterator_first, iterator_last)
3961// ElementsAreArray(pointer, count)
3962// ElementsAreArray(array)
3963// ElementsAreArray(container)
3964// ElementsAreArray({ e1, e2, ..., en })
3965//
3966// The ElementsAreArray() functions are like ElementsAre(...), except
3967// that they are given a homogeneous sequence rather than taking each
3968// element as a function argument. The sequence can be specified as an
3969// array, a pointer and count, a vector, an initializer list, or an
3970// STL iterator range. In each of these cases, the underlying sequence
3971// can be either a sequence of values or a sequence of matchers.
3972//
3973// All forms of ElementsAreArray() make a copy of the input matcher sequence.
3974
3975template <typename Iter>
3976inline internal::ElementsAreArrayMatcher<
3977 typename ::std::iterator_traits<Iter>::value_type>
3978ElementsAreArray(Iter first, Iter last) {
3979 typedef typename ::std::iterator_traits<Iter>::value_type T;
3980 return internal::ElementsAreArrayMatcher<T>(first, last);
3981}
3982
3983template <typename T>
3984inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3985 const T* pointer, size_t count) {
3986 return ElementsAreArray(pointer, pointer + count);
3987}
3988
3989template <typename T, size_t N>
3990inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3991 const T (&array)[N]) {
3992 return ElementsAreArray(array, N);
3993}
3994
3995template <typename Container>
3996inline internal::ElementsAreArrayMatcher<typename Container::value_type>
3997ElementsAreArray(const Container& container) {
3998 return ElementsAreArray(container.begin(), container.end());
3999}
4000
4001template <typename T>
4002inline internal::ElementsAreArrayMatcher<T>
4003ElementsAreArray(::std::initializer_list<T> xs) {
4004 return ElementsAreArray(xs.begin(), xs.end());
4005}
4006
4007// UnorderedElementsAreArray(iterator_first, iterator_last)
4008// UnorderedElementsAreArray(pointer, count)
4009// UnorderedElementsAreArray(array)
4010// UnorderedElementsAreArray(container)
4011// UnorderedElementsAreArray({ e1, e2, ..., en })
4012//
4013// UnorderedElementsAreArray() verifies that a bijective mapping onto a
4014// collection of matchers exists.
4015//
4016// The matchers can be specified as an array, a pointer and count, a container,
4017// an initializer list, or an STL iterator range. In each of these cases, the
4018// underlying matchers can be either values or matchers.
4019
4020template <typename Iter>
4021inline internal::UnorderedElementsAreArrayMatcher<
4022 typename ::std::iterator_traits<Iter>::value_type>
4023UnorderedElementsAreArray(Iter first, Iter last) {
4024 typedef typename ::std::iterator_traits<Iter>::value_type T;
4025 return internal::UnorderedElementsAreArrayMatcher<T>(
4026 internal::UnorderedMatcherRequire::ExactMatch, first, last);
4027}
4028
4029template <typename T>
4030inline internal::UnorderedElementsAreArrayMatcher<T>
4031UnorderedElementsAreArray(const T* pointer, size_t count) {
4032 return UnorderedElementsAreArray(pointer, pointer + count);
4033}
4034
4035template <typename T, size_t N>
4036inline internal::UnorderedElementsAreArrayMatcher<T>
4037UnorderedElementsAreArray(const T (&array)[N]) {
4038 return UnorderedElementsAreArray(array, N);
4039}
4040
4041template <typename Container>
4042inline internal::UnorderedElementsAreArrayMatcher<
4043 typename Container::value_type>
4044UnorderedElementsAreArray(const Container& container) {
4045 return UnorderedElementsAreArray(container.begin(), container.end());
4046}
4047
4048template <typename T>
4049inline internal::UnorderedElementsAreArrayMatcher<T>
4050UnorderedElementsAreArray(::std::initializer_list<T> xs) {
4051 return UnorderedElementsAreArray(xs.begin(), xs.end());
4052}
4053
4054// _ is a matcher that matches anything of any type.
4055//
4056// This definition is fine as:
4057//
4058// 1. The C++ standard permits using the name _ in a namespace that
4059// is not the global namespace or ::std.
4060// 2. The AnythingMatcher class has no data member or constructor,
4061// so it's OK to create global variables of this type.
4062// 3. c-style has approved of using _ in this case.
4063const internal::AnythingMatcher _ = {};
4064// Creates a matcher that matches any value of the given type T.
4065template <typename T>
4066inline Matcher<T> A() {
4067 return _;
4068}
4069
4070// Creates a matcher that matches any value of the given type T.
4071template <typename T>
4072inline Matcher<T> An() {
4073 return _;
4074}
4075
4076template <typename T, typename M>
4077Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4078 const M& value, std::false_type /* convertible_to_matcher */,
4079 std::false_type /* convertible_to_T */) {
4080 return Eq(value);
4081}
4082
4083// Creates a polymorphic matcher that matches any NULL pointer.
4084inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
4085 return MakePolymorphicMatcher(internal::IsNullMatcher());
4086}
4087
4088// Creates a polymorphic matcher that matches any non-NULL pointer.
4089// This is convenient as Not(NULL) doesn't compile (the compiler
4090// thinks that that expression is comparing a pointer with an integer).
4091inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
4092 return MakePolymorphicMatcher(internal::NotNullMatcher());
4093}
4094
4095// Creates a polymorphic matcher that matches any argument that
4096// references variable x.
4097template <typename T>
4098inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
4099 return internal::RefMatcher<T&>(x);
4100}
4101
4102// Creates a polymorphic matcher that matches any NaN floating point.
4103inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4104 return MakePolymorphicMatcher(internal::IsNanMatcher());
4105}
4106
4107// Creates a matcher that matches any double argument approximately
4108// equal to rhs, where two NANs are considered unequal.
4109inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4110 return internal::FloatingEqMatcher<double>(rhs, false);
4111}
4112
4113// Creates a matcher that matches any double argument approximately
4114// equal to rhs, including NaN values when rhs is NaN.
4115inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4116 return internal::FloatingEqMatcher<double>(rhs, true);
4117}
4118
4119// Creates a matcher that matches any double argument approximately equal to
4120// rhs, up to the specified max absolute error bound, where two NANs are
4121// considered unequal. The max absolute error bound must be non-negative.
4122inline internal::FloatingEqMatcher<double> DoubleNear(
4123 double rhs, double max_abs_error) {
4124 return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4125}
4126
4127// Creates a matcher that matches any double argument approximately equal to
4128// rhs, up to the specified max absolute error bound, including NaN values when
4129// rhs is NaN. The max absolute error bound must be non-negative.
4130inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4131 double rhs, double max_abs_error) {
4132 return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4133}
4134
4135// Creates a matcher that matches any float argument approximately
4136// equal to rhs, where two NANs are considered unequal.
4137inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4138 return internal::FloatingEqMatcher<float>(rhs, false);
4139}
4140
4141// Creates a matcher that matches any float argument approximately
4142// equal to rhs, including NaN values when rhs is NaN.
4143inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4144 return internal::FloatingEqMatcher<float>(rhs, true);
4145}
4146
4147// Creates a matcher that matches any float argument approximately equal to
4148// rhs, up to the specified max absolute error bound, where two NANs are
4149// considered unequal. The max absolute error bound must be non-negative.
4150inline internal::FloatingEqMatcher<float> FloatNear(
4151 float rhs, float max_abs_error) {
4152 return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4153}
4154
4155// Creates a matcher that matches any float argument approximately equal to
4156// rhs, up to the specified max absolute error bound, including NaN values when
4157// rhs is NaN. The max absolute error bound must be non-negative.
4158inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4159 float rhs, float max_abs_error) {
4160 return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4161}
4162
4163// Creates a matcher that matches a pointer (raw or smart) that points
4164// to a value that matches inner_matcher.
4165template <typename InnerMatcher>
4166inline internal::PointeeMatcher<InnerMatcher> Pointee(
4167 const InnerMatcher& inner_matcher) {
4168 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4169}
4170
4171#if GTEST_HAS_RTTI
4172// Creates a matcher that matches a pointer or reference that matches
4173// inner_matcher when dynamic_cast<To> is applied.
4174// The result of dynamic_cast<To> is forwarded to the inner matcher.
4175// If To is a pointer and the cast fails, the inner matcher will receive NULL.
4176// If To is a reference and the cast fails, this matcher returns false
4177// immediately.
4178template <typename To>
4179inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
4180WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4181 return MakePolymorphicMatcher(
4182 internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4183}
4184#endif // GTEST_HAS_RTTI
4185
4186// Creates a matcher that matches an object whose given field matches
4187// 'matcher'. For example,
4188// Field(&Foo::number, Ge(5))
4189// matches a Foo object x if and only if x.number >= 5.
4190template <typename Class, typename FieldType, typename FieldMatcher>
4191inline PolymorphicMatcher<
4192 internal::FieldMatcher<Class, FieldType> > Field(
4193 FieldType Class::*field, const FieldMatcher& matcher) {
4194 return MakePolymorphicMatcher(
4195 internal::FieldMatcher<Class, FieldType>(
4196 field, MatcherCast<const FieldType&>(matcher)));
4197 // The call to MatcherCast() is required for supporting inner
4198 // matchers of compatible types. For example, it allows
4199 // Field(&Foo::bar, m)
4200 // to compile where bar is an int32 and m is a matcher for int64.
4201}
4202
4203// Same as Field() but also takes the name of the field to provide better error
4204// messages.
4205template <typename Class, typename FieldType, typename FieldMatcher>
4206inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
4207 const std::string& field_name, FieldType Class::*field,
4208 const FieldMatcher& matcher) {
4209 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4210 field_name, field, MatcherCast<const FieldType&>(matcher)));
4211}
4212
4213// Creates a matcher that matches an object whose given property
4214// matches 'matcher'. For example,
4215// Property(&Foo::str, StartsWith("hi"))
4216// matches a Foo object x if and only if x.str() starts with "hi".
4217template <typename Class, typename PropertyType, typename PropertyMatcher>
4218inline PolymorphicMatcher<internal::PropertyMatcher<
4219 Class, PropertyType, PropertyType (Class::*)() const> >
4220Property(PropertyType (Class::*property)() const,
4221 const PropertyMatcher& matcher) {
4222 return MakePolymorphicMatcher(
4223 internal::PropertyMatcher<Class, PropertyType,
4224 PropertyType (Class::*)() const>(
4225 property, MatcherCast<const PropertyType&>(matcher)));
4226 // The call to MatcherCast() is required for supporting inner
4227 // matchers of compatible types. For example, it allows
4228 // Property(&Foo::bar, m)
4229 // to compile where bar() returns an int32 and m is a matcher for int64.
4230}
4231
4232// Same as Property() above, but also takes the name of the property to provide
4233// better error messages.
4234template <typename Class, typename PropertyType, typename PropertyMatcher>
4235inline PolymorphicMatcher<internal::PropertyMatcher<
4236 Class, PropertyType, PropertyType (Class::*)() const> >
4237Property(const std::string& property_name,
4238 PropertyType (Class::*property)() const,
4239 const PropertyMatcher& matcher) {
4240 return MakePolymorphicMatcher(
4241 internal::PropertyMatcher<Class, PropertyType,
4242 PropertyType (Class::*)() const>(
4243 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4244}
4245
4246// The same as above but for reference-qualified member functions.
4247template <typename Class, typename PropertyType, typename PropertyMatcher>
4248inline PolymorphicMatcher<internal::PropertyMatcher<
4249 Class, PropertyType, PropertyType (Class::*)() const &> >
4250Property(PropertyType (Class::*property)() const &,
4251 const PropertyMatcher& matcher) {
4252 return MakePolymorphicMatcher(
4253 internal::PropertyMatcher<Class, PropertyType,
4254 PropertyType (Class::*)() const&>(
4255 property, MatcherCast<const PropertyType&>(matcher)));
4256}
4257
4258// Three-argument form for reference-qualified member functions.
4259template <typename Class, typename PropertyType, typename PropertyMatcher>
4260inline PolymorphicMatcher<internal::PropertyMatcher<
4261 Class, PropertyType, PropertyType (Class::*)() const &> >
4262Property(const std::string& property_name,
4263 PropertyType (Class::*property)() const &,
4264 const PropertyMatcher& matcher) {
4265 return MakePolymorphicMatcher(
4266 internal::PropertyMatcher<Class, PropertyType,
4267 PropertyType (Class::*)() const&>(
4268 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4269}
4270
4271// Creates a matcher that matches an object if and only if the result of
4272// applying a callable to x matches 'matcher'. For example,
4273// ResultOf(f, StartsWith("hi"))
4274// matches a Foo object x if and only if f(x) starts with "hi".
4275// `callable` parameter can be a function, function pointer, or a functor. It is
4276// required to keep no state affecting the results of the calls on it and make
4277// no assumptions about how many calls will be made. Any state it keeps must be
4278// protected from the concurrent access.
4279template <typename Callable, typename InnerMatcher>
4280internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4281 Callable callable, InnerMatcher matcher) {
4282 return internal::ResultOfMatcher<Callable, InnerMatcher>(
4283 std::move(callable), std::move(matcher));
4284}
4285
4286// String matchers.
4287
4288// Matches a string equal to str.
4289template <typename T = std::string>
4290PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
4291 const internal::StringLike<T>& str) {
4292 return MakePolymorphicMatcher(
4293 internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4294}
4295
4296// Matches a string not equal to str.
4297template <typename T = std::string>
4298PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
4299 const internal::StringLike<T>& str) {
4300 return MakePolymorphicMatcher(
4301 internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4302}
4303
4304// Matches a string equal to str, ignoring case.
4305template <typename T = std::string>
4306PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
4307 const internal::StringLike<T>& str) {
4308 return MakePolymorphicMatcher(
4309 internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4310}
4311
4312// Matches a string not equal to str, ignoring case.
4313template <typename T = std::string>
4314PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
4315 const internal::StringLike<T>& str) {
4316 return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4317 std::string(str), false, false));
4318}
4319
4320// Creates a matcher that matches any string, std::string, or C string
4321// that contains the given substring.
4322template <typename T = std::string>
4323PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
4324 const internal::StringLike<T>& substring) {
4325 return MakePolymorphicMatcher(
4326 internal::HasSubstrMatcher<std::string>(std::string(substring)));
4327}
4328
4329// Matches a string that starts with 'prefix' (case-sensitive).
4330template <typename T = std::string>
4331PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
4332 const internal::StringLike<T>& prefix) {
4333 return MakePolymorphicMatcher(
4334 internal::StartsWithMatcher<std::string>(std::string(prefix)));
4335}
4336
4337// Matches a string that ends with 'suffix' (case-sensitive).
4338template <typename T = std::string>
4339PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
4340 const internal::StringLike<T>& suffix) {
4341 return MakePolymorphicMatcher(
4342 internal::EndsWithMatcher<std::string>(std::string(suffix)));
4343}
4344
4345#if GTEST_HAS_STD_WSTRING
4346// Wide string matchers.
4347
4348// Matches a string equal to str.
4349inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
4350 const std::wstring& str) {
4351 return MakePolymorphicMatcher(
4352 internal::StrEqualityMatcher<std::wstring>(str, true, true));
4353}
4354
4355// Matches a string not equal to str.
4356inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
4357 const std::wstring& str) {
4358 return MakePolymorphicMatcher(
4359 internal::StrEqualityMatcher<std::wstring>(str, false, true));
4360}
4361
4362// Matches a string equal to str, ignoring case.
4363inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
4364StrCaseEq(const std::wstring& str) {
4365 return MakePolymorphicMatcher(
4366 internal::StrEqualityMatcher<std::wstring>(str, true, false));
4367}
4368
4369// Matches a string not equal to str, ignoring case.
4370inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
4371StrCaseNe(const std::wstring& str) {
4372 return MakePolymorphicMatcher(
4373 internal::StrEqualityMatcher<std::wstring>(str, false, false));
4374}
4375
4376// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4377// that contains the given substring.
4378inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
4379 const std::wstring& substring) {
4380 return MakePolymorphicMatcher(
4381 internal::HasSubstrMatcher<std::wstring>(substring));
4382}
4383
4384// Matches a string that starts with 'prefix' (case-sensitive).
4385inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
4386StartsWith(const std::wstring& prefix) {
4387 return MakePolymorphicMatcher(
4388 internal::StartsWithMatcher<std::wstring>(prefix));
4389}
4390
4391// Matches a string that ends with 'suffix' (case-sensitive).
4392inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
4393 const std::wstring& suffix) {
4394 return MakePolymorphicMatcher(
4395 internal::EndsWithMatcher<std::wstring>(suffix));
4396}
4397
4398#endif // GTEST_HAS_STD_WSTRING
4399
4400// Creates a polymorphic matcher that matches a 2-tuple where the
4401// first field == the second field.
4402inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4403
4404// Creates a polymorphic matcher that matches a 2-tuple where the
4405// first field >= the second field.
4406inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4407
4408// Creates a polymorphic matcher that matches a 2-tuple where the
4409// first field > the second field.
4410inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4411
4412// Creates a polymorphic matcher that matches a 2-tuple where the
4413// first field <= the second field.
4414inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4415
4416// Creates a polymorphic matcher that matches a 2-tuple where the
4417// first field < the second field.
4418inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4419
4420// Creates a polymorphic matcher that matches a 2-tuple where the
4421// first field != the second field.
4422inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4423
4424// Creates a polymorphic matcher that matches a 2-tuple where
4425// FloatEq(first field) matches the second field.
4426inline internal::FloatingEq2Matcher<float> FloatEq() {
4427 return internal::FloatingEq2Matcher<float>();
4428}
4429
4430// Creates a polymorphic matcher that matches a 2-tuple where
4431// DoubleEq(first field) matches the second field.
4432inline internal::FloatingEq2Matcher<double> DoubleEq() {
4433 return internal::FloatingEq2Matcher<double>();
4434}
4435
4436// Creates a polymorphic matcher that matches a 2-tuple where
4437// FloatEq(first field) matches the second field with NaN equality.
4438inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4439 return internal::FloatingEq2Matcher<float>(true);
4440}
4441
4442// Creates a polymorphic matcher that matches a 2-tuple where
4443// DoubleEq(first field) matches the second field with NaN equality.
4444inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4445 return internal::FloatingEq2Matcher<double>(true);
4446}
4447
4448// Creates a polymorphic matcher that matches a 2-tuple where
4449// FloatNear(first field, max_abs_error) matches the second field.
4450inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4451 return internal::FloatingEq2Matcher<float>(max_abs_error);
4452}
4453
4454// Creates a polymorphic matcher that matches a 2-tuple where
4455// DoubleNear(first field, max_abs_error) matches the second field.
4456inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4457 return internal::FloatingEq2Matcher<double>(max_abs_error);
4458}
4459
4460// Creates a polymorphic matcher that matches a 2-tuple where
4461// FloatNear(first field, max_abs_error) matches the second field with NaN
4462// equality.
4463inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4464 float max_abs_error) {
4465 return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4466}
4467
4468// Creates a polymorphic matcher that matches a 2-tuple where
4469// DoubleNear(first field, max_abs_error) matches the second field with NaN
4470// equality.
4471inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4472 double max_abs_error) {
4473 return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4474}
4475
4476// Creates a matcher that matches any value of type T that m doesn't
4477// match.
4478template <typename InnerMatcher>
4479inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4480 return internal::NotMatcher<InnerMatcher>(m);
4481}
4482
4483// Returns a matcher that matches anything that satisfies the given
4484// predicate. The predicate can be any unary function or functor
4485// whose return type can be implicitly converted to bool.
4486template <typename Predicate>
4487inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
4488Truly(Predicate pred) {
4489 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4490}
4491
4492// Returns a matcher that matches the container size. The container must
4493// support both size() and size_type which all STL-like containers provide.
4494// Note that the parameter 'size' can be a value of type size_type as well as
4495// matcher. For instance:
4496// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
4497// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
4498template <typename SizeMatcher>
4499inline internal::SizeIsMatcher<SizeMatcher>
4500SizeIs(const SizeMatcher& size_matcher) {
4501 return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4502}
4503
4504// Returns a matcher that matches the distance between the container's begin()
4505// iterator and its end() iterator, i.e. the size of the container. This matcher
4506// can be used instead of SizeIs with containers such as std::forward_list which
4507// do not implement size(). The container must provide const_iterator (with
4508// valid iterator_traits), begin() and end().
4509template <typename DistanceMatcher>
4510inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
4511BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
4512 return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4513}
4514
4515// Returns a matcher that matches an equal container.
4516// This matcher behaves like Eq(), but in the event of mismatch lists the
4517// values that are included in one container but not the other. (Duplicate
4518// values and order differences are not explained.)
4519template <typename Container>
4520inline PolymorphicMatcher<internal::ContainerEqMatcher<
4521 typename std::remove_const<Container>::type>>
4522ContainerEq(const Container& rhs) {
4523 return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4524}
4525
4526// Returns a matcher that matches a container that, when sorted using
4527// the given comparator, matches container_matcher.
4528template <typename Comparator, typename ContainerMatcher>
4529inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
4530WhenSortedBy(const Comparator& comparator,
4531 const ContainerMatcher& container_matcher) {
4532 return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4533 comparator, container_matcher);
4534}
4535
4536// Returns a matcher that matches a container that, when sorted using
4537// the < operator, matches container_matcher.
4538template <typename ContainerMatcher>
4539inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4540WhenSorted(const ContainerMatcher& container_matcher) {
4541 return
4542 internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
4543 internal::LessComparator(), container_matcher);
4544}
4545
4546// Matches an STL-style container or a native array that contains the
4547// same number of elements as in rhs, where its i-th element and rhs's
4548// i-th element (as a pair) satisfy the given pair matcher, for all i.
4549// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4550// T1&, const T2&> >, where T1 and T2 are the types of elements in the
4551// LHS container and the RHS container respectively.
4552template <typename TupleMatcher, typename Container>
4553inline internal::PointwiseMatcher<TupleMatcher,
4554 typename std::remove_const<Container>::type>
4555Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4556 return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4557 rhs);
4558}
4559
4560
4561// Supports the Pointwise(m, {a, b, c}) syntax.
4562template <typename TupleMatcher, typename T>
4563inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
4564 const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4565 return Pointwise(tuple_matcher, std::vector<T>(rhs));
4566}
4567
4568
4569// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4570// container or a native array that contains the same number of
4571// elements as in rhs, where in some permutation of the container, its
4572// i-th element and rhs's i-th element (as a pair) satisfy the given
4573// pair matcher, for all i. Tuple2Matcher must be able to be safely
4574// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4575// the types of elements in the LHS container and the RHS container
4576// respectively.
4577//
4578// This is like Pointwise(pair_matcher, rhs), except that the element
4579// order doesn't matter.
4580template <typename Tuple2Matcher, typename RhsContainer>
4581inline internal::UnorderedElementsAreArrayMatcher<
4582 typename internal::BoundSecondMatcher<
4583 Tuple2Matcher,
4584 typename internal::StlContainerView<
4585 typename std::remove_const<RhsContainer>::type>::type::value_type>>
4586UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4587 const RhsContainer& rhs_container) {
4588 // RhsView allows the same code to handle RhsContainer being a
4589 // STL-style container and it being a native C-style array.
4590 typedef typename internal::StlContainerView<RhsContainer> RhsView;
4591 typedef typename RhsView::type RhsStlContainer;
4592 typedef typename RhsStlContainer::value_type Second;
4593 const RhsStlContainer& rhs_stl_container =
4594 RhsView::ConstReference(rhs_container);
4595
4596 // Create a matcher for each element in rhs_container.
4597 ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
4598 for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
4599 it != rhs_stl_container.end(); ++it) {
4600 matchers.push_back(
4601 internal::MatcherBindSecond(tuple2_matcher, *it));
4602 }
4603
4604 // Delegate the work to UnorderedElementsAreArray().
4605 return UnorderedElementsAreArray(matchers);
4606}
4607
4608
4609// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4610template <typename Tuple2Matcher, typename T>
4611inline internal::UnorderedElementsAreArrayMatcher<
4612 typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
4613UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4614 std::initializer_list<T> rhs) {
4615 return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4616}
4617
4618
4619// Matches an STL-style container or a native array that contains at
4620// least one element matching the given value or matcher.
4621//
4622// Examples:
4623// ::std::set<int> page_ids;
4624// page_ids.insert(3);
4625// page_ids.insert(1);
4626// EXPECT_THAT(page_ids, Contains(1));
4627// EXPECT_THAT(page_ids, Contains(Gt(2)));
4628// EXPECT_THAT(page_ids, Not(Contains(4)));
4629//
4630// ::std::map<int, size_t> page_lengths;
4631// page_lengths[1] = 100;
4632// EXPECT_THAT(page_lengths,
4633// Contains(::std::pair<const int, size_t>(1, 100)));
4634//
4635// const char* user_ids[] = { "joe", "mike", "tom" };
4636// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4637template <typename M>
4638inline internal::ContainsMatcher<M> Contains(M matcher) {
4639 return internal::ContainsMatcher<M>(matcher);
4640}
4641
4642// IsSupersetOf(iterator_first, iterator_last)
4643// IsSupersetOf(pointer, count)
4644// IsSupersetOf(array)
4645// IsSupersetOf(container)
4646// IsSupersetOf({e1, e2, ..., en})
4647//
4648// IsSupersetOf() verifies that a surjective partial mapping onto a collection
4649// of matchers exists. In other words, a container matches
4650// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4651// {y1, ..., yn} of some of the container's elements where y1 matches e1,
4652// ..., and yn matches en. Obviously, the size of the container must be >= n
4653// in order to have a match. Examples:
4654//
4655// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4656// 1 matches Ne(0).
4657// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4658// both Eq(1) and Lt(2). The reason is that different matchers must be used
4659// for elements in different slots of the container.
4660// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4661// Eq(1) and (the second) 1 matches Lt(2).
4662// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4663// Gt(1) and 3 matches (the second) Gt(1).
4664//
4665// The matchers can be specified as an array, a pointer and count, a container,
4666// an initializer list, or an STL iterator range. In each of these cases, the
4667// underlying matchers can be either values or matchers.
4668
4669template <typename Iter>
4670inline internal::UnorderedElementsAreArrayMatcher<
4671 typename ::std::iterator_traits<Iter>::value_type>
4672IsSupersetOf(Iter first, Iter last) {
4673 typedef typename ::std::iterator_traits<Iter>::value_type T;
4674 return internal::UnorderedElementsAreArrayMatcher<T>(
4675 internal::UnorderedMatcherRequire::Superset, first, last);
4676}
4677
4678template <typename T>
4679inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4680 const T* pointer, size_t count) {
4681 return IsSupersetOf(pointer, pointer + count);
4682}
4683
4684template <typename T, size_t N>
4685inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4686 const T (&array)[N]) {
4687 return IsSupersetOf(array, N);
4688}
4689
4690template <typename Container>
4691inline internal::UnorderedElementsAreArrayMatcher<
4692 typename Container::value_type>
4693IsSupersetOf(const Container& container) {
4694 return IsSupersetOf(container.begin(), container.end());
4695}
4696
4697template <typename T>
4698inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4699 ::std::initializer_list<T> xs) {
4700 return IsSupersetOf(xs.begin(), xs.end());
4701}
4702
4703// IsSubsetOf(iterator_first, iterator_last)
4704// IsSubsetOf(pointer, count)
4705// IsSubsetOf(array)
4706// IsSubsetOf(container)
4707// IsSubsetOf({e1, e2, ..., en})
4708//
4709// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4710// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4711// only if there is a subset of matchers {m1, ..., mk} which would match the
4712// container using UnorderedElementsAre. Obviously, the size of the container
4713// must be <= n in order to have a match. Examples:
4714//
4715// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4716// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4717// matches Lt(0).
4718// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4719// match Gt(0). The reason is that different matchers must be used for
4720// elements in different slots of the container.
4721//
4722// The matchers can be specified as an array, a pointer and count, a container,
4723// an initializer list, or an STL iterator range. In each of these cases, the
4724// underlying matchers can be either values or matchers.
4725
4726template <typename Iter>
4727inline internal::UnorderedElementsAreArrayMatcher<
4728 typename ::std::iterator_traits<Iter>::value_type>
4729IsSubsetOf(Iter first, Iter last) {
4730 typedef typename ::std::iterator_traits<Iter>::value_type T;
4731 return internal::UnorderedElementsAreArrayMatcher<T>(
4732 internal::UnorderedMatcherRequire::Subset, first, last);
4733}
4734
4735template <typename T>
4736inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4737 const T* pointer, size_t count) {
4738 return IsSubsetOf(pointer, pointer + count);
4739}
4740
4741template <typename T, size_t N>
4742inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4743 const T (&array)[N]) {
4744 return IsSubsetOf(array, N);
4745}
4746
4747template <typename Container>
4748inline internal::UnorderedElementsAreArrayMatcher<
4749 typename Container::value_type>
4750IsSubsetOf(const Container& container) {
4751 return IsSubsetOf(container.begin(), container.end());
4752}
4753
4754template <typename T>
4755inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4756 ::std::initializer_list<T> xs) {
4757 return IsSubsetOf(xs.begin(), xs.end());
4758}
4759
4760// Matches an STL-style container or a native array that contains only
4761// elements matching the given value or matcher.
4762//
4763// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
4764// the messages are different.
4765//
4766// Examples:
4767// ::std::set<int> page_ids;
4768// // Each(m) matches an empty container, regardless of what m is.
4769// EXPECT_THAT(page_ids, Each(Eq(1)));
4770// EXPECT_THAT(page_ids, Each(Eq(77)));
4771//
4772// page_ids.insert(3);
4773// EXPECT_THAT(page_ids, Each(Gt(0)));
4774// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4775// page_ids.insert(1);
4776// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4777//
4778// ::std::map<int, size_t> page_lengths;
4779// page_lengths[1] = 100;
4780// page_lengths[2] = 200;
4781// page_lengths[3] = 300;
4782// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4783// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4784//
4785// const char* user_ids[] = { "joe", "mike", "tom" };
4786// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4787template <typename M>
4788inline internal::EachMatcher<M> Each(M matcher) {
4789 return internal::EachMatcher<M>(matcher);
4790}
4791
4792// Key(inner_matcher) matches an std::pair whose 'first' field matches
4793// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
4794// std::map that contains at least one element whose key is >= 5.
4795template <typename M>
4796inline internal::KeyMatcher<M> Key(M inner_matcher) {
4797 return internal::KeyMatcher<M>(inner_matcher);
4798}
4799
4800// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4801// matches first_matcher and whose 'second' field matches second_matcher. For
4802// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4803// to match a std::map<int, string> that contains exactly one element whose key
4804// is >= 5 and whose value equals "foo".
4805template <typename FirstMatcher, typename SecondMatcher>
4806inline internal::PairMatcher<FirstMatcher, SecondMatcher>
4807Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
4808 return internal::PairMatcher<FirstMatcher, SecondMatcher>(
4809 first_matcher, second_matcher);
4810}
4811
4812namespace no_adl {
4813// FieldsAre(matchers...) matches piecewise the fields of compatible structs.
4814// These include those that support `get<I>(obj)`, and when structured bindings
4815// are enabled any class that supports them.
4816// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
4817template <typename... M>
4818internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
4819 M&&... matchers) {
4820 return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
4821 std::forward<M>(matchers)...);
4822}
4823
4824// Creates a matcher that matches a pointer (raw or smart) that matches
4825// inner_matcher.
4826template <typename InnerMatcher>
4827inline internal::PointerMatcher<InnerMatcher> Pointer(
4828 const InnerMatcher& inner_matcher) {
4829 return internal::PointerMatcher<InnerMatcher>(inner_matcher);
4830}
4831
4832// Creates a matcher that matches an object that has an address that matches
4833// inner_matcher.
4834template <typename InnerMatcher>
4835inline internal::AddressMatcher<InnerMatcher> Address(
4836 const InnerMatcher& inner_matcher) {
4837 return internal::AddressMatcher<InnerMatcher>(inner_matcher);
4838}
4839} // namespace no_adl
4840
4841// Returns a predicate that is satisfied by anything that matches the
4842// given matcher.
4843template <typename M>
4844inline internal::MatcherAsPredicate<M> Matches(M matcher) {
4845 return internal::MatcherAsPredicate<M>(matcher);
4846}
4847
4848// Returns true if and only if the value matches the matcher.
4849template <typename T, typename M>
4850inline bool Value(const T& value, M matcher) {
4851 return testing::Matches(matcher)(value);
4852}
4853
4854// Matches the value against the given matcher and explains the match
4855// result to listener.
4856template <typename T, typename M>
4857inline bool ExplainMatchResult(
4858 M matcher, const T& value, MatchResultListener* listener) {
4859 return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
4860}
4861
4862// Returns a string representation of the given matcher. Useful for description
4863// strings of matchers defined using MATCHER_P* macros that accept matchers as
4864// their arguments. For example:
4865//
4866// MATCHER_P(XAndYThat, matcher,
4867// "X that " + DescribeMatcher<int>(matcher, negation) +
4868// " and Y that " + DescribeMatcher<double>(matcher, negation)) {
4869// return ExplainMatchResult(matcher, arg.x(), result_listener) &&
4870// ExplainMatchResult(matcher, arg.y(), result_listener);
4871// }
4872template <typename T, typename M>
4873std::string DescribeMatcher(const M& matcher, bool negation = false) {
4874 ::std::stringstream ss;
4875 Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
4876 if (negation) {
4877 monomorphic_matcher.DescribeNegationTo(&ss);
4878 } else {
4879 monomorphic_matcher.DescribeTo(&ss);
4880 }
4881 return ss.str();
4882}
4883
4884template <typename... Args>
4885internal::ElementsAreMatcher<
4886 std::tuple<typename std::decay<const Args&>::type...>>
4887ElementsAre(const Args&... matchers) {
4888 return internal::ElementsAreMatcher<
4889 std::tuple<typename std::decay<const Args&>::type...>>(
4890 std::make_tuple(matchers...));
4891}
4892
4893template <typename... Args>
4894internal::UnorderedElementsAreMatcher<
4895 std::tuple<typename std::decay<const Args&>::type...>>
4896UnorderedElementsAre(const Args&... matchers) {
4897 return internal::UnorderedElementsAreMatcher<
4898 std::tuple<typename std::decay<const Args&>::type...>>(
4899 std::make_tuple(matchers...));
4900}
4901
4902// Define variadic matcher versions.
4903template <typename... Args>
4904internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
4905 const Args&... matchers) {
4906 return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
4907 matchers...);
4908}
4909
4910template <typename... Args>
4911internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
4912 const Args&... matchers) {
4913 return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
4914 matchers...);
4915}
4916
4917// AnyOfArray(array)
4918// AnyOfArray(pointer, count)
4919// AnyOfArray(container)
4920// AnyOfArray({ e1, e2, ..., en })
4921// AnyOfArray(iterator_first, iterator_last)
4922//
4923// AnyOfArray() verifies whether a given value matches any member of a
4924// collection of matchers.
4925//
4926// AllOfArray(array)
4927// AllOfArray(pointer, count)
4928// AllOfArray(container)
4929// AllOfArray({ e1, e2, ..., en })
4930// AllOfArray(iterator_first, iterator_last)
4931//
4932// AllOfArray() verifies whether a given value matches all members of a
4933// collection of matchers.
4934//
4935// The matchers can be specified as an array, a pointer and count, a container,
4936// an initializer list, or an STL iterator range. In each of these cases, the
4937// underlying matchers can be either values or matchers.
4938
4939template <typename Iter>
4940inline internal::AnyOfArrayMatcher<
4941 typename ::std::iterator_traits<Iter>::value_type>
4942AnyOfArray(Iter first, Iter last) {
4943 return internal::AnyOfArrayMatcher<
4944 typename ::std::iterator_traits<Iter>::value_type>(first, last);
4945}
4946
4947template <typename Iter>
4948inline internal::AllOfArrayMatcher<
4949 typename ::std::iterator_traits<Iter>::value_type>
4950AllOfArray(Iter first, Iter last) {
4951 return internal::AllOfArrayMatcher<
4952 typename ::std::iterator_traits<Iter>::value_type>(first, last);
4953}
4954
4955template <typename T>
4956inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
4957 return AnyOfArray(ptr, ptr + count);
4958}
4959
4960template <typename T>
4961inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
4962 return AllOfArray(ptr, ptr + count);
4963}
4964
4965template <typename T, size_t N>
4966inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
4967 return AnyOfArray(array, N);
4968}
4969
4970template <typename T, size_t N>
4971inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
4972 return AllOfArray(array, N);
4973}
4974
4975template <typename Container>
4976inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
4977 const Container& container) {
4978 return AnyOfArray(container.begin(), container.end());
4979}
4980
4981template <typename Container>
4982inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
4983 const Container& container) {
4984 return AllOfArray(container.begin(), container.end());
4985}
4986
4987template <typename T>
4988inline internal::AnyOfArrayMatcher<T> AnyOfArray(
4989 ::std::initializer_list<T> xs) {
4990 return AnyOfArray(xs.begin(), xs.end());
4991}
4992
4993template <typename T>
4994inline internal::AllOfArrayMatcher<T> AllOfArray(
4995 ::std::initializer_list<T> xs) {
4996 return AllOfArray(xs.begin(), xs.end());
4997}
4998
4999// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5000// fields of it matches a_matcher. C++ doesn't support default
5001// arguments for function templates, so we have to overload it.
5002template <size_t... k, typename InnerMatcher>
5003internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5004 InnerMatcher&& matcher) {
5005 return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5006 std::forward<InnerMatcher>(matcher));
5007}
5008
5009// AllArgs(m) is a synonym of m. This is useful in
5010//
5011// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5012//
5013// which is easier to read than
5014//
5015// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5016template <typename InnerMatcher>
5017inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
5018
5019// Returns a matcher that matches the value of an optional<> type variable.
5020// The matcher implementation only uses '!arg' and requires that the optional<>
5021// type has a 'value_type' member type and that '*arg' is of type 'value_type'
5022// and is printable using 'PrintToString'. It is compatible with
5023// std::optional/std::experimental::optional.
5024// Note that to compare an optional type variable against nullopt you should
5025// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5026// optional value contains an optional itself.
5027template <typename ValueMatcher>
5028inline internal::OptionalMatcher<ValueMatcher> Optional(
5029 const ValueMatcher& value_matcher) {
5030 return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5031}
5032
5033// Returns a matcher that matches the value of a absl::any type variable.
5034template <typename T>
5035PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
5036 const Matcher<const T&>& matcher) {
5037 return MakePolymorphicMatcher(
5038 internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5039}
5040
5041// Returns a matcher that matches the value of a variant<> type variable.
5042// The matcher implementation uses ADL to find the holds_alternative and get
5043// functions.
5044// It is compatible with std::variant.
5045template <typename T>
5046PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
5047 const Matcher<const T&>& matcher) {
5048 return MakePolymorphicMatcher(
5049 internal::variant_matcher::VariantMatcher<T>(matcher));
5050}
5051
5052#if GTEST_HAS_EXCEPTIONS
5053
5054// Anything inside the `internal` namespace is internal to the implementation
5055// and must not be used in user code!
5056namespace internal {
5057
5058class WithWhatMatcherImpl {
5059 public:
5060 WithWhatMatcherImpl(Matcher<std::string> matcher)
5061 : matcher_(std::move(matcher)) {}
5062
5063 void DescribeTo(std::ostream* os) const {
5064 *os << "contains .what() that ";
5065 matcher_.DescribeTo(os);
5066 }
5067
5068 void DescribeNegationTo(std::ostream* os) const {
5069 *os << "contains .what() that does not ";
5070 matcher_.DescribeTo(os);
5071 }
5072
5073 template <typename Err>
5074 bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5075 *listener << "which contains .what() that ";
5076 return matcher_.MatchAndExplain(err.what(), listener);
5077 }
5078
5079 private:
5080 const Matcher<std::string> matcher_;
5081};
5082
5083inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5084 Matcher<std::string> m) {
5085 return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5086}
5087
5088template <typename Err>
5089class ExceptionMatcherImpl {
5090 class NeverThrown {
5091 public:
5092 const char* what() const noexcept {
5093 return "this exception should never be thrown";
5094 }
5095 };
5096
5097 // If the matchee raises an exception of a wrong type, we'd like to
5098 // catch it and print its message and type. To do that, we add an additional
5099 // catch clause:
5100 //
5101 // try { ... }
5102 // catch (const Err&) { /* an expected exception */ }
5103 // catch (const std::exception&) { /* exception of a wrong type */ }
5104 //
5105 // However, if the `Err` itself is `std::exception`, we'd end up with two
5106 // identical `catch` clauses:
5107 //
5108 // try { ... }
5109 // catch (const std::exception&) { /* an expected exception */ }
5110 // catch (const std::exception&) { /* exception of a wrong type */ }
5111 //
5112 // This can cause a warning or an error in some compilers. To resolve
5113 // the issue, we use a fake error type whenever `Err` is `std::exception`:
5114 //
5115 // try { ... }
5116 // catch (const std::exception&) { /* an expected exception */ }
5117 // catch (const NeverThrown&) { /* exception of a wrong type */ }
5118 using DefaultExceptionType = typename std::conditional<
5119 std::is_same<typename std::remove_cv<
5120 typename std::remove_reference<Err>::type>::type,
5121 std::exception>::value,
5122 const NeverThrown&, const std::exception&>::type;
5123
5124 public:
5125 ExceptionMatcherImpl(Matcher<const Err&> matcher)
5126 : matcher_(std::move(matcher)) {}
5127
5128 void DescribeTo(std::ostream* os) const {
5129 *os << "throws an exception which is a " << GetTypeName<Err>();
5130 *os << " which ";
5131 matcher_.DescribeTo(os);
5132 }
5133
5134 void DescribeNegationTo(std::ostream* os) const {
5135 *os << "throws an exception which is not a " << GetTypeName<Err>();
5136 *os << " which ";
5137 matcher_.DescribeNegationTo(os);
5138 }
5139
5140 template <typename T>
5141 bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5142 try {
5143 (void)(std::forward<T>(x)());
5144 } catch (const Err& err) {
5145 *listener << "throws an exception which is a " << GetTypeName<Err>();
5146 *listener << " ";
5147 return matcher_.MatchAndExplain(err, listener);
5148 } catch (DefaultExceptionType err) {
5149#if GTEST_HAS_RTTI
5150 *listener << "throws an exception of type " << GetTypeName(typeid(err));
5151 *listener << " ";
5152#else
5153 *listener << "throws an std::exception-derived type ";
5154#endif
5155 *listener << "with description \"" << err.what() << "\"";
5156 return false;
5157 } catch (...) {
5158 *listener << "throws an exception of an unknown type";
5159 return false;
5160 }
5161
5162 *listener << "does not throw any exception";
5163 return false;
5164 }
5165
5166 private:
5167 const Matcher<const Err&> matcher_;
5168};
5169
5170} // namespace internal
5171
5172// Throws()
5173// Throws(exceptionMatcher)
5174// ThrowsMessage(messageMatcher)
5175//
5176// This matcher accepts a callable and verifies that when invoked, it throws
5177// an exception with the given type and properties.
5178//
5179// Examples:
5180//
5181// EXPECT_THAT(
5182// []() { throw std::runtime_error("message"); },
5183// Throws<std::runtime_error>());
5184//
5185// EXPECT_THAT(
5186// []() { throw std::runtime_error("message"); },
5187// ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5188//
5189// EXPECT_THAT(
5190// []() { throw std::runtime_error("message"); },
5191// Throws<std::runtime_error>(
5192// Property(&std::runtime_error::what, HasSubstr("message"))));
5193
5194template <typename Err>
5195PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5196 return MakePolymorphicMatcher(
5197 internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5198}
5199
5200template <typename Err, typename ExceptionMatcher>
5201PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5202 const ExceptionMatcher& exception_matcher) {
5203 // Using matcher cast allows users to pass a matcher of a more broad type.
5204 // For example user may want to pass Matcher<std::exception>
5205 // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5206 return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5207 SafeMatcherCast<const Err&>(exception_matcher)));
5208}
5209
5210template <typename Err, typename MessageMatcher>
5211PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5212 MessageMatcher&& message_matcher) {
5213 static_assert(std::is_base_of<std::exception, Err>::value,
5214 "expected an std::exception-derived type");
5215 return Throws<Err>(internal::WithWhat(
5216 MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5217}
5218
5219#endif // GTEST_HAS_EXCEPTIONS
5220
5221// These macros allow using matchers to check values in Google Test
5222// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5223// succeed if and only if the value matches the matcher. If the assertion
5224// fails, the value and the description of the matcher will be printed.
5225#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
5226 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5227#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
5228 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5229
5230// MATCHER* macroses itself are listed below.
5231#define MATCHER(name, description) \
5232 class name##Matcher \
5233 : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
5234 public: \
5235 template <typename arg_type> \
5236 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5237 public: \
5238 gmock_Impl() {} \
5239 bool MatchAndExplain( \
5240 const arg_type& arg, \
5241 ::testing::MatchResultListener* result_listener) const override; \
5242 void DescribeTo(::std::ostream* gmock_os) const override { \
5243 *gmock_os << FormatDescription(false); \
5244 } \
5245 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5246 *gmock_os << FormatDescription(true); \
5247 } \
5248 \
5249 private: \
5250 ::std::string FormatDescription(bool negation) const { \
5251 ::std::string gmock_description = (description); \
5252 if (!gmock_description.empty()) { \
5253 return gmock_description; \
5254 } \
5255 return ::testing::internal::FormatMatcherDescription(negation, #name, \
5256 {}); \
5257 } \
5258 }; \
5259 }; \
5260 GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \
5261 template <typename arg_type> \
5262 bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
5263 const arg_type& arg, \
5264 ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
5265 const
5266
5267#define MATCHER_P(name, p0, description) \
5268 GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
5269#define MATCHER_P2(name, p0, p1, description) \
5270 GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
5271#define MATCHER_P3(name, p0, p1, p2, description) \
5272 GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
5273#define MATCHER_P4(name, p0, p1, p2, p3, description) \
5274 GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
5275#define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
5276 GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5277 (p0, p1, p2, p3, p4))
5278#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5279 GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
5280 (p0, p1, p2, p3, p4, p5))
5281#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5282 GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
5283 (p0, p1, p2, p3, p4, p5, p6))
5284#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5285 GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
5286 (p0, p1, p2, p3, p4, p5, p6, p7))
5287#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5288 GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
5289 (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5290#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5291 GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
5292 (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5293
5294#define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \
5295 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5296 class full_name : public ::testing::internal::MatcherBaseImpl< \
5297 full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5298 public: \
5299 using full_name::MatcherBaseImpl::MatcherBaseImpl; \
5300 template <typename arg_type> \
5301 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5302 public: \
5303 explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
5304 : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
5305 bool MatchAndExplain( \
5306 const arg_type& arg, \
5307 ::testing::MatchResultListener* result_listener) const override; \
5308 void DescribeTo(::std::ostream* gmock_os) const override { \
5309 *gmock_os << FormatDescription(false); \
5310 } \
5311 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5312 *gmock_os << FormatDescription(true); \
5313 } \
5314 GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5315 \
5316 private: \
5317 ::std::string FormatDescription(bool negation) const { \
5318 ::std::string gmock_description = (description); \
5319 if (!gmock_description.empty()) { \
5320 return gmock_description; \
5321 } \
5322 return ::testing::internal::FormatMatcherDescription( \
5323 negation, #name, \
5324 ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
5325 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5326 GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
5327 } \
5328 }; \
5329 }; \
5330 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5331 inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
5332 GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
5333 return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5334 GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
5335 } \
5336 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5337 template <typename arg_type> \
5338 bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \
5339 arg_type>::MatchAndExplain(const arg_type& arg, \
5340 ::testing::MatchResultListener* \
5341 result_listener GTEST_ATTRIBUTE_UNUSED_) \
5342 const
5343
5344#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5345 GMOCK_PP_TAIL( \
5346 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5347#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5348 , typename arg##_type
5349
5350#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5351 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5352#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5353 , arg##_type
5354
5355#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5356 GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
5357 GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5358#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5359 , arg##_type gmock_p##i
5360
5361#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5362 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5363#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5364 , arg(::std::forward<arg##_type>(gmock_p##i))
5365
5366#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5367 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5368#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5369 const arg##_type arg;
5370
5371#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5372 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5373#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5374
5375#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5376 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5377#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
5378 , gmock_p##i
5379
5380// To prevent ADL on certain functions we put them on a separate namespace.
5381using namespace no_adl; // NOLINT
5382
5383} // namespace testing
5384
5385GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
5386
5387// Include any custom callback matchers added by the local installation.
5388// We must include this header at the end to make sure it can use the
5389// declarations from this file.
5390#include "gmock/internal/custom/gmock-matchers.h"
5391
5392#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5393