1// Copyright 2005 Google Inc. All Rights Reserved.
2//
3// Redistribution and use in source and binary forms, with or without
4// modification, are permitted provided that the following conditions are
5// met:
6//
7// * Redistributions of source code must retain the above copyright
8// notice, this list of conditions and the following disclaimer.
9// * Redistributions in binary form must reproduce the above
10// copyright notice, this list of conditions and the following disclaimer
11// in the documentation and/or other materials provided with the
12// distribution.
13// * Neither the name of Google Inc. nor the names of its
14// contributors may be used to endorse or promote products derived from
15// this software without specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29#include "snappy-internal.h"
30#include "snappy-sinksource.h"
31#include "snappy.h"
32
33#if !defined(SNAPPY_HAVE_BMI2)
34// __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2
35// specifically, but it does define __AVX2__ when AVX2 support is available.
36// Fortunately, AVX2 was introduced in Haswell, just like BMI2.
37//
38// BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So,
39// GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which
40// case issuing BMI2 instructions results in a compiler error.
41#if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__))
42#define SNAPPY_HAVE_BMI2 1
43#else
44#define SNAPPY_HAVE_BMI2 0
45#endif
46#endif // !defined(SNAPPY_HAVE_BMI2)
47
48#if SNAPPY_HAVE_BMI2
49// Please do not replace with <x86intrin.h>. or with headers that assume more
50// advanced SSE versions without checking with all the OWNERS.
51#include <immintrin.h>
52#endif
53
54#include <algorithm>
55#include <array>
56#include <cstddef>
57#include <cstdint>
58#include <cstdio>
59#include <cstring>
60#include <string>
61#include <utility>
62#include <vector>
63
64namespace snappy {
65
66namespace {
67
68// The amount of slop bytes writers are using for unconditional copies.
69constexpr int kSlopBytes = 64;
70
71using internal::char_table;
72using internal::COPY_1_BYTE_OFFSET;
73using internal::COPY_2_BYTE_OFFSET;
74using internal::COPY_4_BYTE_OFFSET;
75using internal::kMaximumTagLength;
76using internal::LITERAL;
77#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
78using internal::V128;
79using internal::V128_Load;
80using internal::V128_LoadU;
81using internal::V128_Shuffle;
82using internal::V128_StoreU;
83using internal::V128_DupChar;
84#endif
85
86// We translate the information encoded in a tag through a lookup table to a
87// format that requires fewer instructions to decode. Effectively we store
88// the length minus the tag part of the offset. The lowest significant byte
89// thus stores the length. While total length - offset is given by
90// entry - ExtractOffset(type). The nice thing is that the subtraction
91// immediately sets the flags for the necessary check that offset >= length.
92// This folds the cmp with sub. We engineer the long literals and copy-4 to
93// always fail this check, so their presence doesn't affect the fast path.
94// To prevent literals from triggering the guard against offset < length (offset
95// does not apply to literals) the table is giving them a spurious offset of
96// 256.
97inline constexpr int16_t MakeEntry(int16_t len, int16_t offset) {
98 return len - (offset << 8);
99}
100
101inline constexpr int16_t LengthMinusOffset(int data, int type) {
102 return type == 3 ? 0xFF // copy-4 (or type == 3)
103 : type == 2 ? MakeEntry(data + 1, 0) // copy-2
104 : type == 1 ? MakeEntry((data & 7) + 4, data >> 3) // copy-1
105 : data < 60 ? MakeEntry(data + 1, 1) // note spurious offset.
106 : 0xFF; // long literal
107}
108
109inline constexpr int16_t LengthMinusOffset(uint8_t tag) {
110 return LengthMinusOffset(tag >> 2, tag & 3);
111}
112
113template <size_t... Ints>
114struct index_sequence {};
115
116template <std::size_t N, size_t... Is>
117struct make_index_sequence : make_index_sequence<N - 1, N - 1, Is...> {};
118
119template <size_t... Is>
120struct make_index_sequence<0, Is...> : index_sequence<Is...> {};
121
122template <size_t... seq>
123constexpr std::array<int16_t, 256> MakeTable(index_sequence<seq...>) {
124 return std::array<int16_t, 256>{LengthMinusOffset(seq)...};
125}
126
127alignas(64) const std::array<int16_t, 256> kLengthMinusOffset =
128 MakeTable(make_index_sequence<256>{});
129
130// Any hash function will produce a valid compressed bitstream, but a good
131// hash function reduces the number of collisions and thus yields better
132// compression for compressible input, and more speed for incompressible
133// input. Of course, it doesn't hurt if the hash function is reasonably fast
134// either, as it gets called a lot.
135inline uint32_t HashBytes(uint32_t bytes, uint32_t mask) {
136 constexpr uint32_t kMagic = 0x1e35a7bd;
137 return ((kMagic * bytes) >> (32 - kMaxHashTableBits)) & mask;
138}
139
140} // namespace
141
142size_t MaxCompressedLength(size_t source_bytes) {
143 // Compressed data can be defined as:
144 // compressed := item* literal*
145 // item := literal* copy
146 //
147 // The trailing literal sequence has a space blowup of at most 62/60
148 // since a literal of length 60 needs one tag byte + one extra byte
149 // for length information.
150 //
151 // Item blowup is trickier to measure. Suppose the "copy" op copies
152 // 4 bytes of data. Because of a special check in the encoding code,
153 // we produce a 4-byte copy only if the offset is < 65536. Therefore
154 // the copy op takes 3 bytes to encode, and this type of item leads
155 // to at most the 62/60 blowup for representing literals.
156 //
157 // Suppose the "copy" op copies 5 bytes of data. If the offset is big
158 // enough, it will take 5 bytes to encode the copy op. Therefore the
159 // worst case here is a one-byte literal followed by a five-byte copy.
160 // I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
161 //
162 // This last factor dominates the blowup, so the final estimate is:
163 return 32 + source_bytes + source_bytes / 6;
164}
165
166namespace {
167
168void UnalignedCopy64(const void* src, void* dst) {
169 char tmp[8];
170 std::memcpy(tmp, src, 8);
171 std::memcpy(dst, tmp, 8);
172}
173
174void UnalignedCopy128(const void* src, void* dst) {
175 // std::memcpy() gets vectorized when the appropriate compiler options are
176 // used. For example, x86 compilers targeting SSE2+ will optimize to an SSE2
177 // load and store.
178 char tmp[16];
179 std::memcpy(tmp, src, 16);
180 std::memcpy(dst, tmp, 16);
181}
182
183template <bool use_16bytes_chunk>
184inline void ConditionalUnalignedCopy128(const char* src, char* dst) {
185 if (use_16bytes_chunk) {
186 UnalignedCopy128(src, dst);
187 } else {
188 UnalignedCopy64(src, dst);
189 UnalignedCopy64(src + 8, dst + 8);
190 }
191}
192
193// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
194// for handling COPY operations where the input and output regions may overlap.
195// For example, suppose:
196// src == "ab"
197// op == src + 2
198// op_limit == op + 20
199// After IncrementalCopySlow(src, op, op_limit), the result will have eleven
200// copies of "ab"
201// ababababababababababab
202// Note that this does not match the semantics of either std::memcpy() or
203// std::memmove().
204inline char* IncrementalCopySlow(const char* src, char* op,
205 char* const op_limit) {
206 // TODO: Remove pragma when LLVM is aware this
207 // function is only called in cold regions and when cold regions don't get
208 // vectorized or unrolled.
209#ifdef __clang__
210#pragma clang loop unroll(disable)
211#endif
212 while (op < op_limit) {
213 *op++ = *src++;
214 }
215 return op_limit;
216}
217
218#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
219
220// Computes the bytes for shuffle control mask (please read comments on
221// 'pattern_generation_masks' as well) for the given index_offset and
222// pattern_size. For example, when the 'offset' is 6, it will generate a
223// repeating pattern of size 6. So, the first 16 byte indexes will correspond to
224// the pattern-bytes {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3} and the
225// next 16 byte indexes will correspond to the pattern-bytes {4, 5, 0, 1, 2, 3,
226// 4, 5, 0, 1, 2, 3, 4, 5, 0, 1}. These byte index sequences are generated by
227// calling MakePatternMaskBytes(0, 6, index_sequence<16>()) and
228// MakePatternMaskBytes(16, 6, index_sequence<16>()) respectively.
229template <size_t... indexes>
230inline constexpr std::array<char, sizeof...(indexes)> MakePatternMaskBytes(
231 int index_offset, int pattern_size, index_sequence<indexes...>) {
232 return {static_cast<char>((index_offset + indexes) % pattern_size)...};
233}
234
235// Computes the shuffle control mask bytes array for given pattern-sizes and
236// returns an array.
237template <size_t... pattern_sizes_minus_one>
238inline constexpr std::array<std::array<char, sizeof(V128)>,
239 sizeof...(pattern_sizes_minus_one)>
240MakePatternMaskBytesTable(int index_offset,
241 index_sequence<pattern_sizes_minus_one...>) {
242 return {
243 MakePatternMaskBytes(index_offset, pattern_sizes_minus_one + 1,
244 make_index_sequence</*indexes=*/sizeof(V128)>())...};
245}
246
247// This is an array of shuffle control masks that can be used as the source
248// operand for PSHUFB to permute the contents of the destination XMM register
249// into a repeating byte pattern.
250alignas(16) constexpr std::array<std::array<char, sizeof(V128)>,
251 16> pattern_generation_masks =
252 MakePatternMaskBytesTable(
253 /*index_offset=*/0,
254 /*pattern_sizes_minus_one=*/make_index_sequence<16>());
255
256// Similar to 'pattern_generation_masks', this table is used to "rotate" the
257// pattern so that we can copy the *next 16 bytes* consistent with the pattern.
258// Basically, pattern_reshuffle_masks is a continuation of
259// pattern_generation_masks. It follows that, pattern_reshuffle_masks is same as
260// pattern_generation_masks for offsets 1, 2, 4, 8 and 16.
261alignas(16) constexpr std::array<std::array<char, sizeof(V128)>,
262 16> pattern_reshuffle_masks =
263 MakePatternMaskBytesTable(
264 /*index_offset=*/16,
265 /*pattern_sizes_minus_one=*/make_index_sequence<16>());
266
267SNAPPY_ATTRIBUTE_ALWAYS_INLINE
268static inline V128 LoadPattern(const char* src, const size_t pattern_size) {
269 V128 generation_mask = V128_Load(reinterpret_cast<const V128*>(
270 pattern_generation_masks[pattern_size - 1].data()));
271 // Uninitialized bytes are masked out by the shuffle mask.
272 // TODO: remove annotation and macro defs once MSan is fixed.
273 SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(src + pattern_size, 16 - pattern_size);
274 return V128_Shuffle(V128_LoadU(reinterpret_cast<const V128*>(src)),
275 generation_mask);
276}
277
278SNAPPY_ATTRIBUTE_ALWAYS_INLINE
279static inline std::pair<V128 /* pattern */, V128 /* reshuffle_mask */>
280LoadPatternAndReshuffleMask(const char* src, const size_t pattern_size) {
281 V128 pattern = LoadPattern(src, pattern_size);
282
283 // This mask will generate the next 16 bytes in-place. Doing so enables us to
284 // write data by at most 4 V128_StoreU.
285 //
286 // For example, suppose pattern is: abcdefabcdefabcd
287 // Shuffling with this mask will generate: efabcdefabcdefab
288 // Shuffling again will generate: cdefabcdefabcdef
289 V128 reshuffle_mask = V128_Load(reinterpret_cast<const V128*>(
290 pattern_reshuffle_masks[pattern_size - 1].data()));
291 return {pattern, reshuffle_mask};
292}
293
294#endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
295
296// Fallback for when we need to copy while extending the pattern, for example
297// copying 10 bytes from 3 positions back abc -> abcabcabcabca.
298//
299// REQUIRES: [dst - offset, dst + 64) is a valid address range.
300SNAPPY_ATTRIBUTE_ALWAYS_INLINE
301static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) {
302#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
303 if (SNAPPY_PREDICT_TRUE(offset <= 16)) {
304 switch (offset) {
305 case 0:
306 return false;
307 case 1: {
308 // TODO: Ideally we should memset, move back once the
309 // codegen issues are fixed.
310 V128 pattern = V128_DupChar(dst[-1]);
311 for (int i = 0; i < 4; i++) {
312 V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
313 }
314 return true;
315 }
316 case 2:
317 case 4:
318 case 8:
319 case 16: {
320 V128 pattern = LoadPattern(dst - offset, offset);
321 for (int i = 0; i < 4; i++) {
322 V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
323 }
324 return true;
325 }
326 default: {
327 auto pattern_and_reshuffle_mask =
328 LoadPatternAndReshuffleMask(dst - offset, offset);
329 V128 pattern = pattern_and_reshuffle_mask.first;
330 V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
331 for (int i = 0; i < 4; i++) {
332 V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
333 pattern = V128_Shuffle(pattern, reshuffle_mask);
334 }
335 return true;
336 }
337 }
338 }
339#else
340 if (SNAPPY_PREDICT_TRUE(offset < 16)) {
341 if (SNAPPY_PREDICT_FALSE(offset == 0)) return false;
342 // Extend the pattern to the first 16 bytes.
343 // The simpler formulation of `dst[i - offset]` induces undefined behavior.
344 for (int i = 0; i < 16; i++) dst[i] = (dst - offset)[i];
345 // Find a multiple of pattern >= 16.
346 static std::array<uint8_t, 16> pattern_sizes = []() {
347 std::array<uint8_t, 16> res;
348 for (int i = 1; i < 16; i++) res[i] = (16 / i + 1) * i;
349 return res;
350 }();
351 offset = pattern_sizes[offset];
352 for (int i = 1; i < 4; i++) {
353 std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
354 }
355 return true;
356 }
357#endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
358
359 // Very rare.
360 for (int i = 0; i < 4; i++) {
361 std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
362 }
363 return true;
364}
365
366// Copy [src, src+(op_limit-op)) to [op, op_limit) but faster than
367// IncrementalCopySlow. buf_limit is the address past the end of the writable
368// region of the buffer.
369inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
370 char* const buf_limit) {
371#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
372 constexpr int big_pattern_size_lower_bound = 16;
373#else
374 constexpr int big_pattern_size_lower_bound = 8;
375#endif
376
377 // Terminology:
378 //
379 // slop = buf_limit - op
380 // pat = op - src
381 // len = op_limit - op
382 assert(src < op);
383 assert(op < op_limit);
384 assert(op_limit <= buf_limit);
385 // NOTE: The copy tags use 3 or 6 bits to store the copy length, so len <= 64.
386 assert(op_limit - op <= 64);
387 // NOTE: In practice the compressor always emits len >= 4, so it is ok to
388 // assume that to optimize this function, but this is not guaranteed by the
389 // compression format, so we have to also handle len < 4 in case the input
390 // does not satisfy these conditions.
391
392 size_t pattern_size = op - src;
393 // The cases are split into different branches to allow the branch predictor,
394 // FDO, and static prediction hints to work better. For each input we list the
395 // ratio of invocations that match each condition.
396 //
397 // input slop < 16 pat < 8 len > 16
398 // ------------------------------------------
399 // html|html4|cp 0% 1.01% 27.73%
400 // urls 0% 0.88% 14.79%
401 // jpg 0% 64.29% 7.14%
402 // pdf 0% 2.56% 58.06%
403 // txt[1-4] 0% 0.23% 0.97%
404 // pb 0% 0.96% 13.88%
405 // bin 0.01% 22.27% 41.17%
406 //
407 // It is very rare that we don't have enough slop for doing block copies. It
408 // is also rare that we need to expand a pattern. Small patterns are common
409 // for incompressible formats and for those we are plenty fast already.
410 // Lengths are normally not greater than 16 but they vary depending on the
411 // input. In general if we always predict len <= 16 it would be an ok
412 // prediction.
413 //
414 // In order to be fast we want a pattern >= 16 bytes (or 8 bytes in non-SSE)
415 // and an unrolled loop copying 1x 16 bytes (or 2x 8 bytes in non-SSE) at a
416 // time.
417
418 // Handle the uncommon case where pattern is less than 16 (or 8 in non-SSE)
419 // bytes.
420 if (pattern_size < big_pattern_size_lower_bound) {
421#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
422 // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
423 // to permute the register's contents in-place into a repeating sequence of
424 // the first "pattern_size" bytes.
425 // For example, suppose:
426 // src == "abc"
427 // op == op + 3
428 // After V128_Shuffle(), "pattern" will have five copies of "abc"
429 // followed by one byte of slop: abcabcabcabcabca.
430 //
431 // The non-SSE fallback implementation suffers from store-forwarding stalls
432 // because its loads and stores partly overlap. By expanding the pattern
433 // in-place, we avoid the penalty.
434
435 // Typically, the op_limit is the gating factor so try to simplify the loop
436 // based on that.
437 if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
438 auto pattern_and_reshuffle_mask =
439 LoadPatternAndReshuffleMask(src, pattern_size);
440 V128 pattern = pattern_and_reshuffle_mask.first;
441 V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
442
443 // There is at least one, and at most four 16-byte blocks. Writing four
444 // conditionals instead of a loop allows FDO to layout the code with
445 // respect to the actual probabilities of each length.
446 // TODO: Replace with loop with trip count hint.
447 V128_StoreU(reinterpret_cast<V128*>(op), pattern);
448
449 if (op + 16 < op_limit) {
450 pattern = V128_Shuffle(pattern, reshuffle_mask);
451 V128_StoreU(reinterpret_cast<V128*>(op + 16), pattern);
452 }
453 if (op + 32 < op_limit) {
454 pattern = V128_Shuffle(pattern, reshuffle_mask);
455 V128_StoreU(reinterpret_cast<V128*>(op + 32), pattern);
456 }
457 if (op + 48 < op_limit) {
458 pattern = V128_Shuffle(pattern, reshuffle_mask);
459 V128_StoreU(reinterpret_cast<V128*>(op + 48), pattern);
460 }
461 return op_limit;
462 }
463 char* const op_end = buf_limit - 15;
464 if (SNAPPY_PREDICT_TRUE(op < op_end)) {
465 auto pattern_and_reshuffle_mask =
466 LoadPatternAndReshuffleMask(src, pattern_size);
467 V128 pattern = pattern_and_reshuffle_mask.first;
468 V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
469
470 // This code path is relatively cold however so we save code size
471 // by avoiding unrolling and vectorizing.
472 //
473 // TODO: Remove pragma when when cold regions don't get
474 // vectorized or unrolled.
475#ifdef __clang__
476#pragma clang loop unroll(disable)
477#endif
478 do {
479 V128_StoreU(reinterpret_cast<V128*>(op), pattern);
480 pattern = V128_Shuffle(pattern, reshuffle_mask);
481 op += 16;
482 } while (SNAPPY_PREDICT_TRUE(op < op_end));
483 }
484 return IncrementalCopySlow(op - pattern_size, op, op_limit);
485#else // !SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
486 // If plenty of buffer space remains, expand the pattern to at least 8
487 // bytes. The way the following loop is written, we need 8 bytes of buffer
488 // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10
489 // bytes if pattern_size is 2. Precisely encoding that is probably not
490 // worthwhile; instead, invoke the slow path if we cannot write 11 bytes
491 // (because 11 are required in the worst case).
492 if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) {
493 while (pattern_size < 8) {
494 UnalignedCopy64(src, op);
495 op += pattern_size;
496 pattern_size *= 2;
497 }
498 if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
499 } else {
500 return IncrementalCopySlow(src, op, op_limit);
501 }
502#endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
503 }
504 assert(pattern_size >= big_pattern_size_lower_bound);
505 constexpr bool use_16bytes_chunk = big_pattern_size_lower_bound == 16;
506
507 // Copy 1x 16 bytes (or 2x 8 bytes in non-SSE) at a time. Because op - src can
508 // be < 16 in non-SSE, a single UnalignedCopy128 might overwrite data in op.
509 // UnalignedCopy64 is safe because expanding the pattern to at least 8 bytes
510 // guarantees that op - src >= 8.
511 //
512 // Typically, the op_limit is the gating factor so try to simplify the loop
513 // based on that.
514 if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
515 // There is at least one, and at most four 16-byte blocks. Writing four
516 // conditionals instead of a loop allows FDO to layout the code with respect
517 // to the actual probabilities of each length.
518 // TODO: Replace with loop with trip count hint.
519 ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
520 if (op + 16 < op_limit) {
521 ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 16, op + 16);
522 }
523 if (op + 32 < op_limit) {
524 ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 32, op + 32);
525 }
526 if (op + 48 < op_limit) {
527 ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 48, op + 48);
528 }
529 return op_limit;
530 }
531
532 // Fall back to doing as much as we can with the available slop in the
533 // buffer. This code path is relatively cold however so we save code size by
534 // avoiding unrolling and vectorizing.
535 //
536 // TODO: Remove pragma when when cold regions don't get vectorized
537 // or unrolled.
538#ifdef __clang__
539#pragma clang loop unroll(disable)
540#endif
541 for (char* op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
542 ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
543 }
544 if (op >= op_limit) return op_limit;
545
546 // We only take this branch if we didn't have enough slop and we can do a
547 // single 8 byte copy.
548 if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) {
549 UnalignedCopy64(src, op);
550 src += 8;
551 op += 8;
552 }
553 return IncrementalCopySlow(src, op, op_limit);
554}
555
556} // namespace
557
558template <bool allow_fast_path>
559static inline char* EmitLiteral(char* op, const char* literal, int len) {
560 // The vast majority of copies are below 16 bytes, for which a
561 // call to std::memcpy() is overkill. This fast path can sometimes
562 // copy up to 15 bytes too much, but that is okay in the
563 // main loop, since we have a bit to go on for both sides:
564 //
565 // - The input will always have kInputMarginBytes = 15 extra
566 // available bytes, as long as we're in the main loop, and
567 // if not, allow_fast_path = false.
568 // - The output will always have 32 spare bytes (see
569 // MaxCompressedLength).
570 assert(len > 0); // Zero-length literals are disallowed
571 int n = len - 1;
572 if (allow_fast_path && len <= 16) {
573 // Fits in tag byte
574 *op++ = LITERAL | (n << 2);
575
576 UnalignedCopy128(literal, op);
577 return op + len;
578 }
579
580 if (n < 60) {
581 // Fits in tag byte
582 *op++ = LITERAL | (n << 2);
583 } else {
584 int count = (Bits::Log2Floor(n) >> 3) + 1;
585 assert(count >= 1);
586 assert(count <= 4);
587 *op++ = LITERAL | ((59 + count) << 2);
588 // Encode in upcoming bytes.
589 // Write 4 bytes, though we may care about only 1 of them. The output buffer
590 // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds
591 // here and there is a std::memcpy() of size 'len' below.
592 LittleEndian::Store32(op, n);
593 op += count;
594 }
595 std::memcpy(op, literal, len);
596 return op + len;
597}
598
599template <bool len_less_than_12>
600static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) {
601 assert(len <= 64);
602 assert(len >= 4);
603 assert(offset < 65536);
604 assert(len_less_than_12 == (len < 12));
605
606 if (len_less_than_12) {
607 uint32_t u = (len << 2) + (offset << 8);
608 uint32_t copy1 = COPY_1_BYTE_OFFSET - (4 << 2) + ((offset >> 3) & 0xe0);
609 uint32_t copy2 = COPY_2_BYTE_OFFSET - (1 << 2);
610 // It turns out that offset < 2048 is a difficult to predict branch.
611 // `perf record` shows this is the highest percentage of branch misses in
612 // benchmarks. This code produces branch free code, the data dependency
613 // chain that bottlenecks the throughput is so long that a few extra
614 // instructions are completely free (IPC << 6 because of data deps).
615 u += offset < 2048 ? copy1 : copy2;
616 LittleEndian::Store32(op, u);
617 op += offset < 2048 ? 2 : 3;
618 } else {
619 // Write 4 bytes, though we only care about 3 of them. The output buffer
620 // is required to have some slack, so the extra byte won't overrun it.
621 uint32_t u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8);
622 LittleEndian::Store32(op, u);
623 op += 3;
624 }
625 return op;
626}
627
628template <bool len_less_than_12>
629static inline char* EmitCopy(char* op, size_t offset, size_t len) {
630 assert(len_less_than_12 == (len < 12));
631 if (len_less_than_12) {
632 return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
633 } else {
634 // A special case for len <= 64 might help, but so far measurements suggest
635 // it's in the noise.
636
637 // Emit 64 byte copies but make sure to keep at least four bytes reserved.
638 while (SNAPPY_PREDICT_FALSE(len >= 68)) {
639 op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64);
640 len -= 64;
641 }
642
643 // One or two copies will now finish the job.
644 if (len > 64) {
645 op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60);
646 len -= 60;
647 }
648
649 // Emit remainder.
650 if (len < 12) {
651 op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
652 } else {
653 op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len);
654 }
655 return op;
656 }
657}
658
659bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
660 uint32_t v = 0;
661 const char* limit = start + n;
662 if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
663 *result = v;
664 return true;
665 } else {
666 return false;
667 }
668}
669
670namespace {
671uint32_t CalculateTableSize(uint32_t input_size) {
672 static_assert(
673 kMaxHashTableSize >= kMinHashTableSize,
674 "kMaxHashTableSize should be greater or equal to kMinHashTableSize.");
675 if (input_size > kMaxHashTableSize) {
676 return kMaxHashTableSize;
677 }
678 if (input_size < kMinHashTableSize) {
679 return kMinHashTableSize;
680 }
681 // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1.
682 // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)).
683 return 2u << Bits::Log2Floor(input_size - 1);
684}
685} // namespace
686
687namespace internal {
688WorkingMemory::WorkingMemory(size_t input_size) {
689 const size_t max_fragment_size = std::min(input_size, kBlockSize);
690 const size_t table_size = CalculateTableSize(max_fragment_size);
691 size_ = table_size * sizeof(*table_) + max_fragment_size +
692 MaxCompressedLength(max_fragment_size);
693 mem_ = std::allocator<char>().allocate(size_);
694 table_ = reinterpret_cast<uint16_t*>(mem_);
695 input_ = mem_ + table_size * sizeof(*table_);
696 output_ = input_ + max_fragment_size;
697}
698
699WorkingMemory::~WorkingMemory() {
700 std::allocator<char>().deallocate(mem_, size_);
701}
702
703uint16_t* WorkingMemory::GetHashTable(size_t fragment_size,
704 int* table_size) const {
705 const size_t htsize = CalculateTableSize(fragment_size);
706 memset(table_, 0, htsize * sizeof(*table_));
707 *table_size = htsize;
708 return table_;
709}
710} // end namespace internal
711
712// Flat array compression that does not emit the "uncompressed length"
713// prefix. Compresses "input" string to the "*op" buffer.
714//
715// REQUIRES: "input" is at most "kBlockSize" bytes long.
716// REQUIRES: "op" points to an array of memory that is at least
717// "MaxCompressedLength(input.size())" in size.
718// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
719// REQUIRES: "table_size" is a power of two
720//
721// Returns an "end" pointer into "op" buffer.
722// "end - op" is the compressed size of "input".
723namespace internal {
724char* CompressFragment(const char* input, size_t input_size, char* op,
725 uint16_t* table, const int table_size) {
726 // "ip" is the input pointer, and "op" is the output pointer.
727 const char* ip = input;
728 assert(input_size <= kBlockSize);
729 assert((table_size & (table_size - 1)) == 0); // table must be power of two
730 const uint32_t mask = table_size - 1;
731 const char* ip_end = input + input_size;
732 const char* base_ip = ip;
733
734 const size_t kInputMarginBytes = 15;
735 if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
736 const char* ip_limit = input + input_size - kInputMarginBytes;
737
738 for (uint32_t preload = LittleEndian::Load32(ip + 1);;) {
739 // Bytes in [next_emit, ip) will be emitted as literal bytes. Or
740 // [next_emit, ip_end) after the main loop.
741 const char* next_emit = ip++;
742 uint64_t data = LittleEndian::Load64(ip);
743 // The body of this loop calls EmitLiteral once and then EmitCopy one or
744 // more times. (The exception is that when we're close to exhausting
745 // the input we goto emit_remainder.)
746 //
747 // In the first iteration of this loop we're just starting, so
748 // there's nothing to copy, so calling EmitLiteral once is
749 // necessary. And we only start a new iteration when the
750 // current iteration has determined that a call to EmitLiteral will
751 // precede the next call to EmitCopy (if any).
752 //
753 // Step 1: Scan forward in the input looking for a 4-byte-long match.
754 // If we get close to exhausting the input then goto emit_remainder.
755 //
756 // Heuristic match skipping: If 32 bytes are scanned with no matches
757 // found, start looking only at every other byte. If 32 more bytes are
758 // scanned (or skipped), look at every third byte, etc.. When a match is
759 // found, immediately go back to looking at every byte. This is a small
760 // loss (~5% performance, ~0.1% density) for compressible data due to more
761 // bookkeeping, but for non-compressible data (such as JPEG) it's a huge
762 // win since the compressor quickly "realizes" the data is incompressible
763 // and doesn't bother looking for matches everywhere.
764 //
765 // The "skip" variable keeps track of how many bytes there are since the
766 // last match; dividing it by 32 (ie. right-shifting by five) gives the
767 // number of bytes to move ahead for each iteration.
768 uint32_t skip = 32;
769
770 const char* candidate;
771 if (ip_limit - ip >= 16) {
772 auto delta = ip - base_ip;
773 for (int j = 0; j < 4; ++j) {
774 for (int k = 0; k < 4; ++k) {
775 int i = 4 * j + k;
776 // These for-loops are meant to be unrolled. So we can freely
777 // special case the first iteration to use the value already
778 // loaded in preload.
779 uint32_t dword = i == 0 ? preload : static_cast<uint32_t>(data);
780 assert(dword == LittleEndian::Load32(ip + i));
781 uint32_t hash = HashBytes(dword, mask);
782 candidate = base_ip + table[hash];
783 assert(candidate >= base_ip);
784 assert(candidate < ip + i);
785 table[hash] = delta + i;
786 if (SNAPPY_PREDICT_FALSE(LittleEndian::Load32(candidate) == dword)) {
787 *op = LITERAL | (i << 2);
788 UnalignedCopy128(next_emit, op + 1);
789 ip += i;
790 op = op + i + 2;
791 goto emit_match;
792 }
793 data >>= 8;
794 }
795 data = LittleEndian::Load64(ip + 4 * j + 4);
796 }
797 ip += 16;
798 skip += 16;
799 }
800 while (true) {
801 assert(static_cast<uint32_t>(data) == LittleEndian::Load32(ip));
802 uint32_t hash = HashBytes(data, mask);
803 uint32_t bytes_between_hash_lookups = skip >> 5;
804 skip += bytes_between_hash_lookups;
805 const char* next_ip = ip + bytes_between_hash_lookups;
806 if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
807 ip = next_emit;
808 goto emit_remainder;
809 }
810 candidate = base_ip + table[hash];
811 assert(candidate >= base_ip);
812 assert(candidate < ip);
813
814 table[hash] = ip - base_ip;
815 if (SNAPPY_PREDICT_FALSE(static_cast<uint32_t>(data) ==
816 LittleEndian::Load32(candidate))) {
817 break;
818 }
819 data = LittleEndian::Load32(next_ip);
820 ip = next_ip;
821 }
822
823 // Step 2: A 4-byte match has been found. We'll later see if more
824 // than 4 bytes match. But, prior to the match, input
825 // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
826 assert(next_emit + 16 <= ip_end);
827 op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit);
828
829 // Step 3: Call EmitCopy, and then see if another EmitCopy could
830 // be our next move. Repeat until we find no match for the
831 // input immediately after what was consumed by the last EmitCopy call.
832 //
833 // If we exit this loop normally then we need to call EmitLiteral next,
834 // though we don't yet know how big the literal will be. We handle that
835 // by proceeding to the next iteration of the main loop. We also can exit
836 // this loop via goto if we get close to exhausting the input.
837 emit_match:
838 do {
839 // We have a 4-byte match at ip, and no need to emit any
840 // "literal bytes" prior to ip.
841 const char* base = ip;
842 std::pair<size_t, bool> p =
843 FindMatchLength(candidate + 4, ip + 4, ip_end, &data);
844 size_t matched = 4 + p.first;
845 ip += matched;
846 size_t offset = base - candidate;
847 assert(0 == memcmp(base, candidate, matched));
848 if (p.second) {
849 op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched);
850 } else {
851 op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched);
852 }
853 if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
854 goto emit_remainder;
855 }
856 // Expect 5 bytes to match
857 assert((data & 0xFFFFFFFFFF) ==
858 (LittleEndian::Load64(ip) & 0xFFFFFFFFFF));
859 // We are now looking for a 4-byte match again. We read
860 // table[Hash(ip, shift)] for that. To improve compression,
861 // we also update table[Hash(ip - 1, mask)] and table[Hash(ip, mask)].
862 table[HashBytes(LittleEndian::Load32(ip - 1), mask)] = ip - base_ip - 1;
863 uint32_t hash = HashBytes(data, mask);
864 candidate = base_ip + table[hash];
865 table[hash] = ip - base_ip;
866 // Measurements on the benchmarks have shown the following probabilities
867 // for the loop to exit (ie. avg. number of iterations is reciprocal).
868 // BM_Flat/6 txt1 p = 0.3-0.4
869 // BM_Flat/7 txt2 p = 0.35
870 // BM_Flat/8 txt3 p = 0.3-0.4
871 // BM_Flat/9 txt3 p = 0.34-0.4
872 // BM_Flat/10 pb p = 0.4
873 // BM_Flat/11 gaviota p = 0.1
874 // BM_Flat/12 cp p = 0.5
875 // BM_Flat/13 c p = 0.3
876 } while (static_cast<uint32_t>(data) == LittleEndian::Load32(candidate));
877 // Because the least significant 5 bytes matched, we can utilize data
878 // for the next iteration.
879 preload = data >> 8;
880 }
881 }
882
883emit_remainder:
884 // Emit the remaining bytes as a literal
885 if (ip < ip_end) {
886 op = EmitLiteral</*allow_fast_path=*/false>(op, ip, ip_end - ip);
887 }
888
889 return op;
890}
891} // end namespace internal
892
893// Called back at avery compression call to trace parameters and sizes.
894static inline void Report(const char *algorithm, size_t compressed_size,
895 size_t uncompressed_size) {
896 // TODO: Switch to [[maybe_unused]] when we can assume C++17.
897 (void)algorithm;
898 (void)compressed_size;
899 (void)uncompressed_size;
900}
901
902// Signature of output types needed by decompression code.
903// The decompression code is templatized on a type that obeys this
904// signature so that we do not pay virtual function call overhead in
905// the middle of a tight decompression loop.
906//
907// class DecompressionWriter {
908// public:
909// // Called before decompression
910// void SetExpectedLength(size_t length);
911//
912// // For performance a writer may choose to donate the cursor variable to the
913// // decompression function. The decompression will inject it in all its
914// // function calls to the writer. Keeping the important output cursor as a
915// // function local stack variable allows the compiler to keep it in
916// // register, which greatly aids performance by avoiding loads and stores of
917// // this variable in the fast path loop iterations.
918// T GetOutputPtr() const;
919//
920// // At end of decompression the loop donates the ownership of the cursor
921// // variable back to the writer by calling this function.
922// void SetOutputPtr(T op);
923//
924// // Called after decompression
925// bool CheckLength() const;
926//
927// // Called repeatedly during decompression
928// // Each function get a pointer to the op (output pointer), that the writer
929// // can use and update. Note it's important that these functions get fully
930// // inlined so that no actual address of the local variable needs to be
931// // taken.
932// bool Append(const char* ip, size_t length, T* op);
933// bool AppendFromSelf(uint32_t offset, size_t length, T* op);
934//
935// // The rules for how TryFastAppend differs from Append are somewhat
936// // convoluted:
937// //
938// // - TryFastAppend is allowed to decline (return false) at any
939// // time, for any reason -- just "return false" would be
940// // a perfectly legal implementation of TryFastAppend.
941// // The intention is for TryFastAppend to allow a fast path
942// // in the common case of a small append.
943// // - TryFastAppend is allowed to read up to <available> bytes
944// // from the input buffer, whereas Append is allowed to read
945// // <length>. However, if it returns true, it must leave
946// // at least five (kMaximumTagLength) bytes in the input buffer
947// // afterwards, so that there is always enough space to read the
948// // next tag without checking for a refill.
949// // - TryFastAppend must always return decline (return false)
950// // if <length> is 61 or more, as in this case the literal length is not
951// // decoded fully. In practice, this should not be a big problem,
952// // as it is unlikely that one would implement a fast path accepting
953// // this much data.
954// //
955// bool TryFastAppend(const char* ip, size_t available, size_t length, T* op);
956// };
957
958static inline uint32_t ExtractLowBytes(const uint32_t& v, int n) {
959 assert(n >= 0);
960 assert(n <= 4);
961#if SNAPPY_HAVE_BMI2
962 return _bzhi_u32(v, 8 * n);
963#else
964 // This needs to be wider than uint32_t otherwise `mask << 32` will be
965 // undefined.
966 uint64_t mask = 0xffffffff;
967 return v & ~(mask << (8 * n));
968#endif
969}
970
971static inline bool LeftShiftOverflows(uint8_t value, uint32_t shift) {
972 assert(shift < 32);
973 static const uint8_t masks[] = {
974 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
975 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
976 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
977 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe};
978 return (value & masks[shift]) != 0;
979}
980
981inline bool Copy64BytesWithPatternExtension(ptrdiff_t dst, size_t offset) {
982 // TODO: Switch to [[maybe_unused]] when we can assume C++17.
983 (void)dst;
984 return offset != 0;
985}
986
987// Copies between size bytes and 64 bytes from src to dest. size cannot exceed
988// 64. More than size bytes, but never exceeding 64, might be copied if doing
989// so gives better performance. [src, src + size) must not overlap with
990// [dst, dst + size), but [src, src + 64) may overlap with [dst, dst + 64).
991void MemCopy64(char* dst, const void* src, size_t size) {
992 // Always copy this many bytes, test if we need to copy more.
993 constexpr int kShortMemCopy = 32;
994 // We're always allowed to copy 64 bytes, so if we exceed kShortMemCopy just
995 // copy 64 rather than the exact amount.
996 constexpr int kLongMemCopy = 64;
997
998 assert(size <= kLongMemCopy);
999 assert(std::less_equal<const void*>()(static_cast<const char*>(src) + size,
1000 dst) ||
1001 std::less_equal<const void*>()(dst + size, src));
1002
1003 // We know that src and dst are at least size bytes apart. However, because we
1004 // might copy more than size bytes the copy still might overlap past size.
1005 // E.g. if src and dst appear consecutively in memory (src + size == dst).
1006 std::memmove(dst, src, kShortMemCopy);
1007 // Profiling shows that nearly all copies are short.
1008 if (SNAPPY_PREDICT_FALSE(size > kShortMemCopy)) {
1009 std::memmove(dst + kShortMemCopy,
1010 static_cast<const uint8_t*>(src) + kShortMemCopy,
1011 kLongMemCopy - kShortMemCopy);
1012 }
1013}
1014
1015void MemCopy64(ptrdiff_t dst, const void* src, size_t size) {
1016 // TODO: Switch to [[maybe_unused]] when we can assume C++17.
1017 (void)dst;
1018 (void)src;
1019 (void)size;
1020}
1021
1022SNAPPY_ATTRIBUTE_ALWAYS_INLINE
1023inline size_t AdvanceToNextTagARMOptimized(const uint8_t** ip_p, size_t* tag) {
1024 const uint8_t*& ip = *ip_p;
1025 // This section is crucial for the throughput of the decompression loop.
1026 // The latency of an iteration is fundamentally constrained by the
1027 // following data chain on ip.
1028 // ip -> c = Load(ip) -> delta1 = (c & 3) -> ip += delta1 or delta2
1029 // delta2 = ((c >> 2) + 1) ip++
1030 // This is different from X86 optimizations because ARM has conditional add
1031 // instruction (csinc) and it removes several register moves.
1032 const size_t tag_type = *tag & 3;
1033 const bool is_literal = (tag_type == 0);
1034 if (is_literal) {
1035 size_t next_literal_tag = (*tag >> 2) + 1;
1036 *tag = ip[next_literal_tag];
1037 ip += next_literal_tag + 1;
1038 } else {
1039 *tag = ip[tag_type];
1040 ip += tag_type + 1;
1041 }
1042 return tag_type;
1043}
1044
1045SNAPPY_ATTRIBUTE_ALWAYS_INLINE
1046inline size_t AdvanceToNextTagX86Optimized(const uint8_t** ip_p, size_t* tag) {
1047 const uint8_t*& ip = *ip_p;
1048 // This section is crucial for the throughput of the decompression loop.
1049 // The latency of an iteration is fundamentally constrained by the
1050 // following data chain on ip.
1051 // ip -> c = Load(ip) -> ip1 = ip + 1 + (c & 3) -> ip = ip1 or ip2
1052 // ip2 = ip + 2 + (c >> 2)
1053 // This amounts to 8 cycles.
1054 // 5 (load) + 1 (c & 3) + 1 (lea ip1, [ip + (c & 3) + 1]) + 1 (cmov)
1055 size_t literal_len = *tag >> 2;
1056 size_t tag_type = *tag;
1057 bool is_literal;
1058#if defined(__GCC_ASM_FLAG_OUTPUTS__) && defined(__x86_64__)
1059 // TODO clang misses the fact that the (c & 3) already correctly
1060 // sets the zero flag.
1061 asm("and $3, %k[tag_type]\n\t"
1062 : [tag_type] "+r"(tag_type), "=@ccz"(is_literal));
1063#else
1064 tag_type &= 3;
1065 is_literal = (tag_type == 0);
1066#endif
1067 // TODO
1068 // This is code is subtle. Loading the values first and then cmov has less
1069 // latency then cmov ip and then load. However clang would move the loads
1070 // in an optimization phase, volatile prevents this transformation.
1071 // Note that we have enough slop bytes (64) that the loads are always valid.
1072 size_t tag_literal =
1073 static_cast<const volatile uint8_t*>(ip)[1 + literal_len];
1074 size_t tag_copy = static_cast<const volatile uint8_t*>(ip)[tag_type];
1075 *tag = is_literal ? tag_literal : tag_copy;
1076 const uint8_t* ip_copy = ip + 1 + tag_type;
1077 const uint8_t* ip_literal = ip + 2 + literal_len;
1078 ip = is_literal ? ip_literal : ip_copy;
1079#if defined(__GNUC__) && defined(__x86_64__)
1080 // TODO Clang is "optimizing" zero-extension (a totally free
1081 // operation) this means that after the cmov of tag, it emits another movzb
1082 // tag, byte(tag). It really matters as it's on the core chain. This dummy
1083 // asm, persuades clang to do the zero-extension at the load (it's automatic)
1084 // removing the expensive movzb.
1085 asm("" ::"r"(tag_copy));
1086#endif
1087 return tag_type;
1088}
1089
1090// Extract the offset for copy-1 and copy-2 returns 0 for literals or copy-4.
1091inline uint32_t ExtractOffset(uint32_t val, size_t tag_type) {
1092 // For x86 non-static storage works better. For ARM static storage is better.
1093 // TODO: Once the array is recognized as a register, improve the
1094 // readability for x86.
1095#if defined(__x86_64__)
1096 constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull;
1097 uint16_t result;
1098 memcpy(&result,
1099 reinterpret_cast<const char*>(&kExtractMasksCombined) + 2 * tag_type,
1100 sizeof(result));
1101 return val & result;
1102#elif defined(__aarch64__)
1103 constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull;
1104 return val & static_cast<uint32_t>(
1105 (kExtractMasksCombined >> (tag_type * 16)) & 0xFFFF);
1106#else
1107 static constexpr uint32_t kExtractMasks[4] = {0, 0xFF, 0xFFFF, 0};
1108 return val & kExtractMasks[tag_type];
1109#endif
1110};
1111
1112// Core decompression loop, when there is enough data available.
1113// Decompresses the input buffer [ip, ip_limit) into the output buffer
1114// [op, op_limit_min_slop). Returning when either we are too close to the end
1115// of the input buffer, or we exceed op_limit_min_slop or when a exceptional
1116// tag is encountered (literal of length > 60) or a copy-4.
1117// Returns {ip, op} at the points it stopped decoding.
1118// TODO This function probably does not need to be inlined, as it
1119// should decode large chunks at a time. This allows runtime dispatch to
1120// implementations based on CPU capability (BMI2 / perhaps 32 / 64 byte memcpy).
1121template <typename T>
1122std::pair<const uint8_t*, ptrdiff_t> DecompressBranchless(
1123 const uint8_t* ip, const uint8_t* ip_limit, ptrdiff_t op, T op_base,
1124 ptrdiff_t op_limit_min_slop) {
1125 // We unroll the inner loop twice so we need twice the spare room.
1126 op_limit_min_slop -= kSlopBytes;
1127 if (2 * (kSlopBytes + 1) < ip_limit - ip && op < op_limit_min_slop) {
1128 const uint8_t* const ip_limit_min_slop = ip_limit - 2 * kSlopBytes - 1;
1129 ip++;
1130 // ip points just past the tag and we are touching at maximum kSlopBytes
1131 // in an iteration.
1132 size_t tag = ip[-1];
1133#if defined(__clang__) && defined(__aarch64__)
1134 // Workaround for https://bugs.llvm.org/show_bug.cgi?id=51317
1135 // when loading 1 byte, clang for aarch64 doesn't realize that it(ldrb)
1136 // comes with free zero-extension, so clang generates another
1137 // 'and xn, xm, 0xff' before it use that as the offset. This 'and' is
1138 // redundant and can be removed by adding this dummy asm, which gives
1139 // clang a hint that we're doing the zero-extension at the load.
1140 asm("" ::"r"(tag));
1141#endif
1142 do {
1143 // The throughput is limited by instructions, unrolling the inner loop
1144 // twice reduces the amount of instructions checking limits and also
1145 // leads to reduced mov's.
1146 for (int i = 0; i < 2; i++) {
1147 const uint8_t* old_ip = ip;
1148 assert(tag == ip[-1]);
1149 // For literals tag_type = 0, hence we will always obtain 0 from
1150 // ExtractLowBytes. For literals offset will thus be kLiteralOffset.
1151 ptrdiff_t len_min_offset = kLengthMinusOffset[tag];
1152#if defined(__aarch64__)
1153 size_t tag_type = AdvanceToNextTagARMOptimized(&ip, &tag);
1154#else
1155 size_t tag_type = AdvanceToNextTagX86Optimized(&ip, &tag);
1156#endif
1157 uint32_t next = LittleEndian::Load32(old_ip);
1158 size_t len = len_min_offset & 0xFF;
1159 len_min_offset -= ExtractOffset(next, tag_type);
1160 if (SNAPPY_PREDICT_FALSE(len_min_offset > 0)) {
1161 if (SNAPPY_PREDICT_FALSE(len & 0x80)) {
1162 // Exceptional case (long literal or copy 4).
1163 // Actually doing the copy here is negatively impacting the main
1164 // loop due to compiler incorrectly allocating a register for
1165 // this fallback. Hence we just break.
1166 break_loop:
1167 ip = old_ip;
1168 goto exit;
1169 }
1170 // Only copy-1 or copy-2 tags can get here.
1171 assert(tag_type == 1 || tag_type == 2);
1172 std::ptrdiff_t delta = op + len_min_offset - len;
1173 // Guard against copies before the buffer start.
1174 if (SNAPPY_PREDICT_FALSE(delta < 0 ||
1175 !Copy64BytesWithPatternExtension(
1176 op_base + op, len - len_min_offset))) {
1177 goto break_loop;
1178 }
1179 op += len;
1180 continue;
1181 }
1182 std::ptrdiff_t delta = op + len_min_offset - len;
1183 if (SNAPPY_PREDICT_FALSE(delta < 0)) {
1184 // Due to the spurious offset in literals have this will trigger
1185 // at the start of a block when op is still smaller than 256.
1186 if (tag_type != 0) goto break_loop;
1187 MemCopy64(op_base + op, old_ip, len);
1188 op += len;
1189 continue;
1190 }
1191
1192 // For copies we need to copy from op_base + delta, for literals
1193 // we need to copy from ip instead of from the stream.
1194 const void* from =
1195 tag_type ? reinterpret_cast<void*>(op_base + delta) : old_ip;
1196 MemCopy64(op_base + op, from, len);
1197 op += len;
1198 }
1199 } while (ip < ip_limit_min_slop && op < op_limit_min_slop);
1200 exit:
1201 ip--;
1202 assert(ip <= ip_limit);
1203 }
1204 return {ip, op};
1205}
1206
1207// Helper class for decompression
1208class SnappyDecompressor {
1209 private:
1210 Source* reader_; // Underlying source of bytes to decompress
1211 const char* ip_; // Points to next buffered byte
1212 const char* ip_limit_; // Points just past buffered bytes
1213 // If ip < ip_limit_min_maxtaglen_ it's safe to read kMaxTagLength from
1214 // buffer.
1215 const char* ip_limit_min_maxtaglen_;
1216 uint32_t peeked_; // Bytes peeked from reader (need to skip)
1217 bool eof_; // Hit end of input without an error?
1218 char scratch_[kMaximumTagLength]; // See RefillTag().
1219
1220 // Ensure that all of the tag metadata for the next tag is available
1221 // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even
1222 // if (ip_limit_ - ip_ < 5).
1223 //
1224 // Returns true on success, false on error or end of input.
1225 bool RefillTag();
1226
1227 void ResetLimit(const char* ip) {
1228 ip_limit_min_maxtaglen_ =
1229 ip_limit_ - std::min<ptrdiff_t>(ip_limit_ - ip, kMaximumTagLength - 1);
1230 }
1231
1232 public:
1233 explicit SnappyDecompressor(Source* reader)
1234 : reader_(reader), ip_(NULL), ip_limit_(NULL), peeked_(0), eof_(false) {}
1235
1236 ~SnappyDecompressor() {
1237 // Advance past any bytes we peeked at from the reader
1238 reader_->Skip(peeked_);
1239 }
1240
1241 // Returns true iff we have hit the end of the input without an error.
1242 bool eof() const { return eof_; }
1243
1244 // Read the uncompressed length stored at the start of the compressed data.
1245 // On success, stores the length in *result and returns true.
1246 // On failure, returns false.
1247 bool ReadUncompressedLength(uint32_t* result) {
1248 assert(ip_ == NULL); // Must not have read anything yet
1249 // Length is encoded in 1..5 bytes
1250 *result = 0;
1251 uint32_t shift = 0;
1252 while (true) {
1253 if (shift >= 32) return false;
1254 size_t n;
1255 const char* ip = reader_->Peek(&n);
1256 if (n == 0) return false;
1257 const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
1258 reader_->Skip(1);
1259 uint32_t val = c & 0x7f;
1260 if (LeftShiftOverflows(static_cast<uint8_t>(val), shift)) return false;
1261 *result |= val << shift;
1262 if (c < 128) {
1263 break;
1264 }
1265 shift += 7;
1266 }
1267 return true;
1268 }
1269
1270 // Process the next item found in the input.
1271 // Returns true if successful, false on error or end of input.
1272 template <class Writer>
1273#if defined(__GNUC__) && defined(__x86_64__)
1274 __attribute__((aligned(32)))
1275#endif
1276 void
1277 DecompressAllTags(Writer* writer) {
1278 const char* ip = ip_;
1279 ResetLimit(ip);
1280 auto op = writer->GetOutputPtr();
1281 // We could have put this refill fragment only at the beginning of the loop.
1282 // However, duplicating it at the end of each branch gives the compiler more
1283 // scope to optimize the <ip_limit_ - ip> expression based on the local
1284 // context, which overall increases speed.
1285#define MAYBE_REFILL() \
1286 if (SNAPPY_PREDICT_FALSE(ip >= ip_limit_min_maxtaglen_)) { \
1287 ip_ = ip; \
1288 if (SNAPPY_PREDICT_FALSE(!RefillTag())) goto exit; \
1289 ip = ip_; \
1290 ResetLimit(ip); \
1291 } \
1292 preload = static_cast<uint8_t>(*ip)
1293
1294 // At the start of the for loop below the least significant byte of preload
1295 // contains the tag.
1296 uint32_t preload;
1297 MAYBE_REFILL();
1298 for (;;) {
1299 {
1300 ptrdiff_t op_limit_min_slop;
1301 auto op_base = writer->GetBase(&op_limit_min_slop);
1302 if (op_base) {
1303 auto res =
1304 DecompressBranchless(reinterpret_cast<const uint8_t*>(ip),
1305 reinterpret_cast<const uint8_t*>(ip_limit_),
1306 op - op_base, op_base, op_limit_min_slop);
1307 ip = reinterpret_cast<const char*>(res.first);
1308 op = op_base + res.second;
1309 MAYBE_REFILL();
1310 }
1311 }
1312 const uint8_t c = static_cast<uint8_t>(preload);
1313 ip++;
1314
1315 // Ratio of iterations that have LITERAL vs non-LITERAL for different
1316 // inputs.
1317 //
1318 // input LITERAL NON_LITERAL
1319 // -----------------------------------
1320 // html|html4|cp 23% 77%
1321 // urls 36% 64%
1322 // jpg 47% 53%
1323 // pdf 19% 81%
1324 // txt[1-4] 25% 75%
1325 // pb 24% 76%
1326 // bin 24% 76%
1327 if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) {
1328 size_t literal_length = (c >> 2) + 1u;
1329 if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length, &op)) {
1330 assert(literal_length < 61);
1331 ip += literal_length;
1332 // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend()
1333 // will not return true unless there's already at least five spare
1334 // bytes in addition to the literal.
1335 preload = static_cast<uint8_t>(*ip);
1336 continue;
1337 }
1338 if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) {
1339 // Long literal.
1340 const size_t literal_length_length = literal_length - 60;
1341 literal_length =
1342 ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) +
1343 1;
1344 ip += literal_length_length;
1345 }
1346
1347 size_t avail = ip_limit_ - ip;
1348 while (avail < literal_length) {
1349 if (!writer->Append(ip, avail, &op)) goto exit;
1350 literal_length -= avail;
1351 reader_->Skip(peeked_);
1352 size_t n;
1353 ip = reader_->Peek(&n);
1354 avail = n;
1355 peeked_ = avail;
1356 if (avail == 0) goto exit;
1357 ip_limit_ = ip + avail;
1358 ResetLimit(ip);
1359 }
1360 if (!writer->Append(ip, literal_length, &op)) goto exit;
1361 ip += literal_length;
1362 MAYBE_REFILL();
1363 } else {
1364 if (SNAPPY_PREDICT_FALSE((c & 3) == COPY_4_BYTE_OFFSET)) {
1365 const size_t copy_offset = LittleEndian::Load32(ip);
1366 const size_t length = (c >> 2) + 1;
1367 ip += 4;
1368
1369 if (!writer->AppendFromSelf(copy_offset, length, &op)) goto exit;
1370 } else {
1371 const ptrdiff_t entry = kLengthMinusOffset[c];
1372 preload = LittleEndian::Load32(ip);
1373 const uint32_t trailer = ExtractLowBytes(preload, c & 3);
1374 const uint32_t length = entry & 0xff;
1375 assert(length > 0);
1376
1377 // copy_offset/256 is encoded in bits 8..10. By just fetching
1378 // those bits, we get copy_offset (since the bit-field starts at
1379 // bit 8).
1380 const uint32_t copy_offset = trailer - entry + length;
1381 if (!writer->AppendFromSelf(copy_offset, length, &op)) goto exit;
1382
1383 ip += (c & 3);
1384 // By using the result of the previous load we reduce the critical
1385 // dependency chain of ip to 4 cycles.
1386 preload >>= (c & 3) * 8;
1387 if (ip < ip_limit_min_maxtaglen_) continue;
1388 }
1389 MAYBE_REFILL();
1390 }
1391 }
1392#undef MAYBE_REFILL
1393 exit:
1394 writer->SetOutputPtr(op);
1395 }
1396};
1397
1398constexpr uint32_t CalculateNeeded(uint8_t tag) {
1399 return ((tag & 3) == 0 && tag >= (60 * 4))
1400 ? (tag >> 2) - 58
1401 : (0x05030201 >> ((tag * 8) & 31)) & 0xFF;
1402}
1403
1404#if __cplusplus >= 201402L
1405constexpr bool VerifyCalculateNeeded() {
1406 for (int i = 0; i < 1; i++) {
1407 if (CalculateNeeded(i) != (char_table[i] >> 11) + 1) return false;
1408 }
1409 return true;
1410}
1411
1412// Make sure CalculateNeeded is correct by verifying it against the established
1413// table encoding the number of added bytes needed.
1414static_assert(VerifyCalculateNeeded(), "");
1415#endif // c++14
1416
1417bool SnappyDecompressor::RefillTag() {
1418 const char* ip = ip_;
1419 if (ip == ip_limit_) {
1420 // Fetch a new fragment from the reader
1421 reader_->Skip(peeked_); // All peeked bytes are used up
1422 size_t n;
1423 ip = reader_->Peek(&n);
1424 peeked_ = n;
1425 eof_ = (n == 0);
1426 if (eof_) return false;
1427 ip_limit_ = ip + n;
1428 }
1429
1430 // Read the tag character
1431 assert(ip < ip_limit_);
1432 const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
1433 // At this point make sure that the data for the next tag is consecutive.
1434 // For copy 1 this means the next 2 bytes (tag and 1 byte offset)
1435 // For copy 2 the next 3 bytes (tag and 2 byte offset)
1436 // For copy 4 the next 5 bytes (tag and 4 byte offset)
1437 // For all small literals we only need 1 byte buf for literals 60...63 the
1438 // length is encoded in 1...4 extra bytes.
1439 const uint32_t needed = CalculateNeeded(c);
1440 assert(needed <= sizeof(scratch_));
1441
1442 // Read more bytes from reader if needed
1443 uint32_t nbuf = ip_limit_ - ip;
1444 if (nbuf < needed) {
1445 // Stitch together bytes from ip and reader to form the word
1446 // contents. We store the needed bytes in "scratch_". They
1447 // will be consumed immediately by the caller since we do not
1448 // read more than we need.
1449 std::memmove(scratch_, ip, nbuf);
1450 reader_->Skip(peeked_); // All peeked bytes are used up
1451 peeked_ = 0;
1452 while (nbuf < needed) {
1453 size_t length;
1454 const char* src = reader_->Peek(&length);
1455 if (length == 0) return false;
1456 uint32_t to_add = std::min<uint32_t>(needed - nbuf, length);
1457 std::memcpy(scratch_ + nbuf, src, to_add);
1458 nbuf += to_add;
1459 reader_->Skip(to_add);
1460 }
1461 assert(nbuf == needed);
1462 ip_ = scratch_;
1463 ip_limit_ = scratch_ + needed;
1464 } else if (nbuf < kMaximumTagLength) {
1465 // Have enough bytes, but move into scratch_ so that we do not
1466 // read past end of input
1467 std::memmove(scratch_, ip, nbuf);
1468 reader_->Skip(peeked_); // All peeked bytes are used up
1469 peeked_ = 0;
1470 ip_ = scratch_;
1471 ip_limit_ = scratch_ + nbuf;
1472 } else {
1473 // Pass pointer to buffer returned by reader_.
1474 ip_ = ip;
1475 }
1476 return true;
1477}
1478
1479template <typename Writer>
1480static bool InternalUncompress(Source* r, Writer* writer) {
1481 // Read the uncompressed length from the front of the compressed input
1482 SnappyDecompressor decompressor(r);
1483 uint32_t uncompressed_len = 0;
1484 if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
1485
1486 return InternalUncompressAllTags(&decompressor, writer, r->Available(),
1487 uncompressed_len);
1488}
1489
1490template <typename Writer>
1491static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
1492 Writer* writer, uint32_t compressed_len,
1493 uint32_t uncompressed_len) {
1494 Report("snappy_uncompress", compressed_len, uncompressed_len);
1495
1496 writer->SetExpectedLength(uncompressed_len);
1497
1498 // Process the entire input
1499 decompressor->DecompressAllTags(writer);
1500 writer->Flush();
1501 return (decompressor->eof() && writer->CheckLength());
1502}
1503
1504bool GetUncompressedLength(Source* source, uint32_t* result) {
1505 SnappyDecompressor decompressor(source);
1506 return decompressor.ReadUncompressedLength(result);
1507}
1508
1509size_t Compress(Source* reader, Sink* writer) {
1510 size_t written = 0;
1511 size_t N = reader->Available();
1512 const size_t uncompressed_size = N;
1513 char ulength[Varint::kMax32];
1514 char* p = Varint::Encode32(ulength, N);
1515 writer->Append(ulength, p - ulength);
1516 written += (p - ulength);
1517
1518 internal::WorkingMemory wmem(N);
1519
1520 while (N > 0) {
1521 // Get next block to compress (without copying if possible)
1522 size_t fragment_size;
1523 const char* fragment = reader->Peek(&fragment_size);
1524 assert(fragment_size != 0); // premature end of input
1525 const size_t num_to_read = std::min(N, kBlockSize);
1526 size_t bytes_read = fragment_size;
1527
1528 size_t pending_advance = 0;
1529 if (bytes_read >= num_to_read) {
1530 // Buffer returned by reader is large enough
1531 pending_advance = num_to_read;
1532 fragment_size = num_to_read;
1533 } else {
1534 char* scratch = wmem.GetScratchInput();
1535 std::memcpy(scratch, fragment, bytes_read);
1536 reader->Skip(bytes_read);
1537
1538 while (bytes_read < num_to_read) {
1539 fragment = reader->Peek(&fragment_size);
1540 size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read);
1541 std::memcpy(scratch + bytes_read, fragment, n);
1542 bytes_read += n;
1543 reader->Skip(n);
1544 }
1545 assert(bytes_read == num_to_read);
1546 fragment = scratch;
1547 fragment_size = num_to_read;
1548 }
1549 assert(fragment_size == num_to_read);
1550
1551 // Get encoding table for compression
1552 int table_size;
1553 uint16_t* table = wmem.GetHashTable(num_to_read, &table_size);
1554
1555 // Compress input_fragment and append to dest
1556 const int max_output = MaxCompressedLength(num_to_read);
1557
1558 // Need a scratch buffer for the output, in case the byte sink doesn't
1559 // have room for us directly.
1560
1561 // Since we encode kBlockSize regions followed by a region
1562 // which is <= kBlockSize in length, a previously allocated
1563 // scratch_output[] region is big enough for this iteration.
1564 char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput());
1565 char* end = internal::CompressFragment(fragment, fragment_size, dest, table,
1566 table_size);
1567 writer->Append(dest, end - dest);
1568 written += (end - dest);
1569
1570 N -= num_to_read;
1571 reader->Skip(pending_advance);
1572 }
1573
1574 Report("snappy_compress", written, uncompressed_size);
1575
1576 return written;
1577}
1578
1579// -----------------------------------------------------------------------
1580// IOVec interfaces
1581// -----------------------------------------------------------------------
1582
1583// A `Source` implementation that yields the contents of an `iovec` array. Note
1584// that `total_size` is the total number of bytes to be read from the elements
1585// of `iov` (_not_ the total number of elements in `iov`).
1586class SnappyIOVecReader : public Source {
1587 public:
1588 SnappyIOVecReader(const struct iovec* iov, size_t total_size)
1589 : curr_iov_(iov),
1590 curr_pos_(total_size > 0 ? reinterpret_cast<const char*>(iov->iov_base)
1591 : nullptr),
1592 curr_size_remaining_(total_size > 0 ? iov->iov_len : 0),
1593 total_size_remaining_(total_size) {
1594 // Skip empty leading `iovec`s.
1595 if (total_size > 0 && curr_size_remaining_ == 0) Advance();
1596 }
1597
1598 ~SnappyIOVecReader() = default;
1599
1600 size_t Available() const { return total_size_remaining_; }
1601
1602 const char* Peek(size_t* len) {
1603 *len = curr_size_remaining_;
1604 return curr_pos_;
1605 }
1606
1607 void Skip(size_t n) {
1608 while (n >= curr_size_remaining_ && n > 0) {
1609 n -= curr_size_remaining_;
1610 Advance();
1611 }
1612 curr_size_remaining_ -= n;
1613 total_size_remaining_ -= n;
1614 curr_pos_ += n;
1615 }
1616
1617 private:
1618 // Advances to the next nonempty `iovec` and updates related variables.
1619 void Advance() {
1620 do {
1621 assert(total_size_remaining_ >= curr_size_remaining_);
1622 total_size_remaining_ -= curr_size_remaining_;
1623 if (total_size_remaining_ == 0) {
1624 curr_pos_ = nullptr;
1625 curr_size_remaining_ = 0;
1626 return;
1627 }
1628 ++curr_iov_;
1629 curr_pos_ = reinterpret_cast<const char*>(curr_iov_->iov_base);
1630 curr_size_remaining_ = curr_iov_->iov_len;
1631 } while (curr_size_remaining_ == 0);
1632 }
1633
1634 // The `iovec` currently being read.
1635 const struct iovec* curr_iov_;
1636 // The location in `curr_iov_` currently being read.
1637 const char* curr_pos_;
1638 // The amount of unread data in `curr_iov_`.
1639 size_t curr_size_remaining_;
1640 // The amount of unread data in the entire input array.
1641 size_t total_size_remaining_;
1642};
1643
1644// A type that writes to an iovec.
1645// Note that this is not a "ByteSink", but a type that matches the
1646// Writer template argument to SnappyDecompressor::DecompressAllTags().
1647class SnappyIOVecWriter {
1648 private:
1649 // output_iov_end_ is set to iov + count and used to determine when
1650 // the end of the iovs is reached.
1651 const struct iovec* output_iov_end_;
1652
1653#if !defined(NDEBUG)
1654 const struct iovec* output_iov_;
1655#endif // !defined(NDEBUG)
1656
1657 // Current iov that is being written into.
1658 const struct iovec* curr_iov_;
1659
1660 // Pointer to current iov's write location.
1661 char* curr_iov_output_;
1662
1663 // Remaining bytes to write into curr_iov_output.
1664 size_t curr_iov_remaining_;
1665
1666 // Total bytes decompressed into output_iov_ so far.
1667 size_t total_written_;
1668
1669 // Maximum number of bytes that will be decompressed into output_iov_.
1670 size_t output_limit_;
1671
1672 static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) {
1673 return reinterpret_cast<char*>(iov->iov_base) + offset;
1674 }
1675
1676 public:
1677 // Does not take ownership of iov. iov must be valid during the
1678 // entire lifetime of the SnappyIOVecWriter.
1679 inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
1680 : output_iov_end_(iov + iov_count),
1681#if !defined(NDEBUG)
1682 output_iov_(iov),
1683#endif // !defined(NDEBUG)
1684 curr_iov_(iov),
1685 curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base)
1686 : nullptr),
1687 curr_iov_remaining_(iov_count ? iov->iov_len : 0),
1688 total_written_(0),
1689 output_limit_(-1) {
1690 }
1691
1692 inline void SetExpectedLength(size_t len) { output_limit_ = len; }
1693
1694 inline bool CheckLength() const { return total_written_ == output_limit_; }
1695
1696 inline bool Append(const char* ip, size_t len, char**) {
1697 if (total_written_ + len > output_limit_) {
1698 return false;
1699 }
1700
1701 return AppendNoCheck(ip, len);
1702 }
1703
1704 char* GetOutputPtr() { return nullptr; }
1705 char* GetBase(ptrdiff_t*) { return nullptr; }
1706 void SetOutputPtr(char* op) {
1707 // TODO: Switch to [[maybe_unused]] when we can assume C++17.
1708 (void)op;
1709 }
1710
1711 inline bool AppendNoCheck(const char* ip, size_t len) {
1712 while (len > 0) {
1713 if (curr_iov_remaining_ == 0) {
1714 // This iovec is full. Go to the next one.
1715 if (curr_iov_ + 1 >= output_iov_end_) {
1716 return false;
1717 }
1718 ++curr_iov_;
1719 curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
1720 curr_iov_remaining_ = curr_iov_->iov_len;
1721 }
1722
1723 const size_t to_write = std::min(len, curr_iov_remaining_);
1724 std::memcpy(curr_iov_output_, ip, to_write);
1725 curr_iov_output_ += to_write;
1726 curr_iov_remaining_ -= to_write;
1727 total_written_ += to_write;
1728 ip += to_write;
1729 len -= to_write;
1730 }
1731
1732 return true;
1733 }
1734
1735 inline bool TryFastAppend(const char* ip, size_t available, size_t len,
1736 char**) {
1737 const size_t space_left = output_limit_ - total_written_;
1738 if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
1739 curr_iov_remaining_ >= 16) {
1740 // Fast path, used for the majority (about 95%) of invocations.
1741 UnalignedCopy128(ip, curr_iov_output_);
1742 curr_iov_output_ += len;
1743 curr_iov_remaining_ -= len;
1744 total_written_ += len;
1745 return true;
1746 }
1747
1748 return false;
1749 }
1750
1751 inline bool AppendFromSelf(size_t offset, size_t len, char**) {
1752 // See SnappyArrayWriter::AppendFromSelf for an explanation of
1753 // the "offset - 1u" trick.
1754 if (offset - 1u >= total_written_) {
1755 return false;
1756 }
1757 const size_t space_left = output_limit_ - total_written_;
1758 if (len > space_left) {
1759 return false;
1760 }
1761
1762 // Locate the iovec from which we need to start the copy.
1763 const iovec* from_iov = curr_iov_;
1764 size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_;
1765 while (offset > 0) {
1766 if (from_iov_offset >= offset) {
1767 from_iov_offset -= offset;
1768 break;
1769 }
1770
1771 offset -= from_iov_offset;
1772 --from_iov;
1773#if !defined(NDEBUG)
1774 assert(from_iov >= output_iov_);
1775#endif // !defined(NDEBUG)
1776 from_iov_offset = from_iov->iov_len;
1777 }
1778
1779 // Copy <len> bytes starting from the iovec pointed to by from_iov_index to
1780 // the current iovec.
1781 while (len > 0) {
1782 assert(from_iov <= curr_iov_);
1783 if (from_iov != curr_iov_) {
1784 const size_t to_copy =
1785 std::min(from_iov->iov_len - from_iov_offset, len);
1786 AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy);
1787 len -= to_copy;
1788 if (len > 0) {
1789 ++from_iov;
1790 from_iov_offset = 0;
1791 }
1792 } else {
1793 size_t to_copy = curr_iov_remaining_;
1794 if (to_copy == 0) {
1795 // This iovec is full. Go to the next one.
1796 if (curr_iov_ + 1 >= output_iov_end_) {
1797 return false;
1798 }
1799 ++curr_iov_;
1800 curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
1801 curr_iov_remaining_ = curr_iov_->iov_len;
1802 continue;
1803 }
1804 if (to_copy > len) {
1805 to_copy = len;
1806 }
1807 assert(to_copy > 0);
1808
1809 IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset),
1810 curr_iov_output_, curr_iov_output_ + to_copy,
1811 curr_iov_output_ + curr_iov_remaining_);
1812 curr_iov_output_ += to_copy;
1813 curr_iov_remaining_ -= to_copy;
1814 from_iov_offset += to_copy;
1815 total_written_ += to_copy;
1816 len -= to_copy;
1817 }
1818 }
1819
1820 return true;
1821 }
1822
1823 inline void Flush() {}
1824};
1825
1826bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
1827 const struct iovec* iov, size_t iov_cnt) {
1828 ByteArraySource reader(compressed, compressed_length);
1829 return RawUncompressToIOVec(&reader, iov, iov_cnt);
1830}
1831
1832bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
1833 size_t iov_cnt) {
1834 SnappyIOVecWriter output(iov, iov_cnt);
1835 return InternalUncompress(compressed, &output);
1836}
1837
1838// -----------------------------------------------------------------------
1839// Flat array interfaces
1840// -----------------------------------------------------------------------
1841
1842// A type that writes to a flat array.
1843// Note that this is not a "ByteSink", but a type that matches the
1844// Writer template argument to SnappyDecompressor::DecompressAllTags().
1845class SnappyArrayWriter {
1846 private:
1847 char* base_;
1848 char* op_;
1849 char* op_limit_;
1850 // If op < op_limit_min_slop_ then it's safe to unconditionally write
1851 // kSlopBytes starting at op.
1852 char* op_limit_min_slop_;
1853
1854 public:
1855 inline explicit SnappyArrayWriter(char* dst)
1856 : base_(dst),
1857 op_(dst),
1858 op_limit_(dst),
1859 op_limit_min_slop_(dst) {} // Safe default see invariant.
1860
1861 inline void SetExpectedLength(size_t len) {
1862 op_limit_ = op_ + len;
1863 // Prevent pointer from being past the buffer.
1864 op_limit_min_slop_ = op_limit_ - std::min<size_t>(kSlopBytes - 1, len);
1865 }
1866
1867 inline bool CheckLength() const { return op_ == op_limit_; }
1868
1869 char* GetOutputPtr() { return op_; }
1870 char* GetBase(ptrdiff_t* op_limit_min_slop) {
1871 *op_limit_min_slop = op_limit_min_slop_ - base_;
1872 return base_;
1873 }
1874 void SetOutputPtr(char* op) { op_ = op; }
1875
1876 inline bool Append(const char* ip, size_t len, char** op_p) {
1877 char* op = *op_p;
1878 const size_t space_left = op_limit_ - op;
1879 if (space_left < len) return false;
1880 std::memcpy(op, ip, len);
1881 *op_p = op + len;
1882 return true;
1883 }
1884
1885 inline bool TryFastAppend(const char* ip, size_t available, size_t len,
1886 char** op_p) {
1887 char* op = *op_p;
1888 const size_t space_left = op_limit_ - op;
1889 if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
1890 // Fast path, used for the majority (about 95%) of invocations.
1891 UnalignedCopy128(ip, op);
1892 *op_p = op + len;
1893 return true;
1894 } else {
1895 return false;
1896 }
1897 }
1898
1899 SNAPPY_ATTRIBUTE_ALWAYS_INLINE
1900 inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) {
1901 assert(len > 0);
1902 char* const op = *op_p;
1903 assert(op >= base_);
1904 char* const op_end = op + len;
1905
1906 // Check if we try to append from before the start of the buffer.
1907 if (SNAPPY_PREDICT_FALSE(static_cast<size_t>(op - base_) < offset))
1908 return false;
1909
1910 if (SNAPPY_PREDICT_FALSE((kSlopBytes < 64 && len > kSlopBytes) ||
1911 op >= op_limit_min_slop_ || offset < len)) {
1912 if (op_end > op_limit_ || offset == 0) return false;
1913 *op_p = IncrementalCopy(op - offset, op, op_end, op_limit_);
1914 return true;
1915 }
1916 std::memmove(op, op - offset, kSlopBytes);
1917 *op_p = op_end;
1918 return true;
1919 }
1920 inline size_t Produced() const {
1921 assert(op_ >= base_);
1922 return op_ - base_;
1923 }
1924 inline void Flush() {}
1925};
1926
1927bool RawUncompress(const char* compressed, size_t compressed_length,
1928 char* uncompressed) {
1929 ByteArraySource reader(compressed, compressed_length);
1930 return RawUncompress(&reader, uncompressed);
1931}
1932
1933bool RawUncompress(Source* compressed, char* uncompressed) {
1934 SnappyArrayWriter output(uncompressed);
1935 return InternalUncompress(compressed, &output);
1936}
1937
1938bool Uncompress(const char* compressed, size_t compressed_length,
1939 std::string* uncompressed) {
1940 size_t ulength;
1941 if (!GetUncompressedLength(compressed, compressed_length, &ulength)) {
1942 return false;
1943 }
1944 // On 32-bit builds: max_size() < kuint32max. Check for that instead
1945 // of crashing (e.g., consider externally specified compressed data).
1946 if (ulength > uncompressed->max_size()) {
1947 return false;
1948 }
1949 STLStringResizeUninitialized(uncompressed, ulength);
1950 return RawUncompress(compressed, compressed_length,
1951 string_as_array(uncompressed));
1952}
1953
1954// A Writer that drops everything on the floor and just does validation
1955class SnappyDecompressionValidator {
1956 private:
1957 size_t expected_;
1958 size_t produced_;
1959
1960 public:
1961 inline SnappyDecompressionValidator() : expected_(0), produced_(0) {}
1962 inline void SetExpectedLength(size_t len) { expected_ = len; }
1963 size_t GetOutputPtr() { return produced_; }
1964 size_t GetBase(ptrdiff_t* op_limit_min_slop) {
1965 *op_limit_min_slop = std::numeric_limits<ptrdiff_t>::max() - kSlopBytes + 1;
1966 return 1;
1967 }
1968 void SetOutputPtr(size_t op) { produced_ = op; }
1969 inline bool CheckLength() const { return expected_ == produced_; }
1970 inline bool Append(const char* ip, size_t len, size_t* produced) {
1971 // TODO: Switch to [[maybe_unused]] when we can assume C++17.
1972 (void)ip;
1973
1974 *produced += len;
1975 return *produced <= expected_;
1976 }
1977 inline bool TryFastAppend(const char* ip, size_t available, size_t length,
1978 size_t* produced) {
1979 // TODO: Switch to [[maybe_unused]] when we can assume C++17.
1980 (void)ip;
1981 (void)available;
1982 (void)length;
1983 (void)produced;
1984
1985 return false;
1986 }
1987 inline bool AppendFromSelf(size_t offset, size_t len, size_t* produced) {
1988 // See SnappyArrayWriter::AppendFromSelf for an explanation of
1989 // the "offset - 1u" trick.
1990 if (*produced <= offset - 1u) return false;
1991 *produced += len;
1992 return *produced <= expected_;
1993 }
1994 inline void Flush() {}
1995};
1996
1997bool IsValidCompressedBuffer(const char* compressed, size_t compressed_length) {
1998 ByteArraySource reader(compressed, compressed_length);
1999 SnappyDecompressionValidator writer;
2000 return InternalUncompress(&reader, &writer);
2001}
2002
2003bool IsValidCompressed(Source* compressed) {
2004 SnappyDecompressionValidator writer;
2005 return InternalUncompress(compressed, &writer);
2006}
2007
2008void RawCompress(const char* input, size_t input_length, char* compressed,
2009 size_t* compressed_length) {
2010 ByteArraySource reader(input, input_length);
2011 UncheckedByteArraySink writer(compressed);
2012 Compress(&reader, &writer);
2013
2014 // Compute how many bytes were added
2015 *compressed_length = (writer.CurrentDestination() - compressed);
2016}
2017
2018void RawCompressFromIOVec(const struct iovec* iov, size_t uncompressed_length,
2019 char* compressed, size_t* compressed_length) {
2020 SnappyIOVecReader reader(iov, uncompressed_length);
2021 UncheckedByteArraySink writer(compressed);
2022 Compress(&reader, &writer);
2023
2024 // Compute how many bytes were added.
2025 *compressed_length = writer.CurrentDestination() - compressed;
2026}
2027
2028size_t Compress(const char* input, size_t input_length,
2029 std::string* compressed) {
2030 // Pre-grow the buffer to the max length of the compressed output
2031 STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length));
2032
2033 size_t compressed_length;
2034 RawCompress(input, input_length, string_as_array(compressed),
2035 &compressed_length);
2036 compressed->erase(compressed_length);
2037 return compressed_length;
2038}
2039
2040size_t CompressFromIOVec(const struct iovec* iov, size_t iov_cnt,
2041 std::string* compressed) {
2042 // Compute the number of bytes to be compressed.
2043 size_t uncompressed_length = 0;
2044 for (size_t i = 0; i < iov_cnt; ++i) {
2045 uncompressed_length += iov[i].iov_len;
2046 }
2047
2048 // Pre-grow the buffer to the max length of the compressed output.
2049 STLStringResizeUninitialized(compressed, MaxCompressedLength(
2050 uncompressed_length));
2051
2052 size_t compressed_length;
2053 RawCompressFromIOVec(iov, uncompressed_length, string_as_array(compressed),
2054 &compressed_length);
2055 compressed->erase(compressed_length);
2056 return compressed_length;
2057}
2058
2059// -----------------------------------------------------------------------
2060// Sink interface
2061// -----------------------------------------------------------------------
2062
2063// A type that decompresses into a Sink. The template parameter
2064// Allocator must export one method "char* Allocate(int size);", which
2065// allocates a buffer of "size" and appends that to the destination.
2066template <typename Allocator>
2067class SnappyScatteredWriter {
2068 Allocator allocator_;
2069
2070 // We need random access into the data generated so far. Therefore
2071 // we keep track of all of the generated data as an array of blocks.
2072 // All of the blocks except the last have length kBlockSize.
2073 std::vector<char*> blocks_;
2074 size_t expected_;
2075
2076 // Total size of all fully generated blocks so far
2077 size_t full_size_;
2078
2079 // Pointer into current output block
2080 char* op_base_; // Base of output block
2081 char* op_ptr_; // Pointer to next unfilled byte in block
2082 char* op_limit_; // Pointer just past block
2083 // If op < op_limit_min_slop_ then it's safe to unconditionally write
2084 // kSlopBytes starting at op.
2085 char* op_limit_min_slop_;
2086
2087 inline size_t Size() const { return full_size_ + (op_ptr_ - op_base_); }
2088
2089 bool SlowAppend(const char* ip, size_t len);
2090 bool SlowAppendFromSelf(size_t offset, size_t len);
2091
2092 public:
2093 inline explicit SnappyScatteredWriter(const Allocator& allocator)
2094 : allocator_(allocator),
2095 full_size_(0),
2096 op_base_(NULL),
2097 op_ptr_(NULL),
2098 op_limit_(NULL),
2099 op_limit_min_slop_(NULL) {}
2100 char* GetOutputPtr() { return op_ptr_; }
2101 char* GetBase(ptrdiff_t* op_limit_min_slop) {
2102 *op_limit_min_slop = op_limit_min_slop_ - op_base_;
2103 return op_base_;
2104 }
2105 void SetOutputPtr(char* op) { op_ptr_ = op; }
2106
2107 inline void SetExpectedLength(size_t len) {
2108 assert(blocks_.empty());
2109 expected_ = len;
2110 }
2111
2112 inline bool CheckLength() const { return Size() == expected_; }
2113
2114 // Return the number of bytes actually uncompressed so far
2115 inline size_t Produced() const { return Size(); }
2116
2117 inline bool Append(const char* ip, size_t len, char** op_p) {
2118 char* op = *op_p;
2119 size_t avail = op_limit_ - op;
2120 if (len <= avail) {
2121 // Fast path
2122 std::memcpy(op, ip, len);
2123 *op_p = op + len;
2124 return true;
2125 } else {
2126 op_ptr_ = op;
2127 bool res = SlowAppend(ip, len);
2128 *op_p = op_ptr_;
2129 return res;
2130 }
2131 }
2132
2133 inline bool TryFastAppend(const char* ip, size_t available, size_t length,
2134 char** op_p) {
2135 char* op = *op_p;
2136 const int space_left = op_limit_ - op;
2137 if (length <= 16 && available >= 16 + kMaximumTagLength &&
2138 space_left >= 16) {
2139 // Fast path, used for the majority (about 95%) of invocations.
2140 UnalignedCopy128(ip, op);
2141 *op_p = op + length;
2142 return true;
2143 } else {
2144 return false;
2145 }
2146 }
2147
2148 inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) {
2149 char* op = *op_p;
2150 assert(op >= op_base_);
2151 // Check if we try to append from before the start of the buffer.
2152 if (SNAPPY_PREDICT_FALSE((kSlopBytes < 64 && len > kSlopBytes) ||
2153 static_cast<size_t>(op - op_base_) < offset ||
2154 op >= op_limit_min_slop_ || offset < len)) {
2155 if (offset == 0) return false;
2156 if (SNAPPY_PREDICT_FALSE(static_cast<size_t>(op - op_base_) < offset ||
2157 op + len > op_limit_)) {
2158 op_ptr_ = op;
2159 bool res = SlowAppendFromSelf(offset, len);
2160 *op_p = op_ptr_;
2161 return res;
2162 }
2163 *op_p = IncrementalCopy(op - offset, op, op + len, op_limit_);
2164 return true;
2165 }
2166 // Fast path
2167 char* const op_end = op + len;
2168 std::memmove(op, op - offset, kSlopBytes);
2169 *op_p = op_end;
2170 return true;
2171 }
2172
2173 // Called at the end of the decompress. We ask the allocator
2174 // write all blocks to the sink.
2175 inline void Flush() { allocator_.Flush(Produced()); }
2176};
2177
2178template <typename Allocator>
2179bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) {
2180 size_t avail = op_limit_ - op_ptr_;
2181 while (len > avail) {
2182 // Completely fill this block
2183 std::memcpy(op_ptr_, ip, avail);
2184 op_ptr_ += avail;
2185 assert(op_limit_ - op_ptr_ == 0);
2186 full_size_ += (op_ptr_ - op_base_);
2187 len -= avail;
2188 ip += avail;
2189
2190 // Bounds check
2191 if (full_size_ + len > expected_) return false;
2192
2193 // Make new block
2194 size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_);
2195 op_base_ = allocator_.Allocate(bsize);
2196 op_ptr_ = op_base_;
2197 op_limit_ = op_base_ + bsize;
2198 op_limit_min_slop_ = op_limit_ - std::min<size_t>(kSlopBytes - 1, bsize);
2199
2200 blocks_.push_back(op_base_);
2201 avail = bsize;
2202 }
2203
2204 std::memcpy(op_ptr_, ip, len);
2205 op_ptr_ += len;
2206 return true;
2207}
2208
2209template <typename Allocator>
2210bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
2211 size_t len) {
2212 // Overflow check
2213 // See SnappyArrayWriter::AppendFromSelf for an explanation of
2214 // the "offset - 1u" trick.
2215 const size_t cur = Size();
2216 if (offset - 1u >= cur) return false;
2217 if (expected_ - cur < len) return false;
2218
2219 // Currently we shouldn't ever hit this path because Compress() chops the
2220 // input into blocks and does not create cross-block copies. However, it is
2221 // nice if we do not rely on that, since we can get better compression if we
2222 // allow cross-block copies and thus might want to change the compressor in
2223 // the future.
2224 // TODO Replace this with a properly optimized path. This is not
2225 // triggered right now. But this is so super slow, that it would regress
2226 // performance unacceptably if triggered.
2227 size_t src = cur - offset;
2228 char* op = op_ptr_;
2229 while (len-- > 0) {
2230 char c = blocks_[src >> kBlockLog][src & (kBlockSize - 1)];
2231 if (!Append(&c, 1, &op)) {
2232 op_ptr_ = op;
2233 return false;
2234 }
2235 src++;
2236 }
2237 op_ptr_ = op;
2238 return true;
2239}
2240
2241class SnappySinkAllocator {
2242 public:
2243 explicit SnappySinkAllocator(Sink* dest) : dest_(dest) {}
2244 ~SnappySinkAllocator() {}
2245
2246 char* Allocate(int size) {
2247 Datablock block(new char[size], size);
2248 blocks_.push_back(block);
2249 return block.data;
2250 }
2251
2252 // We flush only at the end, because the writer wants
2253 // random access to the blocks and once we hand the
2254 // block over to the sink, we can't access it anymore.
2255 // Also we don't write more than has been actually written
2256 // to the blocks.
2257 void Flush(size_t size) {
2258 size_t size_written = 0;
2259 for (Datablock& block : blocks_) {
2260 size_t block_size = std::min<size_t>(block.size, size - size_written);
2261 dest_->AppendAndTakeOwnership(block.data, block_size,
2262 &SnappySinkAllocator::Deleter, NULL);
2263 size_written += block_size;
2264 }
2265 blocks_.clear();
2266 }
2267
2268 private:
2269 struct Datablock {
2270 char* data;
2271 size_t size;
2272 Datablock(char* p, size_t s) : data(p), size(s) {}
2273 };
2274
2275 static void Deleter(void* arg, const char* bytes, size_t size) {
2276 // TODO: Switch to [[maybe_unused]] when we can assume C++17.
2277 (void)arg;
2278 (void)size;
2279
2280 delete[] bytes;
2281 }
2282
2283 Sink* dest_;
2284 std::vector<Datablock> blocks_;
2285
2286 // Note: copying this object is allowed
2287};
2288
2289size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) {
2290 SnappySinkAllocator allocator(uncompressed);
2291 SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
2292 InternalUncompress(compressed, &writer);
2293 return writer.Produced();
2294}
2295
2296bool Uncompress(Source* compressed, Sink* uncompressed) {
2297 // Read the uncompressed length from the front of the compressed input
2298 SnappyDecompressor decompressor(compressed);
2299 uint32_t uncompressed_len = 0;
2300 if (!decompressor.ReadUncompressedLength(&uncompressed_len)) {
2301 return false;
2302 }
2303
2304 char c;
2305 size_t allocated_size;
2306 char* buf = uncompressed->GetAppendBufferVariable(1, uncompressed_len, &c, 1,
2307 &allocated_size);
2308
2309 const size_t compressed_len = compressed->Available();
2310 // If we can get a flat buffer, then use it, otherwise do block by block
2311 // uncompression
2312 if (allocated_size >= uncompressed_len) {
2313 SnappyArrayWriter writer(buf);
2314 bool result = InternalUncompressAllTags(&decompressor, &writer,
2315 compressed_len, uncompressed_len);
2316 uncompressed->Append(buf, writer.Produced());
2317 return result;
2318 } else {
2319 SnappySinkAllocator allocator(uncompressed);
2320 SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
2321 return InternalUncompressAllTags(&decompressor, &writer, compressed_len,
2322 uncompressed_len);
2323 }
2324}
2325
2326} // namespace snappy
2327