1 | /* Copyright 2003-2013 Joaquin M Lopez Munoz. |
2 | * Distributed under the Boost Software License, Version 1.0. |
3 | * (See accompanying file LICENSE_1_0.txt or copy at |
4 | * http://www.boost.org/LICENSE_1_0.txt) |
5 | * |
6 | * See http://www.boost.org/libs/multi_index for library home page. |
7 | */ |
8 | |
9 | #ifndef BOOST_MULTI_INDEX_DETAIL_INDEX_MATCHER_HPP |
10 | #define BOOST_MULTI_INDEX_DETAIL_INDEX_MATCHER_HPP |
11 | |
12 | #if defined(_MSC_VER) |
13 | #pragma once |
14 | #endif |
15 | |
16 | #include <boost/config.hpp> /* keep it first to prevent nasty warns in MSVC */ |
17 | #include <algorithm> |
18 | #include <boost/noncopyable.hpp> |
19 | #include <boost/multi_index/detail/auto_space.hpp> |
20 | #include <cstddef> |
21 | #include <functional> |
22 | |
23 | namespace boost{ |
24 | |
25 | namespace multi_index{ |
26 | |
27 | namespace detail{ |
28 | |
29 | /* index_matcher compares a sequence of elements against a |
30 | * base sequence, identifying those elements that belong to the |
31 | * longest subsequence which is ordered with respect to the base. |
32 | * For instance, if the base sequence is: |
33 | * |
34 | * 0 1 2 3 4 5 6 7 8 9 |
35 | * |
36 | * and the compared sequence (not necesarilly the same length): |
37 | * |
38 | * 1 4 2 3 0 7 8 9 |
39 | * |
40 | * the elements of the longest ordered subsequence are: |
41 | * |
42 | * 1 2 3 7 8 9 |
43 | * |
44 | * The algorithm for obtaining such a subsequence is called |
45 | * Patience Sorting, described in ch. 1 of: |
46 | * Aldous, D., Diaconis, P.: "Longest increasing subsequences: from |
47 | * patience sorting to the Baik-Deift-Johansson Theorem", Bulletin |
48 | * of the American Mathematical Society, vol. 36, no 4, pp. 413-432, |
49 | * July 1999. |
50 | * http://www.ams.org/bull/1999-36-04/S0273-0979-99-00796-X/ |
51 | * S0273-0979-99-00796-X.pdf |
52 | * |
53 | * This implementation is not fully generic since it assumes that |
54 | * the sequences given are pointed to by index iterators (having a |
55 | * get_node() memfun.) |
56 | */ |
57 | |
58 | namespace index_matcher{ |
59 | |
60 | /* The algorithm stores the nodes of the base sequence and a number |
61 | * of "piles" that are dynamically updated during the calculation |
62 | * stage. From a logical point of view, nodes form an independent |
63 | * sequence from piles. They are stored together so as to minimize |
64 | * allocated memory. |
65 | */ |
66 | |
67 | struct entry |
68 | { |
69 | entry(void* node_,std::size_t pos_=0):node(node_),pos(pos_){} |
70 | |
71 | /* node stuff */ |
72 | |
73 | void* node; |
74 | std::size_t pos; |
75 | entry* previous; |
76 | bool ordered; |
77 | |
78 | struct less_by_node |
79 | { |
80 | bool operator()( |
81 | const entry& x,const entry& y)const |
82 | { |
83 | return std::less<void*>()(x.node,y.node); |
84 | } |
85 | }; |
86 | |
87 | /* pile stuff */ |
88 | |
89 | std::size_t pile_top; |
90 | entry* pile_top_entry; |
91 | |
92 | struct less_by_pile_top |
93 | { |
94 | bool operator()( |
95 | const entry& x,const entry& y)const |
96 | { |
97 | return x.pile_top<y.pile_top; |
98 | } |
99 | }; |
100 | }; |
101 | |
102 | /* common code operating on void *'s */ |
103 | |
104 | template<typename Allocator> |
105 | class algorithm_base:private noncopyable |
106 | { |
107 | protected: |
108 | algorithm_base(const Allocator& al,std::size_t size): |
109 | spc(al,size),size_(size),n_(0),sorted(false) |
110 | { |
111 | } |
112 | |
113 | void add(void* node) |
114 | { |
115 | entries()[n_]=entry(node,n_); |
116 | ++n_; |
117 | } |
118 | |
119 | void begin_algorithm()const |
120 | { |
121 | if(!sorted){ |
122 | std::sort(entries(),entries()+size_,entry::less_by_node()); |
123 | sorted=true; |
124 | } |
125 | num_piles=0; |
126 | } |
127 | |
128 | void add_node_to_algorithm(void* node)const |
129 | { |
130 | entry* ent= |
131 | std::lower_bound( |
132 | entries(),entries()+size_, |
133 | entry(node),entry::less_by_node()); /* localize entry */ |
134 | ent->ordered=false; |
135 | std::size_t n=ent->pos; /* get its position */ |
136 | |
137 | entry dummy(0); |
138 | dummy.pile_top=n; |
139 | |
140 | entry* pile_ent= /* find the first available pile */ |
141 | std::lower_bound( /* to stack the entry */ |
142 | entries(),entries()+num_piles, |
143 | dummy,entry::less_by_pile_top()); |
144 | |
145 | pile_ent->pile_top=n; /* stack the entry */ |
146 | pile_ent->pile_top_entry=ent; |
147 | |
148 | /* if not the first pile, link entry to top of the preceding pile */ |
149 | if(pile_ent>&entries()[0]){ |
150 | ent->previous=(pile_ent-1)->pile_top_entry; |
151 | } |
152 | |
153 | if(pile_ent==&entries()[num_piles]){ /* new pile? */ |
154 | ++num_piles; |
155 | } |
156 | } |
157 | |
158 | void finish_algorithm()const |
159 | { |
160 | if(num_piles>0){ |
161 | /* Mark those elements which are in their correct position, i.e. those |
162 | * belonging to the longest increasing subsequence. These are those |
163 | * elements linked from the top of the last pile. |
164 | */ |
165 | |
166 | entry* ent=entries()[num_piles-1].pile_top_entry; |
167 | for(std::size_t n=num_piles;n--;){ |
168 | ent->ordered=true; |
169 | ent=ent->previous; |
170 | } |
171 | } |
172 | } |
173 | |
174 | bool is_ordered(void * node)const |
175 | { |
176 | return std::lower_bound( |
177 | entries(),entries()+size_, |
178 | entry(node),entry::less_by_node())->ordered; |
179 | } |
180 | |
181 | private: |
182 | entry* entries()const{return &*spc.data();} |
183 | |
184 | auto_space<entry,Allocator> spc; |
185 | std::size_t size_; |
186 | std::size_t n_; |
187 | mutable bool sorted; |
188 | mutable std::size_t num_piles; |
189 | }; |
190 | |
191 | /* The algorithm has three phases: |
192 | * - Initialization, during which the nodes of the base sequence are added. |
193 | * - Execution. |
194 | * - Results querying, through the is_ordered memfun. |
195 | */ |
196 | |
197 | template<typename Node,typename Allocator> |
198 | class algorithm:private algorithm_base<Allocator> |
199 | { |
200 | typedef algorithm_base<Allocator> super; |
201 | |
202 | public: |
203 | algorithm(const Allocator& al,std::size_t size):super(al,size){} |
204 | |
205 | void add(Node* node) |
206 | { |
207 | super::add(node); |
208 | } |
209 | |
210 | template<typename IndexIterator> |
211 | void execute(IndexIterator first,IndexIterator last)const |
212 | { |
213 | super::begin_algorithm(); |
214 | |
215 | for(IndexIterator it=first;it!=last;++it){ |
216 | add_node_to_algorithm(get_node(it)); |
217 | } |
218 | |
219 | super::finish_algorithm(); |
220 | } |
221 | |
222 | bool is_ordered(Node* node)const |
223 | { |
224 | return super::is_ordered(node); |
225 | } |
226 | |
227 | private: |
228 | void add_node_to_algorithm(Node* node)const |
229 | { |
230 | super::add_node_to_algorithm(node); |
231 | } |
232 | |
233 | template<typename IndexIterator> |
234 | static Node* get_node(IndexIterator it) |
235 | { |
236 | return static_cast<Node*>(it.get_node()); |
237 | } |
238 | }; |
239 | |
240 | } /* namespace multi_index::detail::index_matcher */ |
241 | |
242 | } /* namespace multi_index::detail */ |
243 | |
244 | } /* namespace multi_index */ |
245 | |
246 | } /* namespace boost */ |
247 | |
248 | #endif |
249 | |