1/*********************************************************************
2* Filename: sha256.c
3* Author: Brad Conte (brad AT bradconte.com)
4* Copyright:
5* Disclaimer: This code is presented "as is" without any guarantees.
6* Details: Implementation of the SHA-256 hashing algorithm.
7 SHA-256 is one of the three algorithms in the SHA2
8 specification. The others, SHA-384 and SHA-512, are not
9 offered in this implementation.
10 Algorithm specification can be found here:
11 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
12 This implementation uses little endian byte order.
13*********************************************************************/
14
15/*************************** HEADER FILES ***************************/
16#include <stdlib.h>
17#include <string.h>
18#include "sha256.h"
19
20/****************************** MACROS ******************************/
21#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
22#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
23
24#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
25#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
26#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
27#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
28#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
29#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
30
31/**************************** VARIABLES *****************************/
32static const WORD k[64] = {
33 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
34 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
35 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
36 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
37 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
38 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
39 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
40 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
41};
42
43/*********************** FUNCTION DEFINITIONS ***********************/
44void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
45{
46 WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
47
48 for (i = 0, j = 0; i < 16; ++i, j += 4) {
49 m[i] = ((WORD) data[j + 0] << 24) |
50 ((WORD) data[j + 1] << 16) |
51 ((WORD) data[j + 2] << 8) |
52 ((WORD) data[j + 3]);
53 }
54
55 for ( ; i < 64; ++i)
56 m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
57
58 a = ctx->state[0];
59 b = ctx->state[1];
60 c = ctx->state[2];
61 d = ctx->state[3];
62 e = ctx->state[4];
63 f = ctx->state[5];
64 g = ctx->state[6];
65 h = ctx->state[7];
66
67 for (i = 0; i < 64; ++i) {
68 t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
69 t2 = EP0(a) + MAJ(a,b,c);
70 h = g;
71 g = f;
72 f = e;
73 e = d + t1;
74 d = c;
75 c = b;
76 b = a;
77 a = t1 + t2;
78 }
79
80 ctx->state[0] += a;
81 ctx->state[1] += b;
82 ctx->state[2] += c;
83 ctx->state[3] += d;
84 ctx->state[4] += e;
85 ctx->state[5] += f;
86 ctx->state[6] += g;
87 ctx->state[7] += h;
88}
89
90void sha256_init(SHA256_CTX *ctx)
91{
92 ctx->datalen = 0;
93 ctx->bitlen = 0;
94 ctx->state[0] = 0x6a09e667;
95 ctx->state[1] = 0xbb67ae85;
96 ctx->state[2] = 0x3c6ef372;
97 ctx->state[3] = 0xa54ff53a;
98 ctx->state[4] = 0x510e527f;
99 ctx->state[5] = 0x9b05688c;
100 ctx->state[6] = 0x1f83d9ab;
101 ctx->state[7] = 0x5be0cd19;
102}
103
104void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
105{
106 WORD i;
107
108 for (i = 0; i < len; ++i) {
109 ctx->data[ctx->datalen] = data[i];
110 ctx->datalen++;
111 if (ctx->datalen == 64) {
112 sha256_transform(ctx, ctx->data);
113 ctx->bitlen += 512;
114 ctx->datalen = 0;
115 }
116 }
117}
118
119void sha256_final(SHA256_CTX *ctx, BYTE hash[])
120{
121 WORD i;
122
123 i = ctx->datalen;
124
125 // Pad whatever data is left in the buffer.
126 if (ctx->datalen < 56) {
127 ctx->data[i++] = 0x80;
128 while (i < 56)
129 ctx->data[i++] = 0x00;
130 }
131 else {
132 ctx->data[i++] = 0x80;
133 while (i < 64)
134 ctx->data[i++] = 0x00;
135 sha256_transform(ctx, ctx->data);
136 memset(ctx->data, 0, 56);
137 }
138
139 // Append to the padding the total message's length in bits and transform.
140 ctx->bitlen += ctx->datalen * 8;
141 ctx->data[63] = ctx->bitlen;
142 ctx->data[62] = ctx->bitlen >> 8;
143 ctx->data[61] = ctx->bitlen >> 16;
144 ctx->data[60] = ctx->bitlen >> 24;
145 ctx->data[59] = ctx->bitlen >> 32;
146 ctx->data[58] = ctx->bitlen >> 40;
147 ctx->data[57] = ctx->bitlen >> 48;
148 ctx->data[56] = ctx->bitlen >> 56;
149 sha256_transform(ctx, ctx->data);
150
151 // Since this implementation uses little endian byte ordering and SHA uses big endian,
152 // reverse all the bytes when copying the final state to the output hash.
153 for (i = 0; i < 4; ++i) {
154 hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
155 hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
156 hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
157 hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
158 hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
159 hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
160 hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
161 hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
162 }
163}
164