1//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the abstract interface that implements execution support
11// for LLVM.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16#define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
17
18#include "llvm-c/ExecutionEngine.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ExecutionEngine/JITSymbol.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/Module.h"
27#include "llvm/Object/Binary.h"
28#include "llvm/Support/CBindingWrapping.h"
29#include "llvm/Support/CodeGen.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/Mutex.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include <algorithm>
35#include <cstdint>
36#include <functional>
37#include <map>
38#include <memory>
39#include <string>
40#include <vector>
41
42namespace llvm {
43
44class Constant;
45class Function;
46struct GenericValue;
47class GlobalValue;
48class GlobalVariable;
49class JITEventListener;
50class MCJITMemoryManager;
51class ObjectCache;
52class RTDyldMemoryManager;
53class Triple;
54class Type;
55
56namespace object {
57
58class Archive;
59class ObjectFile;
60
61} // end namespace object
62
63/// Helper class for helping synchronize access to the global address map
64/// table. Access to this class should be serialized under a mutex.
65class ExecutionEngineState {
66public:
67 using GlobalAddressMapTy = StringMap<uint64_t>;
68
69private:
70 /// GlobalAddressMap - A mapping between LLVM global symbol names values and
71 /// their actualized version...
72 GlobalAddressMapTy GlobalAddressMap;
73
74 /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
75 /// used to convert raw addresses into the LLVM global value that is emitted
76 /// at the address. This map is not computed unless getGlobalValueAtAddress
77 /// is called at some point.
78 std::map<uint64_t, std::string> GlobalAddressReverseMap;
79
80public:
81 GlobalAddressMapTy &getGlobalAddressMap() {
82 return GlobalAddressMap;
83 }
84
85 std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
86 return GlobalAddressReverseMap;
87 }
88
89 /// Erase an entry from the mapping table.
90 ///
91 /// \returns The address that \p ToUnmap was happed to.
92 uint64_t RemoveMapping(StringRef Name);
93};
94
95using FunctionCreator = std::function<void *(const std::string &)>;
96
97/// Abstract interface for implementation execution of LLVM modules,
98/// designed to support both interpreter and just-in-time (JIT) compiler
99/// implementations.
100class ExecutionEngine {
101 /// The state object holding the global address mapping, which must be
102 /// accessed synchronously.
103 //
104 // FIXME: There is no particular need the entire map needs to be
105 // synchronized. Wouldn't a reader-writer design be better here?
106 ExecutionEngineState EEState;
107
108 /// The target data for the platform for which execution is being performed.
109 ///
110 /// Note: the DataLayout is LLVMContext specific because it has an
111 /// internal cache based on type pointers. It makes unsafe to reuse the
112 /// ExecutionEngine across context, we don't enforce this rule but undefined
113 /// behavior can occurs if the user tries to do it.
114 const DataLayout DL;
115
116 /// Whether lazy JIT compilation is enabled.
117 bool CompilingLazily;
118
119 /// Whether JIT compilation of external global variables is allowed.
120 bool GVCompilationDisabled;
121
122 /// Whether the JIT should perform lookups of external symbols (e.g.,
123 /// using dlsym).
124 bool SymbolSearchingDisabled;
125
126 /// Whether the JIT should verify IR modules during compilation.
127 bool VerifyModules;
128
129 friend class EngineBuilder; // To allow access to JITCtor and InterpCtor.
130
131protected:
132 /// The list of Modules that we are JIT'ing from. We use a SmallVector to
133 /// optimize for the case where there is only one module.
134 SmallVector<std::unique_ptr<Module>, 1> Modules;
135
136 /// getMemoryforGV - Allocate memory for a global variable.
137 virtual char *getMemoryForGV(const GlobalVariable *GV);
138
139 static ExecutionEngine *(*MCJITCtor)(
140 std::unique_ptr<Module> M, std::string *ErrorStr,
141 std::shared_ptr<MCJITMemoryManager> MM,
142 std::shared_ptr<LegacyJITSymbolResolver> SR,
143 std::unique_ptr<TargetMachine> TM);
144
145 static ExecutionEngine *(*OrcMCJITReplacementCtor)(
146 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MM,
147 std::shared_ptr<LegacyJITSymbolResolver> SR,
148 std::unique_ptr<TargetMachine> TM);
149
150 static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
151 std::string *ErrorStr);
152
153 /// LazyFunctionCreator - If an unknown function is needed, this function
154 /// pointer is invoked to create it. If this returns null, the JIT will
155 /// abort.
156 FunctionCreator LazyFunctionCreator;
157
158 /// getMangledName - Get mangled name.
159 std::string getMangledName(const GlobalValue *GV);
160
161public:
162 /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
163 /// be held while changing the internal state of any of those classes.
164 sys::Mutex lock;
165
166 //===--------------------------------------------------------------------===//
167 // ExecutionEngine Startup
168 //===--------------------------------------------------------------------===//
169
170 virtual ~ExecutionEngine();
171
172 /// Add a Module to the list of modules that we can JIT from.
173 virtual void addModule(std::unique_ptr<Module> M) {
174 Modules.push_back(std::move(M));
175 }
176
177 /// addObjectFile - Add an ObjectFile to the execution engine.
178 ///
179 /// This method is only supported by MCJIT. MCJIT will immediately load the
180 /// object into memory and adds its symbols to the list used to resolve
181 /// external symbols while preparing other objects for execution.
182 ///
183 /// Objects added using this function will not be made executable until
184 /// needed by another object.
185 ///
186 /// MCJIT will take ownership of the ObjectFile.
187 virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
188 virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
189
190 /// addArchive - Add an Archive to the execution engine.
191 ///
192 /// This method is only supported by MCJIT. MCJIT will use the archive to
193 /// resolve external symbols in objects it is loading. If a symbol is found
194 /// in the Archive the contained object file will be extracted (in memory)
195 /// and loaded for possible execution.
196 virtual void addArchive(object::OwningBinary<object::Archive> A);
197
198 //===--------------------------------------------------------------------===//
199
200 const DataLayout &getDataLayout() const { return DL; }
201
202 /// removeModule - Removes a Module from the list of modules, but does not
203 /// free the module's memory. Returns true if M is found, in which case the
204 /// caller assumes responsibility for deleting the module.
205 //
206 // FIXME: This stealth ownership transfer is horrible. This will probably be
207 // fixed by deleting ExecutionEngine.
208 virtual bool removeModule(Module *M);
209
210 /// FindFunctionNamed - Search all of the active modules to find the function that
211 /// defines FnName. This is very slow operation and shouldn't be used for
212 /// general code.
213 virtual Function *FindFunctionNamed(StringRef FnName);
214
215 /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
216 /// that defines Name. This is very slow operation and shouldn't be used for
217 /// general code.
218 virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
219
220 /// runFunction - Execute the specified function with the specified arguments,
221 /// and return the result.
222 ///
223 /// For MCJIT execution engines, clients are encouraged to use the
224 /// "GetFunctionAddress" method (rather than runFunction) and cast the
225 /// returned uint64_t to the desired function pointer type. However, for
226 /// backwards compatibility MCJIT's implementation can execute 'main-like'
227 /// function (i.e. those returning void or int, and taking either no
228 /// arguments or (int, char*[])).
229 virtual GenericValue runFunction(Function *F,
230 ArrayRef<GenericValue> ArgValues) = 0;
231
232 /// getPointerToNamedFunction - This method returns the address of the
233 /// specified function by using the dlsym function call. As such it is only
234 /// useful for resolving library symbols, not code generated symbols.
235 ///
236 /// If AbortOnFailure is false and no function with the given name is
237 /// found, this function silently returns a null pointer. Otherwise,
238 /// it prints a message to stderr and aborts.
239 ///
240 /// This function is deprecated for the MCJIT execution engine.
241 virtual void *getPointerToNamedFunction(StringRef Name,
242 bool AbortOnFailure = true) = 0;
243
244 /// mapSectionAddress - map a section to its target address space value.
245 /// Map the address of a JIT section as returned from the memory manager
246 /// to the address in the target process as the running code will see it.
247 /// This is the address which will be used for relocation resolution.
248 virtual void mapSectionAddress(const void *LocalAddress,
249 uint64_t TargetAddress) {
250 llvm_unreachable("Re-mapping of section addresses not supported with this "
251 "EE!");
252 }
253
254 /// generateCodeForModule - Run code generation for the specified module and
255 /// load it into memory.
256 ///
257 /// When this function has completed, all code and data for the specified
258 /// module, and any module on which this module depends, will be generated
259 /// and loaded into memory, but relocations will not yet have been applied
260 /// and all memory will be readable and writable but not executable.
261 ///
262 /// This function is primarily useful when generating code for an external
263 /// target, allowing the client an opportunity to remap section addresses
264 /// before relocations are applied. Clients that intend to execute code
265 /// locally can use the getFunctionAddress call, which will generate code
266 /// and apply final preparations all in one step.
267 ///
268 /// This method has no effect for the interpeter.
269 virtual void generateCodeForModule(Module *M) {}
270
271 /// finalizeObject - ensure the module is fully processed and is usable.
272 ///
273 /// It is the user-level function for completing the process of making the
274 /// object usable for execution. It should be called after sections within an
275 /// object have been relocated using mapSectionAddress. When this method is
276 /// called the MCJIT execution engine will reapply relocations for a loaded
277 /// object. This method has no effect for the interpeter.
278 virtual void finalizeObject() {}
279
280 /// runStaticConstructorsDestructors - This method is used to execute all of
281 /// the static constructors or destructors for a program.
282 ///
283 /// \param isDtors - Run the destructors instead of constructors.
284 virtual void runStaticConstructorsDestructors(bool isDtors);
285
286 /// This method is used to execute all of the static constructors or
287 /// destructors for a particular module.
288 ///
289 /// \param isDtors - Run the destructors instead of constructors.
290 void runStaticConstructorsDestructors(Module &module, bool isDtors);
291
292
293 /// runFunctionAsMain - This is a helper function which wraps runFunction to
294 /// handle the common task of starting up main with the specified argc, argv,
295 /// and envp parameters.
296 int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
297 const char * const * envp);
298
299
300 /// addGlobalMapping - Tell the execution engine that the specified global is
301 /// at the specified location. This is used internally as functions are JIT'd
302 /// and as global variables are laid out in memory. It can and should also be
303 /// used by clients of the EE that want to have an LLVM global overlay
304 /// existing data in memory. Values to be mapped should be named, and have
305 /// external or weak linkage. Mappings are automatically removed when their
306 /// GlobalValue is destroyed.
307 void addGlobalMapping(const GlobalValue *GV, void *Addr);
308 void addGlobalMapping(StringRef Name, uint64_t Addr);
309
310 /// clearAllGlobalMappings - Clear all global mappings and start over again,
311 /// for use in dynamic compilation scenarios to move globals.
312 void clearAllGlobalMappings();
313
314 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
315 /// particular module, because it has been removed from the JIT.
316 void clearGlobalMappingsFromModule(Module *M);
317
318 /// updateGlobalMapping - Replace an existing mapping for GV with a new
319 /// address. This updates both maps as required. If "Addr" is null, the
320 /// entry for the global is removed from the mappings. This returns the old
321 /// value of the pointer, or null if it was not in the map.
322 uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
323 uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
324
325 /// getAddressToGlobalIfAvailable - This returns the address of the specified
326 /// global symbol.
327 uint64_t getAddressToGlobalIfAvailable(StringRef S);
328
329 /// getPointerToGlobalIfAvailable - This returns the address of the specified
330 /// global value if it is has already been codegen'd, otherwise it returns
331 /// null.
332 void *getPointerToGlobalIfAvailable(StringRef S);
333 void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
334
335 /// getPointerToGlobal - This returns the address of the specified global
336 /// value. This may involve code generation if it's a function.
337 ///
338 /// This function is deprecated for the MCJIT execution engine. Use
339 /// getGlobalValueAddress instead.
340 void *getPointerToGlobal(const GlobalValue *GV);
341
342 /// getPointerToFunction - The different EE's represent function bodies in
343 /// different ways. They should each implement this to say what a function
344 /// pointer should look like. When F is destroyed, the ExecutionEngine will
345 /// remove its global mapping and free any machine code. Be sure no threads
346 /// are running inside F when that happens.
347 ///
348 /// This function is deprecated for the MCJIT execution engine. Use
349 /// getFunctionAddress instead.
350 virtual void *getPointerToFunction(Function *F) = 0;
351
352 /// getPointerToFunctionOrStub - If the specified function has been
353 /// code-gen'd, return a pointer to the function. If not, compile it, or use
354 /// a stub to implement lazy compilation if available. See
355 /// getPointerToFunction for the requirements on destroying F.
356 ///
357 /// This function is deprecated for the MCJIT execution engine. Use
358 /// getFunctionAddress instead.
359 virtual void *getPointerToFunctionOrStub(Function *F) {
360 // Default implementation, just codegen the function.
361 return getPointerToFunction(F);
362 }
363
364 /// getGlobalValueAddress - Return the address of the specified global
365 /// value. This may involve code generation.
366 ///
367 /// This function should not be called with the interpreter engine.
368 virtual uint64_t getGlobalValueAddress(const std::string &Name) {
369 // Default implementation for the interpreter. MCJIT will override this.
370 // JIT and interpreter clients should use getPointerToGlobal instead.
371 return 0;
372 }
373
374 /// getFunctionAddress - Return the address of the specified function.
375 /// This may involve code generation.
376 virtual uint64_t getFunctionAddress(const std::string &Name) {
377 // Default implementation for the interpreter. MCJIT will override this.
378 // Interpreter clients should use getPointerToFunction instead.
379 return 0;
380 }
381
382 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
383 /// at the specified address.
384 ///
385 const GlobalValue *getGlobalValueAtAddress(void *Addr);
386
387 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
388 /// Ptr is the address of the memory at which to store Val, cast to
389 /// GenericValue *. It is not a pointer to a GenericValue containing the
390 /// address at which to store Val.
391 void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
392 Type *Ty);
393
394 void InitializeMemory(const Constant *Init, void *Addr);
395
396 /// getOrEmitGlobalVariable - Return the address of the specified global
397 /// variable, possibly emitting it to memory if needed. This is used by the
398 /// Emitter.
399 ///
400 /// This function is deprecated for the MCJIT execution engine. Use
401 /// getGlobalValueAddress instead.
402 virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
403 return getPointerToGlobal((const GlobalValue *)GV);
404 }
405
406 /// Registers a listener to be called back on various events within
407 /// the JIT. See JITEventListener.h for more details. Does not
408 /// take ownership of the argument. The argument may be NULL, in
409 /// which case these functions do nothing.
410 virtual void RegisterJITEventListener(JITEventListener *) {}
411 virtual void UnregisterJITEventListener(JITEventListener *) {}
412
413 /// Sets the pre-compiled object cache. The ownership of the ObjectCache is
414 /// not changed. Supported by MCJIT but not the interpreter.
415 virtual void setObjectCache(ObjectCache *) {
416 llvm_unreachable("No support for an object cache");
417 }
418
419 /// setProcessAllSections (MCJIT Only): By default, only sections that are
420 /// "required for execution" are passed to the RTDyldMemoryManager, and other
421 /// sections are discarded. Passing 'true' to this method will cause
422 /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
423 /// of whether they are "required to execute" in the usual sense.
424 ///
425 /// Rationale: Some MCJIT clients want to be able to inspect metadata
426 /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
427 /// performance. Passing these sections to the memory manager allows the
428 /// client to make policy about the relevant sections, rather than having
429 /// MCJIT do it.
430 virtual void setProcessAllSections(bool ProcessAllSections) {
431 llvm_unreachable("No support for ProcessAllSections option");
432 }
433
434 /// Return the target machine (if available).
435 virtual TargetMachine *getTargetMachine() { return nullptr; }
436
437 /// DisableLazyCompilation - When lazy compilation is off (the default), the
438 /// JIT will eagerly compile every function reachable from the argument to
439 /// getPointerToFunction. If lazy compilation is turned on, the JIT will only
440 /// compile the one function and emit stubs to compile the rest when they're
441 /// first called. If lazy compilation is turned off again while some lazy
442 /// stubs are still around, and one of those stubs is called, the program will
443 /// abort.
444 ///
445 /// In order to safely compile lazily in a threaded program, the user must
446 /// ensure that 1) only one thread at a time can call any particular lazy
447 /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
448 /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
449 /// lazy stub. See http://llvm.org/PR5184 for details.
450 void DisableLazyCompilation(bool Disabled = true) {
451 CompilingLazily = !Disabled;
452 }
453 bool isCompilingLazily() const {
454 return CompilingLazily;
455 }
456
457 /// DisableGVCompilation - If called, the JIT will abort if it's asked to
458 /// allocate space and populate a GlobalVariable that is not internal to
459 /// the module.
460 void DisableGVCompilation(bool Disabled = true) {
461 GVCompilationDisabled = Disabled;
462 }
463 bool isGVCompilationDisabled() const {
464 return GVCompilationDisabled;
465 }
466
467 /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
468 /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to
469 /// resolve symbols in a custom way.
470 void DisableSymbolSearching(bool Disabled = true) {
471 SymbolSearchingDisabled = Disabled;
472 }
473 bool isSymbolSearchingDisabled() const {
474 return SymbolSearchingDisabled;
475 }
476
477 /// Enable/Disable IR module verification.
478 ///
479 /// Note: Module verification is enabled by default in Debug builds, and
480 /// disabled by default in Release. Use this method to override the default.
481 void setVerifyModules(bool Verify) {
482 VerifyModules = Verify;
483 }
484 bool getVerifyModules() const {
485 return VerifyModules;
486 }
487
488 /// InstallLazyFunctionCreator - If an unknown function is needed, the
489 /// specified function pointer is invoked to create it. If it returns null,
490 /// the JIT will abort.
491 void InstallLazyFunctionCreator(FunctionCreator C) {
492 LazyFunctionCreator = std::move(C);
493 }
494
495protected:
496 ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
497 explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
498 explicit ExecutionEngine(std::unique_ptr<Module> M);
499
500 void emitGlobals();
501
502 void EmitGlobalVariable(const GlobalVariable *GV);
503
504 GenericValue getConstantValue(const Constant *C);
505 void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
506 Type *Ty);
507
508private:
509 void Init(std::unique_ptr<Module> M);
510};
511
512namespace EngineKind {
513
514 // These are actually bitmasks that get or-ed together.
515 enum Kind {
516 JIT = 0x1,
517 Interpreter = 0x2
518 };
519 const static Kind Either = (Kind)(JIT | Interpreter);
520
521} // end namespace EngineKind
522
523/// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
524/// chaining the various set* methods, and terminating it with a .create()
525/// call.
526class EngineBuilder {
527private:
528 std::unique_ptr<Module> M;
529 EngineKind::Kind WhichEngine;
530 std::string *ErrorStr;
531 CodeGenOpt::Level OptLevel;
532 std::shared_ptr<MCJITMemoryManager> MemMgr;
533 std::shared_ptr<LegacyJITSymbolResolver> Resolver;
534 TargetOptions Options;
535 Optional<Reloc::Model> RelocModel;
536 Optional<CodeModel::Model> CMModel;
537 std::string MArch;
538 std::string MCPU;
539 SmallVector<std::string, 4> MAttrs;
540 bool VerifyModules;
541 bool UseOrcMCJITReplacement;
542 bool EmulatedTLS = true;
543
544public:
545 /// Default constructor for EngineBuilder.
546 EngineBuilder();
547
548 /// Constructor for EngineBuilder.
549 EngineBuilder(std::unique_ptr<Module> M);
550
551 // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
552 ~EngineBuilder();
553
554 /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
555 /// or whichever engine works. This option defaults to EngineKind::Either.
556 EngineBuilder &setEngineKind(EngineKind::Kind w) {
557 WhichEngine = w;
558 return *this;
559 }
560
561 /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
562 /// clients to customize their memory allocation policies for the MCJIT. This
563 /// is only appropriate for the MCJIT; setting this and configuring the builder
564 /// to create anything other than MCJIT will cause a runtime error. If create()
565 /// is called and is successful, the created engine takes ownership of the
566 /// memory manager. This option defaults to NULL.
567 EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
568
569 EngineBuilder&
570 setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
571
572 EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
573
574 /// setErrorStr - Set the error string to write to on error. This option
575 /// defaults to NULL.
576 EngineBuilder &setErrorStr(std::string *e) {
577 ErrorStr = e;
578 return *this;
579 }
580
581 /// setOptLevel - Set the optimization level for the JIT. This option
582 /// defaults to CodeGenOpt::Default.
583 EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
584 OptLevel = l;
585 return *this;
586 }
587
588 /// setTargetOptions - Set the target options that the ExecutionEngine
589 /// target is using. Defaults to TargetOptions().
590 EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
591 Options = Opts;
592 return *this;
593 }
594
595 /// setRelocationModel - Set the relocation model that the ExecutionEngine
596 /// target is using. Defaults to target specific default "Reloc::Default".
597 EngineBuilder &setRelocationModel(Reloc::Model RM) {
598 RelocModel = RM;
599 return *this;
600 }
601
602 /// setCodeModel - Set the CodeModel that the ExecutionEngine target
603 /// data is using. Defaults to target specific default
604 /// "CodeModel::JITDefault".
605 EngineBuilder &setCodeModel(CodeModel::Model M) {
606 CMModel = M;
607 return *this;
608 }
609
610 /// setMArch - Override the architecture set by the Module's triple.
611 EngineBuilder &setMArch(StringRef march) {
612 MArch.assign(march.begin(), march.end());
613 return *this;
614 }
615
616 /// setMCPU - Target a specific cpu type.
617 EngineBuilder &setMCPU(StringRef mcpu) {
618 MCPU.assign(mcpu.begin(), mcpu.end());
619 return *this;
620 }
621
622 /// setVerifyModules - Set whether the JIT implementation should verify
623 /// IR modules during compilation.
624 EngineBuilder &setVerifyModules(bool Verify) {
625 VerifyModules = Verify;
626 return *this;
627 }
628
629 /// setMAttrs - Set cpu-specific attributes.
630 template<typename StringSequence>
631 EngineBuilder &setMAttrs(const StringSequence &mattrs) {
632 MAttrs.clear();
633 MAttrs.append(mattrs.begin(), mattrs.end());
634 return *this;
635 }
636
637 // Use OrcMCJITReplacement instead of MCJIT. Off by default.
638 void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
639 this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
640 }
641
642 void setEmulatedTLS(bool EmulatedTLS) {
643 this->EmulatedTLS = EmulatedTLS;
644 }
645
646 TargetMachine *selectTarget();
647
648 /// selectTarget - Pick a target either via -march or by guessing the native
649 /// arch. Add any CPU features specified via -mcpu or -mattr.
650 TargetMachine *selectTarget(const Triple &TargetTriple,
651 StringRef MArch,
652 StringRef MCPU,
653 const SmallVectorImpl<std::string>& MAttrs);
654
655 ExecutionEngine *create() {
656 return create(selectTarget());
657 }
658
659 ExecutionEngine *create(TargetMachine *TM);
660};
661
662// Create wrappers for C Binding types (see CBindingWrapping.h).
663DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
664
665} // end namespace llvm
666
667#endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
668