1//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the declaration of the Instruction class, which is the
11// base class for all of the LLVM instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTION_H
16#define LLVM_IR_INSTRUCTION_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/ilist_node.h"
22#include "llvm/IR/DebugLoc.h"
23#include "llvm/IR/SymbolTableListTraits.h"
24#include "llvm/IR/User.h"
25#include "llvm/IR/Value.h"
26#include "llvm/Support/Casting.h"
27#include <algorithm>
28#include <cassert>
29#include <cstdint>
30#include <utility>
31
32namespace llvm {
33
34class BasicBlock;
35class FastMathFlags;
36class MDNode;
37class Module;
38struct AAMDNodes;
39
40template <> struct ilist_alloc_traits<Instruction> {
41 static inline void deleteNode(Instruction *V);
42};
43
44class Instruction : public User,
45 public ilist_node_with_parent<Instruction, BasicBlock> {
46 BasicBlock *Parent;
47 DebugLoc DbgLoc; // 'dbg' Metadata cache.
48
49 enum {
50 /// This is a bit stored in the SubClassData field which indicates whether
51 /// this instruction has metadata attached to it or not.
52 HasMetadataBit = 1 << 15
53 };
54
55protected:
56 ~Instruction(); // Use deleteValue() to delete a generic Instruction.
57
58public:
59 Instruction(const Instruction &) = delete;
60 Instruction &operator=(const Instruction &) = delete;
61
62 /// Specialize the methods defined in Value, as we know that an instruction
63 /// can only be used by other instructions.
64 Instruction *user_back() { return cast<Instruction>(*user_begin());}
65 const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
66
67 inline const BasicBlock *getParent() const { return Parent; }
68 inline BasicBlock *getParent() { return Parent; }
69
70 /// Return the module owning the function this instruction belongs to
71 /// or nullptr it the function does not have a module.
72 ///
73 /// Note: this is undefined behavior if the instruction does not have a
74 /// parent, or the parent basic block does not have a parent function.
75 const Module *getModule() const;
76 Module *getModule() {
77 return const_cast<Module *>(
78 static_cast<const Instruction *>(this)->getModule());
79 }
80
81 /// Return the function this instruction belongs to.
82 ///
83 /// Note: it is undefined behavior to call this on an instruction not
84 /// currently inserted into a function.
85 const Function *getFunction() const;
86 Function *getFunction() {
87 return const_cast<Function *>(
88 static_cast<const Instruction *>(this)->getFunction());
89 }
90
91 /// This method unlinks 'this' from the containing basic block, but does not
92 /// delete it.
93 void removeFromParent();
94
95 /// This method unlinks 'this' from the containing basic block and deletes it.
96 ///
97 /// \returns an iterator pointing to the element after the erased one
98 SymbolTableList<Instruction>::iterator eraseFromParent();
99
100 /// Insert an unlinked instruction into a basic block immediately before
101 /// the specified instruction.
102 void insertBefore(Instruction *InsertPos);
103
104 /// Insert an unlinked instruction into a basic block immediately after the
105 /// specified instruction.
106 void insertAfter(Instruction *InsertPos);
107
108 /// Unlink this instruction from its current basic block and insert it into
109 /// the basic block that MovePos lives in, right before MovePos.
110 void moveBefore(Instruction *MovePos);
111
112 /// Unlink this instruction and insert into BB before I.
113 ///
114 /// \pre I is a valid iterator into BB.
115 void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
116
117 /// Unlink this instruction from its current basic block and insert it into
118 /// the basic block that MovePos lives in, right after MovePos.
119 void moveAfter(Instruction *MovePos);
120
121 //===--------------------------------------------------------------------===//
122 // Subclass classification.
123 //===--------------------------------------------------------------------===//
124
125 /// Returns a member of one of the enums like Instruction::Add.
126 unsigned getOpcode() const { return getValueID() - InstructionVal; }
127
128 const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
129 bool isTerminator() const { return isTerminator(getOpcode()); }
130 bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
131 bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
132 bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
133 bool isShift() { return isShift(getOpcode()); }
134 bool isCast() const { return isCast(getOpcode()); }
135 bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
136 bool isExceptionalTerminator() const {
137 return isExceptionalTerminator(getOpcode());
138 }
139
140 static const char* getOpcodeName(unsigned OpCode);
141
142 static inline bool isTerminator(unsigned OpCode) {
143 return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
144 }
145
146 static inline bool isUnaryOp(unsigned Opcode) {
147 return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
148 }
149 static inline bool isBinaryOp(unsigned Opcode) {
150 return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
151 }
152
153 static inline bool isIntDivRem(unsigned Opcode) {
154 return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
155 }
156
157 /// Determine if the Opcode is one of the shift instructions.
158 static inline bool isShift(unsigned Opcode) {
159 return Opcode >= Shl && Opcode <= AShr;
160 }
161
162 /// Return true if this is a logical shift left or a logical shift right.
163 inline bool isLogicalShift() const {
164 return getOpcode() == Shl || getOpcode() == LShr;
165 }
166
167 /// Return true if this is an arithmetic shift right.
168 inline bool isArithmeticShift() const {
169 return getOpcode() == AShr;
170 }
171
172 /// Determine if the Opcode is and/or/xor.
173 static inline bool isBitwiseLogicOp(unsigned Opcode) {
174 return Opcode == And || Opcode == Or || Opcode == Xor;
175 }
176
177 /// Return true if this is and/or/xor.
178 inline bool isBitwiseLogicOp() const {
179 return isBitwiseLogicOp(getOpcode());
180 }
181
182 /// Determine if the OpCode is one of the CastInst instructions.
183 static inline bool isCast(unsigned OpCode) {
184 return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
185 }
186
187 /// Determine if the OpCode is one of the FuncletPadInst instructions.
188 static inline bool isFuncletPad(unsigned OpCode) {
189 return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
190 }
191
192 /// Returns true if the OpCode is a terminator related to exception handling.
193 static inline bool isExceptionalTerminator(unsigned OpCode) {
194 switch (OpCode) {
195 case Instruction::CatchSwitch:
196 case Instruction::CatchRet:
197 case Instruction::CleanupRet:
198 case Instruction::Invoke:
199 case Instruction::Resume:
200 return true;
201 default:
202 return false;
203 }
204 }
205
206 //===--------------------------------------------------------------------===//
207 // Metadata manipulation.
208 //===--------------------------------------------------------------------===//
209
210 /// Return true if this instruction has any metadata attached to it.
211 bool hasMetadata() const { return DbgLoc || hasMetadataHashEntry(); }
212
213 /// Return true if this instruction has metadata attached to it other than a
214 /// debug location.
215 bool hasMetadataOtherThanDebugLoc() const {
216 return hasMetadataHashEntry();
217 }
218
219 /// Get the metadata of given kind attached to this Instruction.
220 /// If the metadata is not found then return null.
221 MDNode *getMetadata(unsigned KindID) const {
222 if (!hasMetadata()) return nullptr;
223 return getMetadataImpl(KindID);
224 }
225
226 /// Get the metadata of given kind attached to this Instruction.
227 /// If the metadata is not found then return null.
228 MDNode *getMetadata(StringRef Kind) const {
229 if (!hasMetadata()) return nullptr;
230 return getMetadataImpl(Kind);
231 }
232
233 /// Get all metadata attached to this Instruction. The first element of each
234 /// pair returned is the KindID, the second element is the metadata value.
235 /// This list is returned sorted by the KindID.
236 void
237 getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
238 if (hasMetadata())
239 getAllMetadataImpl(MDs);
240 }
241
242 /// This does the same thing as getAllMetadata, except that it filters out the
243 /// debug location.
244 void getAllMetadataOtherThanDebugLoc(
245 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
246 if (hasMetadataOtherThanDebugLoc())
247 getAllMetadataOtherThanDebugLocImpl(MDs);
248 }
249
250 /// Fills the AAMDNodes structure with AA metadata from this instruction.
251 /// When Merge is true, the existing AA metadata is merged with that from this
252 /// instruction providing the most-general result.
253 void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
254
255 /// Set the metadata of the specified kind to the specified node. This updates
256 /// or replaces metadata if already present, or removes it if Node is null.
257 void setMetadata(unsigned KindID, MDNode *Node);
258 void setMetadata(StringRef Kind, MDNode *Node);
259
260 /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
261 /// specifies the list of meta data that needs to be copied. If \p WL is
262 /// empty, all meta data will be copied.
263 void copyMetadata(const Instruction &SrcInst,
264 ArrayRef<unsigned> WL = ArrayRef<unsigned>());
265
266 /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
267 /// has three operands (including name string), swap the order of the
268 /// metadata.
269 void swapProfMetadata();
270
271 /// Drop all unknown metadata except for debug locations.
272 /// @{
273 /// Passes are required to drop metadata they don't understand. This is a
274 /// convenience method for passes to do so.
275 void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
276 void dropUnknownNonDebugMetadata() {
277 return dropUnknownNonDebugMetadata(None);
278 }
279 void dropUnknownNonDebugMetadata(unsigned ID1) {
280 return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
281 }
282 void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
283 unsigned IDs[] = {ID1, ID2};
284 return dropUnknownNonDebugMetadata(IDs);
285 }
286 /// @}
287
288 /// Sets the metadata on this instruction from the AAMDNodes structure.
289 void setAAMetadata(const AAMDNodes &N);
290
291 /// Retrieve the raw weight values of a conditional branch or select.
292 /// Returns true on success with profile weights filled in.
293 /// Returns false if no metadata or invalid metadata was found.
294 bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
295
296 /// Retrieve total raw weight values of a branch.
297 /// Returns true on success with profile total weights filled in.
298 /// Returns false if no metadata was found.
299 bool extractProfTotalWeight(uint64_t &TotalVal) const;
300
301 /// Updates branch_weights metadata by scaling it by \p S / \p T.
302 void updateProfWeight(uint64_t S, uint64_t T);
303
304 /// Sets the branch_weights metadata to \p W for CallInst.
305 void setProfWeight(uint64_t W);
306
307 /// Set the debug location information for this instruction.
308 void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
309
310 /// Return the debug location for this node as a DebugLoc.
311 const DebugLoc &getDebugLoc() const { return DbgLoc; }
312
313 /// Set or clear the nuw flag on this instruction, which must be an operator
314 /// which supports this flag. See LangRef.html for the meaning of this flag.
315 void setHasNoUnsignedWrap(bool b = true);
316
317 /// Set or clear the nsw flag on this instruction, which must be an operator
318 /// which supports this flag. See LangRef.html for the meaning of this flag.
319 void setHasNoSignedWrap(bool b = true);
320
321 /// Set or clear the exact flag on this instruction, which must be an operator
322 /// which supports this flag. See LangRef.html for the meaning of this flag.
323 void setIsExact(bool b = true);
324
325 /// Determine whether the no unsigned wrap flag is set.
326 bool hasNoUnsignedWrap() const;
327
328 /// Determine whether the no signed wrap flag is set.
329 bool hasNoSignedWrap() const;
330
331 /// Drops flags that may cause this instruction to evaluate to poison despite
332 /// having non-poison inputs.
333 void dropPoisonGeneratingFlags();
334
335 /// Determine whether the exact flag is set.
336 bool isExact() const;
337
338 /// Set or clear all fast-math-flags on this instruction, which must be an
339 /// operator which supports this flag. See LangRef.html for the meaning of
340 /// this flag.
341 void setFast(bool B);
342
343 /// Set or clear the reassociation flag on this instruction, which must be
344 /// an operator which supports this flag. See LangRef.html for the meaning of
345 /// this flag.
346 void setHasAllowReassoc(bool B);
347
348 /// Set or clear the no-nans flag on this instruction, which must be an
349 /// operator which supports this flag. See LangRef.html for the meaning of
350 /// this flag.
351 void setHasNoNaNs(bool B);
352
353 /// Set or clear the no-infs flag on this instruction, which must be an
354 /// operator which supports this flag. See LangRef.html for the meaning of
355 /// this flag.
356 void setHasNoInfs(bool B);
357
358 /// Set or clear the no-signed-zeros flag on this instruction, which must be
359 /// an operator which supports this flag. See LangRef.html for the meaning of
360 /// this flag.
361 void setHasNoSignedZeros(bool B);
362
363 /// Set or clear the allow-reciprocal flag on this instruction, which must be
364 /// an operator which supports this flag. See LangRef.html for the meaning of
365 /// this flag.
366 void setHasAllowReciprocal(bool B);
367
368 /// Set or clear the approximate-math-functions flag on this instruction,
369 /// which must be an operator which supports this flag. See LangRef.html for
370 /// the meaning of this flag.
371 void setHasApproxFunc(bool B);
372
373 /// Convenience function for setting multiple fast-math flags on this
374 /// instruction, which must be an operator which supports these flags. See
375 /// LangRef.html for the meaning of these flags.
376 void setFastMathFlags(FastMathFlags FMF);
377
378 /// Convenience function for transferring all fast-math flag values to this
379 /// instruction, which must be an operator which supports these flags. See
380 /// LangRef.html for the meaning of these flags.
381 void copyFastMathFlags(FastMathFlags FMF);
382
383 /// Determine whether all fast-math-flags are set.
384 bool isFast() const;
385
386 /// Determine whether the allow-reassociation flag is set.
387 bool hasAllowReassoc() const;
388
389 /// Determine whether the no-NaNs flag is set.
390 bool hasNoNaNs() const;
391
392 /// Determine whether the no-infs flag is set.
393 bool hasNoInfs() const;
394
395 /// Determine whether the no-signed-zeros flag is set.
396 bool hasNoSignedZeros() const;
397
398 /// Determine whether the allow-reciprocal flag is set.
399 bool hasAllowReciprocal() const;
400
401 /// Determine whether the allow-contract flag is set.
402 bool hasAllowContract() const;
403
404 /// Determine whether the approximate-math-functions flag is set.
405 bool hasApproxFunc() const;
406
407 /// Convenience function for getting all the fast-math flags, which must be an
408 /// operator which supports these flags. See LangRef.html for the meaning of
409 /// these flags.
410 FastMathFlags getFastMathFlags() const;
411
412 /// Copy I's fast-math flags
413 void copyFastMathFlags(const Instruction *I);
414
415 /// Convenience method to copy supported exact, fast-math, and (optionally)
416 /// wrapping flags from V to this instruction.
417 void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
418
419 /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
420 /// V and this instruction.
421 void andIRFlags(const Value *V);
422
423 /// Merge 2 debug locations and apply it to the Instruction. If the
424 /// instruction is a CallIns, we need to traverse the inline chain to find
425 /// the common scope. This is not efficient for N-way merging as each time
426 /// you merge 2 iterations, you need to rebuild the hashmap to find the
427 /// common scope. However, we still choose this API because:
428 /// 1) Simplicity: it takes 2 locations instead of a list of locations.
429 /// 2) In worst case, it increases the complexity from O(N*I) to
430 /// O(2*N*I), where N is # of Instructions to merge, and I is the
431 /// maximum level of inline stack. So it is still linear.
432 /// 3) Merging of call instructions should be extremely rare in real
433 /// applications, thus the N-way merging should be in code path.
434 /// The DebugLoc attached to this instruction will be overwritten by the
435 /// merged DebugLoc.
436 void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
437
438private:
439 /// Return true if we have an entry in the on-the-side metadata hash.
440 bool hasMetadataHashEntry() const {
441 return (getSubclassDataFromValue() & HasMetadataBit) != 0;
442 }
443
444 // These are all implemented in Metadata.cpp.
445 MDNode *getMetadataImpl(unsigned KindID) const;
446 MDNode *getMetadataImpl(StringRef Kind) const;
447 void
448 getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
449 void getAllMetadataOtherThanDebugLocImpl(
450 SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
451 /// Clear all hashtable-based metadata from this instruction.
452 void clearMetadataHashEntries();
453
454public:
455 //===--------------------------------------------------------------------===//
456 // Predicates and helper methods.
457 //===--------------------------------------------------------------------===//
458
459 /// Return true if the instruction is associative:
460 ///
461 /// Associative operators satisfy: x op (y op z) === (x op y) op z
462 ///
463 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
464 ///
465 bool isAssociative() const LLVM_READONLY;
466 static bool isAssociative(unsigned Opcode) {
467 return Opcode == And || Opcode == Or || Opcode == Xor ||
468 Opcode == Add || Opcode == Mul;
469 }
470
471 /// Return true if the instruction is commutative:
472 ///
473 /// Commutative operators satisfy: (x op y) === (y op x)
474 ///
475 /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
476 /// applied to any type.
477 ///
478 bool isCommutative() const { return isCommutative(getOpcode()); }
479 static bool isCommutative(unsigned Opcode) {
480 switch (Opcode) {
481 case Add: case FAdd:
482 case Mul: case FMul:
483 case And: case Or: case Xor:
484 return true;
485 default:
486 return false;
487 }
488 }
489
490 /// Return true if the instruction is idempotent:
491 ///
492 /// Idempotent operators satisfy: x op x === x
493 ///
494 /// In LLVM, the And and Or operators are idempotent.
495 ///
496 bool isIdempotent() const { return isIdempotent(getOpcode()); }
497 static bool isIdempotent(unsigned Opcode) {
498 return Opcode == And || Opcode == Or;
499 }
500
501 /// Return true if the instruction is nilpotent:
502 ///
503 /// Nilpotent operators satisfy: x op x === Id,
504 ///
505 /// where Id is the identity for the operator, i.e. a constant such that
506 /// x op Id === x and Id op x === x for all x.
507 ///
508 /// In LLVM, the Xor operator is nilpotent.
509 ///
510 bool isNilpotent() const { return isNilpotent(getOpcode()); }
511 static bool isNilpotent(unsigned Opcode) {
512 return Opcode == Xor;
513 }
514
515 /// Return true if this instruction may modify memory.
516 bool mayWriteToMemory() const;
517
518 /// Return true if this instruction may read memory.
519 bool mayReadFromMemory() const;
520
521 /// Return true if this instruction may read or write memory.
522 bool mayReadOrWriteMemory() const {
523 return mayReadFromMemory() || mayWriteToMemory();
524 }
525
526 /// Return true if this instruction has an AtomicOrdering of unordered or
527 /// higher.
528 bool isAtomic() const;
529
530 /// Return true if this atomic instruction loads from memory.
531 bool hasAtomicLoad() const;
532
533 /// Return true if this atomic instruction stores to memory.
534 bool hasAtomicStore() const;
535
536 /// Return true if this instruction may throw an exception.
537 bool mayThrow() const;
538
539 /// Return true if this instruction behaves like a memory fence: it can load
540 /// or store to memory location without being given a memory location.
541 bool isFenceLike() const {
542 switch (getOpcode()) {
543 default:
544 return false;
545 // This list should be kept in sync with the list in mayWriteToMemory for
546 // all opcodes which don't have a memory location.
547 case Instruction::Fence:
548 case Instruction::CatchPad:
549 case Instruction::CatchRet:
550 case Instruction::Call:
551 case Instruction::Invoke:
552 return true;
553 }
554 }
555
556 /// Return true if the instruction may have side effects.
557 ///
558 /// Note that this does not consider malloc and alloca to have side
559 /// effects because the newly allocated memory is completely invisible to
560 /// instructions which don't use the returned value. For cases where this
561 /// matters, isSafeToSpeculativelyExecute may be more appropriate.
562 bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
563
564 /// Return true if the instruction can be removed if the result is unused.
565 ///
566 /// When constant folding some instructions cannot be removed even if their
567 /// results are unused. Specifically terminator instructions and calls that
568 /// may have side effects cannot be removed without semantically changing the
569 /// generated program.
570 bool isSafeToRemove() const;
571
572 /// Return true if the instruction is a variety of EH-block.
573 bool isEHPad() const {
574 switch (getOpcode()) {
575 case Instruction::CatchSwitch:
576 case Instruction::CatchPad:
577 case Instruction::CleanupPad:
578 case Instruction::LandingPad:
579 return true;
580 default:
581 return false;
582 }
583 }
584
585 /// Return true if the instruction is a llvm.lifetime.start or
586 /// llvm.lifetime.end marker.
587 bool isLifetimeStartOrEnd() const;
588
589 /// Return a pointer to the next non-debug instruction in the same basic
590 /// block as 'this', or nullptr if no such instruction exists.
591 const Instruction *getNextNonDebugInstruction() const;
592 Instruction *getNextNonDebugInstruction() {
593 return const_cast<Instruction *>(
594 static_cast<const Instruction *>(this)->getNextNonDebugInstruction());
595 }
596
597 /// Return a pointer to the previous non-debug instruction in the same basic
598 /// block as 'this', or nullptr if no such instruction exists.
599 const Instruction *getPrevNonDebugInstruction() const;
600 Instruction *getPrevNonDebugInstruction() {
601 return const_cast<Instruction *>(
602 static_cast<const Instruction *>(this)->getPrevNonDebugInstruction());
603 }
604
605 /// Create a copy of 'this' instruction that is identical in all ways except
606 /// the following:
607 /// * The instruction has no parent
608 /// * The instruction has no name
609 ///
610 Instruction *clone() const;
611
612 /// Return true if the specified instruction is exactly identical to the
613 /// current one. This means that all operands match and any extra information
614 /// (e.g. load is volatile) agree.
615 bool isIdenticalTo(const Instruction *I) const;
616
617 /// This is like isIdenticalTo, except that it ignores the
618 /// SubclassOptionalData flags, which may specify conditions under which the
619 /// instruction's result is undefined.
620 bool isIdenticalToWhenDefined(const Instruction *I) const;
621
622 /// When checking for operation equivalence (using isSameOperationAs) it is
623 /// sometimes useful to ignore certain attributes.
624 enum OperationEquivalenceFlags {
625 /// Check for equivalence ignoring load/store alignment.
626 CompareIgnoringAlignment = 1<<0,
627 /// Check for equivalence treating a type and a vector of that type
628 /// as equivalent.
629 CompareUsingScalarTypes = 1<<1
630 };
631
632 /// This function determines if the specified instruction executes the same
633 /// operation as the current one. This means that the opcodes, type, operand
634 /// types and any other factors affecting the operation must be the same. This
635 /// is similar to isIdenticalTo except the operands themselves don't have to
636 /// be identical.
637 /// @returns true if the specified instruction is the same operation as
638 /// the current one.
639 /// Determine if one instruction is the same operation as another.
640 bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
641
642 /// Return true if there are any uses of this instruction in blocks other than
643 /// the specified block. Note that PHI nodes are considered to evaluate their
644 /// operands in the corresponding predecessor block.
645 bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
646
647 /// Return the number of successors that this instruction has. The instruction
648 /// must be a terminator.
649 unsigned getNumSuccessors() const;
650
651 /// Return the specified successor. This instruction must be a terminator.
652 BasicBlock *getSuccessor(unsigned Idx) const;
653
654 /// Update the specified successor to point at the provided block. This
655 /// instruction must be a terminator.
656 void setSuccessor(unsigned Idx, BasicBlock *BB);
657
658 /// Methods for support type inquiry through isa, cast, and dyn_cast:
659 static bool classof(const Value *V) {
660 return V->getValueID() >= Value::InstructionVal;
661 }
662
663 //----------------------------------------------------------------------
664 // Exported enumerations.
665 //
666 enum TermOps { // These terminate basic blocks
667#define FIRST_TERM_INST(N) TermOpsBegin = N,
668#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
669#define LAST_TERM_INST(N) TermOpsEnd = N+1
670#include "llvm/IR/Instruction.def"
671 };
672
673 enum UnaryOps {
674#define FIRST_UNARY_INST(N) UnaryOpsBegin = N,
675#define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
676#define LAST_UNARY_INST(N) UnaryOpsEnd = N+1
677#include "llvm/IR/Instruction.def"
678 };
679
680 enum BinaryOps {
681#define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
682#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
683#define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
684#include "llvm/IR/Instruction.def"
685 };
686
687 enum MemoryOps {
688#define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
689#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
690#define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
691#include "llvm/IR/Instruction.def"
692 };
693
694 enum CastOps {
695#define FIRST_CAST_INST(N) CastOpsBegin = N,
696#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
697#define LAST_CAST_INST(N) CastOpsEnd = N+1
698#include "llvm/IR/Instruction.def"
699 };
700
701 enum FuncletPadOps {
702#define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
703#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
704#define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
705#include "llvm/IR/Instruction.def"
706 };
707
708 enum OtherOps {
709#define FIRST_OTHER_INST(N) OtherOpsBegin = N,
710#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
711#define LAST_OTHER_INST(N) OtherOpsEnd = N+1
712#include "llvm/IR/Instruction.def"
713 };
714
715private:
716 friend class SymbolTableListTraits<Instruction>;
717
718 // Shadow Value::setValueSubclassData with a private forwarding method so that
719 // subclasses cannot accidentally use it.
720 void setValueSubclassData(unsigned short D) {
721 Value::setValueSubclassData(D);
722 }
723
724 unsigned short getSubclassDataFromValue() const {
725 return Value::getSubclassDataFromValue();
726 }
727
728 void setHasMetadataHashEntry(bool V) {
729 setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) |
730 (V ? HasMetadataBit : 0));
731 }
732
733 void setParent(BasicBlock *P);
734
735protected:
736 // Instruction subclasses can stick up to 15 bits of stuff into the
737 // SubclassData field of instruction with these members.
738
739 // Verify that only the low 15 bits are used.
740 void setInstructionSubclassData(unsigned short D) {
741 assert((D & HasMetadataBit) == 0 && "Out of range value put into field");
742 setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D);
743 }
744
745 unsigned getSubclassDataFromInstruction() const {
746 return getSubclassDataFromValue() & ~HasMetadataBit;
747 }
748
749 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
750 Instruction *InsertBefore = nullptr);
751 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
752 BasicBlock *InsertAtEnd);
753
754private:
755 /// Create a copy of this instruction.
756 Instruction *cloneImpl() const;
757};
758
759inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
760 V->deleteValue();
761}
762
763} // end namespace llvm
764
765#endif // LLVM_IR_INSTRUCTION_H
766